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Analysis, Control, and Evaluation of
Mobility-on-Demand Systems: A
Queueing-Theoretical Approach
Rick Zhang , Federico Rossi , and Marco Pavone , Member, IEEE

Abstract—This paper presents a queueing-theoretical ap-
proach to the analysis, control, and evaluation of mobility-
on-demand (MoD) systems for urban personal transporta-
tion. A MoD system consists of a fleet of vehicles provid-
ing one-way car-sharing service and a team of drivers to
rebalance such vehicles. The drivers then rebalance them-
selves by driving select customers similar to a taxi service.
We model the MoD system as two coupled closed Jackson
networks with passenger loss. We show that the system
can be approximately balanced by solving two decoupled
linear programs and exactly balanced through nonlinear
optimization. The rebalancing techniques are applied to a
system sizing example using taxi data in three neigh-
borhoods of Manhattan. Finally, we formulate a real-time
closed-loop rebalancing policy for drivers and perform case
studies of two hypothetical MoD systems in Manhattan and
Hangzhou, China. We show that the taxi demand in Manhat-
tan can be met with the same number of vehicles in a MoD
system, but only requires 1/3 to 1/4 the number of drivers; in
Hangzhou, where customer demand is highly unbalanced,
higher driver-to-vehicle ratios are required to achieve good
quality of service.

Index Terms—Optimal control, queueing analysis, smart
transportation, vehicle routing.

I. INTRODUCTION

CAR SHARING promises to be a cost effective and sus-
tainable alternative to private urban mobility by allowing

a split of hefty ownership costs, increasing vehicle utilization,
and reducing the urban infrastructure needed for parking [1].
One type of vehicle-sharing service, called mobility-on-demand
(MoD), consists of stacks or racks of light electric vehicles
parked at many different stations throughout a city [1]. Each
customer arrives at a station, takes a vehicle to the desired des-
tination, and drops off the vehicle at that station.
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MoD systems have been advocated as a key step toward sus-
tainable personal urban mobility in the 21st century [1]. They
present, however, a number of operational challenges. In par-
ticular, due to the asymmetry of customer demands, vehicles
tend to aggregate at some stations and are depleted elsewhere,
causing the system to become unbalanced [2] and leading to
an overall reduction in the quality of service. Rebalancing ap-
proaches in car-sharing systems are typically categorized into
1) user-based rebalancing and 2) operator-based rebalancing.
User-based approaches typically introduce financial incentives
to influence trip origins and destinations as well as encourage
ride sharing or splitting [3]. However, these strategies typically
cannot meet all of the rebalancing needs of the system, since it is
difficult to model and control user behavior [4]. Operator-based
rebalancing, the main focus of this paper, involves sending hired
drivers to different parts of the city to rebalance the vehicles.
Previous works on operator-based rebalancing strategies often
formulate the problem as a mixed-integer linear program to
maximize the profit generated by the system [5], [6] and subject
to fixed rebalancing costs. However, these formulations do not
directly account for the rebalancing of the drivers themselves, if,
for example, public transit is not readily available. The drivers
may be rebalanced using shared shuttles [7] or by ferrying pas-
sengers to their destinations, much like a taxi service [8]. It is
worth noting that rebalancing for MoD systems has also been
studied in the context of autonomous vehicles under a fluidic
model [2], a queueing network model [9], and a decentralized
Gaussian Process-based model [10].

The objective of this paper is to develop a queueing-
theoretical framework for the analysis, control, and evaluation of
(human-driven, non-autonomous) MoD systems. We then apply
the insights from this queueing framework to develop real-time
closed-loop policies to control such systems. On the modeling
and analysis side, we consider a model similar to the one pro-
posed in [8], where drivers are themselves rebalanced by driving
a portion of the customers to their destinations. In this way, the
MoD system can be viewed as a one-way customer-driven car-
sharing service mixed with a taxi service. The model presented
in [8] hinges upon the optimization of rebalancing rates and is
studied under a fluidic approximation (where customers, drivers,
and vehicles are modeled as a continuum). While this model of-
fers insights into the minimum number of vehicles and drivers
required in a MoD system, it does not provide key performance
metrics in terms of quality of service (i.e., the availability of
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vehicles at stations or the customer wait times). These short-
comings are addressed by [9] for an autonomous MoD system,
where the system is modeled as a stochastic queueing network
from which key performance metrics are derived. This paper
can be viewed as an extension of the models in [8] and [9] to
human-driven MoD systems taking into account both vehicles
and rebalancing drivers. On the control side, real-time closed-
loop policies for one-way car-sharing systems have been studied
in [5] and [6] with the objective of maximizing profit, where the
rebalancing of vehicles is modeled as a cost. Our paper differs
from these works in two key respects: 1) in addition to minimiz-
ing cost, our key objective is quality of service for customers in
terms of vehicle availability and wait times, and 2) we explicitly
control the movement of rebalancing drivers, which makes the
system self-contained (e.g., drivers do not need to rely on public
transit to rebalance themselves).

Our contribution in this paper is four-fold. First, we model a
MoD system within a queueing-theoretical framework that takes
into account the coupled rebalancing of vehicles and drivers.
Specifically, our approach is to model a MoD system as two
coupled closed Jackson networks with passenger loss. Second,
we present two approaches for the open-loop control of a MoD
system. In the first approach, the optimal rebalancing parame-
ters are found by solving two decoupled linear programs, and
are therefore efficient to compute, but only approximately guar-
antee balance of the system. In the second approach, nonlinear
optimization techniques are used (with higher computational
cost) to balance the system exactly. Third, we apply such ap-
proaches to the problem of system sizing and test them on a case
study in Manhattan, showing that the optimal vehicle-to-driver
ratio in a MoD system deployed in the city should be between
3 and 5. Finally, by leveraging the aforementioned open-loop
control strategies, we devise a real-time closed-loop rebalanc-
ing policy and demonstrate its performance for case studies of
two hypothetical MoD systems in Manhattan and Hangzhou,
China. In particular, we show that a MoD system can satisfy
all existing taxi demand in Manhattan with around the same
number of vehicles as current taxis (approximately 11 000), but
only needs 1/3 to 1/4 the number of drivers. In Hangzhou, where
demand is highly unbalanced, we show that a higher driver-to-
vehicle ratio of 1/3 to 1/2 is required to achieve good quality of
service.

The rest of this paper proceeds as follows: Section II reviews
some key results in the theory of Jackson networks. Section III
describes in detail our queueing network model of a MoD sys-
tem. Section IV offers the approaches for open-loop control of
a MoD system. The rebalancing techniques are then applied to
a system sizing example based on taxi data in Manhattan. In
Section V, we introduce a real-time closed-loop control pol-
icy useful for a practical implementation, and in Section VI,
we study its performance on MoD systems in Manhattan and
Hangzhou, China. Finally, in Section VII, we draw our conclu-
sions and provide directions for future research.

A preliminary version of this paper appeared as [11]. In this
revised and extended version, we provide as additional con-
tributions proofs of all results, an expanded description of the
real-time closed-loop rebalancing algorithm, and two new case

studies for MoD systems operating in Manhattan and in
Hangzhou, China.

II. BACKGROUND MATERIAL

In this section, we recall a few fundamental concepts from
the theory of queueing networks, and, in particular, Jackson
networks, which will be used throughout the rest of this paper.
We refer the interested reader to [9] and [12] for more in-depth
discussions.

A Jackson network is a class of Markovian queueing networks
where the routing distribution (the probability of transitioning
to node j from node i), rij , is stationary and the service rate at
each node i, μi(xi), only depends on the number of agents at
that node xi [12, p. 9]. In equilibrium, the throughput at each
node, (i.e., the average number of agents passing through the
node per unit time) {πi}|V |i=1 of a closed Jackson network (i.e.,
with a fixed number of agents moving among the nodes, with no
external arrivals or departures) satisfies the balance equations

πi =
∑

j∈V
πj rji , for all i ∈ V (1)

where V is the set of nodes in the network. Note that (1)
does not yield a unique solution and only determines π =
(π1 π2 . . . π|V |)T up to a constant factor. Accordingly, π is
referred to as the relative throughput. The stationary probabil-
ity distribution of a closed Jackson network with m agents is
given by

P (x1 , x2 , . . . , x|V |) =
1

G(m)

|V |∏

j=1

π
xj
j

xj∏

n=1

μj (n)−1

where G(m) is a normalization constant required to make
P (x1 , x2 , . . . , x|V |) a probability measure. It turns out that many
performance metrics of the network can be expressed in terms of
the normalization constant G(m). Two such performance met-
rics are of interest to us: 1) the actual throughput of each node
(see [12, p. 27]) is given by

Λi(m) = πi G(m− 1)/G(m) (2)

and 2) the probability that a node has at least one agent, referred
to as the availability of node i ([9], [13]), is given by

Ai(m) = γi G(m− 1)/G(m) (3)

where γi = πi/μi(1) is referred to as the relative utilization of
node i. In general, solving for G(m) is quite computationally
expensive, especially when m is large. A well-known iterative
technique called mean value analysis (MVA) [14] enables us
to compute the mean values of performance metrics without
explicitly solving for G(m). The MVA algorithm is described
in detail in [9] and [15].

III. MODEL DESCRIPTION AND PROBLEM FORMULATION

A. MoD System Model

In this section, we formally describe the MoD system un-
der consideration and cast it within a queueing network frame-
work by modeling the system as two coupled, closed Jackson
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networks. We consider N stations with unlimited parking ca-
pacity placed in a given geographical area, mv vehicles that
can be rented by customers for one-way trips between stations,
and md “rebalancing” drivers employed to rebalance the ve-
hicles by driving them to the stations where they are needed.
After rebalancing the vehicles, the drivers themselves become
unbalanced—they need to get back to locations with an excess
of vehicles. To “rebalance” the drivers, we propose a mechanism
where the drivers drive a portion of customers to their destina-
tions, effectively operating as a taxi service. This requires each
driver to always have access to a vehicle since the driver’s task
involves driving a vehicle with or without a customer. (A driver
left at a station without a vehicle is effectively “stranded.”) We
therefore pose the constraint vi ≥ di , where vi is the number of
vehicles at station i and di is the number of drivers at station i.
(Note that in this framework, we do not allow multiple drivers
to occupy the same vehicle.) With this requirement, we may
view the MoD system as two systems operating in parallel—
a one-way customer-driven car-sharing service with mv −md

vehicles and a taxi service with md vehicles. It is worth not-
ing that there are other, more elaborated ways of managing a
MoD system that we do not address in this paper. For example,
in [8], the authors also consider customers potentially riding
with multiple drivers. One could also envision a system where
drivers can drive other drivers or take public transportation to
stations with excess cars. In these cases, a key challenge is the
explicit modeling of the movement of the drivers, which could
be represented using a separate queueing network. If drivers
can take other forms of transportation not explicitly modeled
by the queueing network, it may be included as an additional
rebalancing cost, similar to [5]. The extension of our model to
such cases is an interesting avenue for future research.

Customers arrive at station i according to a Poisson process
with parameter λi . Upon arrival at station i, the customer se-
lects a destination j with probability pij , where pij ≥ 0, pii = 0,
and

∑
j pij = 1. Furthermore, we assume that the probabilities

{pij}ij constitute an irreducible Markov chain. The customer
can travel to his/her destination in one of two ways: 1) the cus-
tomer drives a vehicle to his/her destination, or 2) the customer
is taken to his/her destination by a rebalancing driver. The travel
time from station i to station j is an exponentially distributed
random variable with mean Tij > 0. The assumptions of Pois-
son arrivals and exponential travel times not only simplify the
problem, but have been shown to be reasonable approximations
in terms of their predictive accuracy in similar spatial queueing
models for vehicle routing [9]. We employ a “passenger loss”
model similar to [9] and [13], where if a vehicle is not avail-
able upon the arrival of a customer, the customer immediately
leaves the system. However, due to the additional complexity
of our MoD model (a one-way car-sharing service and a taxi
service in parallel), the passenger loss assumption is more in-
volved. We assume that upon arrival at a station, a customer is
delegated to one of the two parallel systems by the MoD ser-
vice operator (see Fig. 1). The customer is lost if there are no
available vehicles in the system to which he/she was delegated.
For example, if a customer is delegated to the taxi system and
no taxis are immediately available, the customer cannot switch

Fig. 1. Left: MoD system model. Yellow dots represent customers and
red dots represent rebalancing drivers. Customers can drive themselves
or ride with a rebalancing driver. Customers are lost if no vehicles are
available (station 1). Right: each customer arriving at station i is dele-
gated to either System 1 (customer-driven vehicles) or System 2 (taxi
system).

over to the other system and drive himself/herself to the desired
destination. This assumption is needed to maintain tractability
in the Jackson network model. The modeling consequences of
this assumption will be further discussed in the next section.
The performance criterion of interest in this case is the proba-
bility that a customer will find an available vehicle (both empty
vehicles and taxis) at each station. In Section V, we will relax
the passenger loss assumption and investigate the more realistic
scenario where customers form a queue to wait for available
vehicles. The performance of the system is then measured by
customer wait times.

B. Jackson Network Model of a MoD System

We now formally cast the MoD model described in the pre-
vious section within a queueing network framework. The key is
to construct an abstract queueing network where the stations are
modeled as single-server (SS) nodes and the roads as infinite-
server (IS) nodes, as done in [9] and [13]. Vehicles form a queue
at each SS node while waiting for customers and are “serviced”
when a customer arrives. The vehicle then moves from the SS
node to the IS node connecting the origin to the destination
selected by the customer. After spending an exponentially dis-
tributed amount of time (with mean Tij ) in the IS node, the
vehicle moves to the destination SS node. With this setup, we
have described a closed Jackson network with respect to the ve-
hicles. To capture the idea that the MoD system consists of two
systems (customer-driven system and taxi system) operating in
parallel, we model the MoD system as two coupled closed Jack-
son networks. More formally, let System 1 represent the Jackson
network of mv −md customer-driven vehicles, and System 2
represent the network of md taxis. Let S(k) represent the set of
SS nodes and I(k) represent the set of IS nodes in the kth Jackson
network, where k = {1, 2}. For each network, each SS node is
connected to every other SS node through an IS node. Thus,
each network consists of N +N(N − 1) = N 2 nodes (the IS
node from station i to itself is not represented since pii = 0). For
each IS node i ∈ I(k) , let Parent(i) and Child(i) be the origin
and destination of i, respectively. The routing matrix {r(k)

ij }ij
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Fig. 2. Three-station system (System 1 or System 2) cast as a closed
Jackson network. Circles represent SS nodes and rectangles represent
IS nodes.

in Jackson network k can then be written as

r
(k)
ij =

⎧
⎪⎨

⎪⎩

p
(k)
il i ∈ S(k) , j ∈ I(k) , i = Parent(j), l = Child(j)

1 i ∈ I(k) , j ∈ S(k) , j = Child(i)
0 otherwise

where the first case is the movement from an SS node to an IS
node and the second case is from an IS node to its unique desti-
nation SS node. The service times at each node are exponentially
distributed with mean service rates

μ
(k)
i (n) =

{
λ

(k)
i if i ∈ S(k)

n
Tj l

if i ∈ I(k) , j = Parent(i), l = Child(i)

where n is the number of vehicles in the IS node. With this for-
mulation, we have defined two closed Jackson networks of the
same form as in [9], amenable to analysis. Fig. 2 illustrates the
topology of a simple system cast as a closed Jackson network.

We now return to the customer arrival process and the loss
model assumption. Recall that customers arrive at station i ac-
cording to a Poisson process with rate λi . Upon arrival, cus-
tomers at station i going to station j are split into either System
1 or System 2, with fixed probability. This can be seen as a
Bernoulli splitting of the customer arrival process into two Pois-
son processes for each desired destination. Denote by λ

(1)
i the

total rate of customers delegated to System 1; by p(1)
ij the routing

probabilities associated with System 1 (p(1)
ij ≥ 0, p(1)

ii = 0, and
∑

j p
(1)
ij = 1); by λdel

i , the total rate of customers delegated to
System 2; and by ηij , the routing probabilities associated with

System 2. We have the relationship λi = λ
(1)
i + λdel

i for each
station i. We define qi to be the total fraction of customers del-
egated to System 1 at station i, that is, qi := λ

(1)
i /λi . We can

also write 1− qi = λdel
i /λi . The routing probabilities for the

customers are then split up as follows:

pij = P (i→ j | System 1) qi + P (i→ j | System 2) (1− qi)
= p

(1)
ij qi + ηij (1− qi). (4)

We can equivalently say that the Poisson rate of customers
originating at station i and headed for station j is λi pij . The

arrival rate of these customers to System 1 is then λ
(1)
i p

(1)
ij and

the arrival rate to System 2 is λdel
i ηij . Thus, relation (4) can be

rewritten as follows:

λi pij = λ
(1)
i p

(1)
ij + λdel

i ηij . (5)

If the delegation process is known (i.e., λdel
i and ηij are known),

the routing probabilities for System 1 can be solved by rear-
ranging (4) as follows:

p
(1)
ij = pij /qi − ηij (1− qi)/qi. (6)

Note that since the delegation process is controlled by the ser-
vice operator, the rate and probability distribution of customers
delegated (λdel

i and ηij ) can be viewed as control inputs, and op-
timized. In Section III-C, we will describe in detail how to solve
for λdel

i and ηij . Arrival rates λ
(1)
i , routing probabilities p(1)

ij ,
and mean travel times Tij fully describe the System 1 Jackson
network.

Now we consider the second Jackson network, System 2,
which models the md vehicles operating as a taxi service. This
network must not only provide service to customers but also
rebalance the MoD system to ensure quality of service. To in-
corporate the notion of vehicle rebalancing, we use the concept
of “virtual” customers as in [9]. Virtual customers are generated
at station i according to a Poisson process with parameterψi and
routing probabilities ξij , independent from the real customer ar-
rival process. Virtual customers are lost upon arrival if a taxi is
not immediately available, just like real customers. In this way,
virtual customers promote rebalancing while not enforcing a
strict rebalancing rate, which is key to retaining tractability in
the model. The overall customer arrival rate (real and virtual) at
station i for System 2 is

λ
(2)
i = λdel

i + ψi.

With respect to the vehicles, λ(2)
i is the exponentially distributed

service rate at SS node i ∈ S(2) . The routing probabilities for
this network can be defined as

p
(2)
ij = P (i→ j | virtual)

ψi

λ
(2)
i

+ P (i→ j | real)
λdel
i

λ
(2)
i

= ξij
ψi

λ
(2)
i

+ ηij
λdel
i

λ
(2)
i

= ξij pi + ηij (1− pi) (7)

where pi := ψi/λ
(2)
i , similar to the definition in [9].

To summarize our Jackson network model, customers arrive
at station i headed for station j according to a Poisson process
with rate λi pij . Upon arrival, each customer is delegated to one
of two systems: the customer-driven system (System 1) or the
taxi system (System 2). The probability of the customer (going

from station i to j) being delegated to System 1 is
λ

( 1 )
i p

( 1 )
i j

λi pi j
and

the probability of the customer being delegated to System 2

is λd e l
i ηi j
λi pi j

[from (5)]. Once the customer has been delegated, if
he/she finds the station empty of vehicles, he/she immediately
leaves the system. Once delegated, a customer cannot switch
from System 1 to System 2 or vice-versa. We note that in the
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same way that ψi represents the rebalancing-promoting rate of
vehicles in the MoD system, λdel

i represents the rebalancing-
promoting rate of the drivers. Together, the parameters ψi , ξij ,
λdel
i , and ηij constitute the open-loop controls for our model of

a MoD system. The open-loop control problem is formalized
and solved in Section IV.

C. Performance Criteria

The task to control the MoD system involves optimizing the
parameters λdel

i (rebalancing the drivers) and ψi (rebalancing
the vehicles) as well as the routing probabilities ηij and ξij .
The key performance metric is the availability of vehicles (the
probability that a customer will find an available vehicle), given
by (3). In [13], it was shown that for a closed Jackson network
of the form described in the previous section, the availabil-
ity satisfies limm→∞Ai(m) = γi/γ

max
S , for all i ∈ S, where γi

is the relative utilization at node i ∈ S, S is the set of sta-
tion nodes, and γmax

S := maxi∈S γi . As the number of vehi-
cles increases, the set of stationsB := {i ∈ S : γi = γmax

S }will
have availability approaching one while all other stations will
have availability strictly less than one. Thus, a natural notion
of rebalancing, introduced in [9] for autonomous MoD sys-
tems, is to ensure that Ai(m) = Aj (m) for all i, j ∈ S [or,
equivalently, γi = γj for all i, j ∈ S, as implied by (3)]. The
relative utilizations for each Jackson network are defined as
follows:

γ
(1)
i =

π
(1)
i

μ
(1)
i

=
π

(1)
i

λi − λdel
i

∀i ∈ S(1)

γ
(2)
i =

π
(2)
i

μ
(2)
i

=
π

(2)
i

λdel
i + ψi

∀i ∈ S(2)

where π(k)
i , i ∈ S(k) , k = {1, 2} satisfies (1). For autonomous

MoD systems, the constraint γi = γj embodies two features:
1) fairness, as characterized by equal availability across all sta-
tions, and 2) performance, since the availability at each station
approaches 100% as the number of vehicles increases. We will
apply this constraint to both Jackson networks in our MoD sys-
tem as, first, it is a direct generalization of the approach used
for autonomous MoD systems and, second, it yields a linear op-
timization problem (Section IV-A) that is easy to compute and
scales to large systems. However, as discussed in Section IV-
B, such an approach only approximately balances the system
(even though the approximation is often remarkably good). We
then introduce a modified approach in Section IV-C that relies
on nonlinear optimization, which does ensure fairness while
maintaining system performance, but incurs a higher compu-
tational cost. Collectively, the open-loop control approaches of
Section IV are useful for analysis and design tasks such as sys-
tem sizing (Section IV-D) and drive the development of closed-
loop policies (Section V).

IV. ANALYSIS AND DESIGN OF MOD SYSTEMS

A. Approximate MoD Rebalancing

In this section, we formulate a linear optimization approach
to (approximately) rebalance a MoD system. Specifically, we

would like to manipulate the control variables λdel
i , ψi , ηij , and

ξij such that γ(1)
i = γ

(1)
j for all i, j ∈ S(1) and γ(2)

i = γ
(2)
j for

all i, j ∈ S(2) . To minimize the cost of MoD service, we would
like to simultaneously minimize the mean number of rebalanc-
ing vehicles on the road (minimize energy use and possibly con-
gestion), given by

∑
i,j Tij ξij ψi , as well as the number of re-

balancing drivers needed, given by
∑

i,j Tij (ξij ψi + ηij λdel
i ).

We can state this multi-objective problem as follows:
MoD Rebalancing Problem (MRP): Given a MoD system

modeled as two closed Jackson networks, solve

minimize
λd e l
i ,ψi ,ηi j ,ξi j

∑

i,j

Tij ξij ψi and
∑

i,j

Tij (ξij ψi + ηij λdel
i )

subject to γ
(k)
i = γ

(k)
j i, j ∈ S(k) , k = 1, 2 (8)

∑

j

ηij = 1,
∑

j

ξij = 1

ηij ≥ 0, ξij ≥ 0, λdel
i ≥ 0, ψi ≥ 0

λdel
i ηij ≤ λipij i, j ∈ {1, . . . , N}.

Note that the last constraint in the MRP ensures that the
number of customers delegated to the taxi system does not
exceed the total number of customers.

Remarkably, the MRP can be solved as two decoupled linear
optimization problems with the same form as in [8] (which uses
a deterministic, fluidic model). This result, stated in Theorem
IV.5, constitutes the main contribution of this section. By de-
coupling the constraints, we can show that the two objectives
are indeed aligned, that is, minimizing the second objective will
minimize the first as well. We begin by presenting supporting
lemmas that are used in the proof of Theorem IV.5. The first two
lemmas establish some structural properties of the model and
were introduced in [11]. They are restated here for complete-
ness; their proofs are virtually identical to the proofs in [11] and
are omitted. The first lemma allows the balance equations of the
Jackson network to be solved by considering only the SS nodes.

Lemma IV.1 (Folding of balance equations): Consider ei-
ther System 1 or System 2 from Section III-B. The relative
throughputs π’s for the SS nodes can be found by solving the
reduced balance equations

π
(k)
i =

∑

j∈S (k )

π
(k)
j p

(k)
j i ∀i ∈ S(k) , k = {1, 2} (9)

where SS nodes are considered in isolation. The π’s for the IS
nodes are then given by

π
(k)
i = π

(k)
Parent(i)p

(k)
Parent(i)Child(i) ∀i ∈ I(k) , k = {1, 2}. (10)

Lemma IV.2: For any rebalancing policy {ψi}i and {ξij}ij ,
it holds for all i ∈ S(2)

1) γ(2)
i > 0;

2) (λdel
i + ψi) γ

(2)
i =

∑
j∈S ( 2 ) γ

(2)
j (ψj ξji + λdel

j ηji).
Similarly, for System 1,
1) γ(1)

i > 0;

2) (λi − λdel
i ) γ(1)

i =
∑

j∈S ( 1 ) γ
(1)
j (λj pji − λdel

j ηji).
In the next two lemmas, we introduce new optimization vari-

ables {αij}ij and {βij}ij and show that the constraints γi = γj
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in the MRP are equivalent to linear constraints in these new
variables. The proofs are similar to the proof of [9, Th. IV.3].

Lemma IV.3 (Constraint equivalence for System 1): As-
sume that {βij} are given. Set λdel

i =
∑

j �=i βij , ηii = 0, and
for j �= i

ηij =

{
βij /λ

del
i if λdel

i > 0
1/(N − 1) otherwise.

With this definition, the constraint
∑

j∈S ( 1 ) ,j �=i
(βij − βji) = λi −

∑

j∈S ( 1 ) ,j �=i
λj pji (11)

is equivalent to the constraint

γ
(1)
i = γ

(1)
j , i, j ∈ S(1) .

Proof: First, rewrite (11) in terms of λdel
i and ηij ’s. We then

have

λi − λdel
i =

∑

j �=i
(λj pji − λdel

j ηji).

Substituting this expression into the last statement of
Lemma IV.2, we have
⎛

⎝
∑

j �=i
(λj pji − λdel

j ηji)

⎞

⎠ γ
(1)
i =

∑

j �=i
γ

(1)
j (λj pji − λdel

j ηji).

(12)
Let ϕij := λj pji − λdel

j ηji and ζij := ϕij /
∑

j ϕij . Note that
∑

j ϕij = λi − λdel
i = λ

(1)
i > 0 by assumption. The variables

ζij can be considered transition probabilities of an irreducible
Markov chain, and (12) can be rewritten in matrix form as
Zγ(1) = γ(1) . Matrix Z is an irreducible, row stochastic ma-
trix, so by the Perron–Frobenius theorem [16], the eigenspace
associated with the eigenvalue 1 is 1-D. Therefore, the unique
solution to Zγ(1) = γ(1) (up to a scaling factor) is the vector
(1, . . . , 1)T , so γ(1)

i = γ
(1)
j for all i, j.

Lemma IV.4 (Constraint equivalence for System 2): As-
sume that {αij} are given. Set ψi =

∑
j �=i αij , ξii = 0, and for

j �= i

ξij =

{
αij /ψi if ψi > 0
1/(N − 1) otherwise.

With this definition, the constraint
∑

j �=i
(αij − αji) =

∑

j �=i
(βji − βij ) (13)

is equivalent to the constraint

γ
(2)
i = γ

(2)
j , i, j ∈ S(2) .

The proof is essentially identical to the proof of Lemma IV.3
and is omitted. Furthermore, we can substitute (11) into (13)
and rewrite (13) as

∑

j �=i
(αij − αji) = −λi +

∑

j �=i
λj pji . (14)

With this substitution, we have decoupled the original MRP
constraints into those associated with System 1 (λdel

i and
ηij ) and those associated with System 2 (ψi and ξij ). Using
Lemmas IV.3 and IV.4, one can also show that minimizing the
second objective in the MRP also minimizes the first objective.
We now state the main result of this section.

Theorem IV.5 (Solution to MRP): Consider the following
two decoupled linear optimization problems

minimize
βi j

∑

i,j

Tij βij

subject to
∑

j �=i
(βij − βji) = λi −

∑

j �=i
λj pji

0 ≤ βij ≤ λi pij (15)

minimize
αi j

∑

i,j

Tij αij

subject to
∑

j �=i
(αij − αji) = −λi +

∑

j �=i
λj pji

0 ≤ αij. (16)

These problems are always feasible. Let β∗ij and α∗ij be optimal
solutions to problems (15) and (16), respectively. By making
the following substitutions:

λdel
i =

∑

j �=i
β∗ij ,

ψi =
∑

j �=i
α∗ij ,

ηij =

⎧
⎪⎨

⎪⎩

0 if i = j

β∗ij /λ
del
i if λdel

i > 0, i �= j

1/(N − 1) otherwise

ξij =

⎧
⎪⎨

⎪⎩

0 if i = j

α∗ij /ψi if ψi > 0, i �= j

1/(N − 1) otherwise

one obtains an optimal solution to the MRP.
Proof: Problem (16) is an uncapacitated minimum cost

flow problem and is always feasible. Problem (15) is a stan-
dard capacitated minimum cost flow problem and its capacity
constraints can be shown to always permit the existence of a
feasible solution [8], [17, p. 191]. The main task of the proof
is showing that the constraints γ(k)

i = γ
(k)
j are equivalent to the

constraints in (15) and (16), which is shown in Lemmas IV.3
and IV.4.

This result allows us to compute the open-loop control very
efficiently and can be applied to very large systems comprising
hundreds of stations. We apply this technique in the next section
to compute the availability of vehicles at each station and in
Section IV-D to the problem of “sizing” a MoD system.
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Fig. 3. Overall vehicle availability for passengers for a randomly gen-
erated system with 20 stations. Blue lines represent the availability of
each station as a function of the number of vehicles. Note that the avail-
ability at each station is different; thus, the overall system is unbalanced.
The red line shows the availability if there were as many drivers as vehi-
cles (as in an autonomous MoD system). (a) vehicle-to-driver ratio of 3,
(b) vehicle-to-driver ratio of 5, and (c) vehicle-to-driver ratio of 10.

B. Availability of Vehicles for Real Passengers

In general, the availability of vehicles at each station in the
customer-driven system is different from the taxi system. The
approach in the previous section calculates the availability of
the two systems separately, but the availability of vehicles in
the taxi system applies not only to real customers, but to virtual
customers as well. To calculate the availability for all (real) pas-
sengers, we must consider both systems concurrently. First, we
note that the total throughput of both real and virtual customers
for both networks is given by

Λtot
i (mv ,md) = Λ(1)

i (mv −md) + Λ(2)
i (md).

The throughput of only real passengers is given by

Λpass
i (mv ,md) = Λ(1)

i (mv −md) +
λdel
i

λdel
i + ψi

Λ(2)
i (md)

where the second term on the right-hand side reflects the frac-
tion of real passengers in the taxi network. Thus, the vehicle
availability for real passengers is given by

Apass
i (mv ,md) = Λpass

i (mv ,md)/λi .

With some algebraic manipulations, Apass
i (mv ,md) can be

rewritten as

Apass
i (mv ,md) = A

(1)
i (mv −md)qi +A

(2)
i (md)(1− qi).

(17)
Since qi is, in general, not the same for all i, the availability
of vehicles for real passengers will not be the same for every
station. Fig. 3 shows that the rebalancing technique described
in the previous section will produce unbalanced vehicle
availabilities for real passengers. Furthermore, the degree
of system imbalance grows with the vehicle-to-driver ratio,
which intuitively makes sense since there are fewer drivers
to rebalance the system when the vehicle-to-driver ratio is
high. However, it is important to note that even though the
availabilities at each station are not the same, as mv →∞ and
md →∞, the availabilities approach one for all stations.

The red line in Fig. 3 shows the availability of the system
if there were mv drivers and mv vehicles (or, equivalently, a
taxi system or an autonomous MoD system). It is clear that
the autonomous MoD system yields better performance both
in terms of throughput (high availability) and fairness (same
availability at all stations) due to the ability of every vehicle

to perform rebalancing trips. This result presents a strong case
for the advantages of autonomous MoD systems over current
human-driven MoD systems in operation.

C. Exact MoD Rebalancing

Applying the rebalancing constraints separately for the two
networks as done in (8) does not yield a balanced system in terms
of vehicle availability for all customers. Indeed, the constraints
needed to balance availability for the passengers are

Apass
i (mv ,md) = Apass

j (mv ,md) ∀i, j ∈ {1, . . . , N}.
(18)

This set of constraints is dependent on the number of vehicles
and the number of drivers in the system, and relative utilizations
γi can no longer be used to evaluate the constraints in place of
real availabilities (3). Thus, constraints (18) cannot be reduced
to linear constraints in the optimization variables. Taking into
account the modified constraints, we reformulate our problem
to the following:

Exact MoD Rebalancing Problem (EMRP): Given a MoD
system with N stations, mv vehicles, and md drivers modeled
as two closed Jackson networks, solve

minimize
λd e l
i ,ψi ,ηi j ,ξi j

∑

i,j

Tij ξij ψi − c
∑

i

A
(2)
i (mv −md) (19)

subject to γ
(1)
i = γ

(1)
j

Apass
i (mv ,md) = Apass

j (mv ,md)
∑

j

ηij = 1,
∑

j

ξij = 1

ηij ≥ 0, ξij ≥ 0, λdel
i ≥ 0, ψi ≥ 0

λdel
i ηij ≤ λipij i, j ∈ {1, . . . , N}.

The objective function now trades off two objectives that
are not always aligned—minimizing the number of rebalancing
trips while maximizing the overall availability (note that the
first constraint balances and maximizes the availability of the
customer-driven system, so to maximize overall availability, we
only need to maximize the availabilities in the taxi system).
A weighting factor c is used in this tradeoff. The constraint
γ

(1)
i = γ

(1)
j is used in conjunction with (18) to ensure that the

availability of the customer-driven system remains balanced.
The strategy is to use the taxi system to enforce the availability
constraint for real customers with the intuition that the system
operator has full control over the rebalancing of the taxi system
while the rebalancing of the customer-driven system depends
on the arrival process of the customers, which is subject to large
stochastic fluctuations. If the customer-driven system becomes
unbalanced, empty vehicles will accumulate at some stations
for extended periods of time, decreasing the effective number
of vehicles in the system (see Section V).

The modified availability constraint (18) is nonlinear and
involves solving for A(2)

i using MVA at each iteration. (A(1)
i is

also needed, but only needs to be computed once.) For systems
of reasonably small size (∼20 stations and ∼1000 vehicles),
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Fig. 4. Nonlinear optimization results for a 20-station system based on
Lower Manhattan taxi trip data. The blue lines represent the availability
at each station. In 4(a) and 4(b), the availability curves converge to
a single value, A. This is the point at which the system is balanced.
4(a) shows the optimized availability curves for c = 1. 4(b) shows the
optimized availability curves for c = 10. 4(c) shows the Pareto optimal
curve obtained by increasing c from 1 to 50. The x-axis can be interpreted
as the average number of rebalancing vehicles on the road. 4(d) shows
the linear optimization results for comparison.

MVA can be carried out quickly (<1 s). For larger networks, an
approximate MVA technique exists that involves solving a set
of nonlinear equations rather than iterating through all values of
m [14]. The EMRP can be solved using nonlinear optimization
techniques for a given number of vehicles and drivers. We let
A∗ represent the balanced availabilityApass

i obtained by solving
the EMRP.

To demonstrate this technique on a realistic system, key sys-
tem parameters (arrival rates, routing probabilities, and travel
times) were extracted from a portion of a data set of New York
City taxi trips (courtesy of the New York City Taxi and Limou-
sine Commission). Specifically, a 20-station system was created
using taxi trips within Lower Manhattan (south of 14th Street)
between 10 and 11 A.M. on March 1, 2012. The EMRP is solved
for this system with 750 vehicles and 150 drivers (mv/md = 5).
Fig. 4 shows the resulting availability curves and the tradeoff
between rebalancing rate and system performance.

Fig. 4 shows that as the weighting factor c is increased, vehi-
cle availability increases at the cost of an increased number of
rebalancing trips up to a point where it levels off (in this case,
around 90%). This result compares favorably with the linear
solution [Fig. 4(d)], where atmv = 750, the availabilities range
from 0.84 to 0.94. In general, the linear optimization technique
appears suitable for computing a first approximation of key de-
sign parameters of the system, and the nonlinear technique can
be used to further refine the solution. Finally, compared to an
autonomous MoD system with the same number of vehicles [red
line in Fig. 4(d)], the overall availability is 5% lower (90% versus
95%). This further shows that autonomous MoD systems would
achieve higher levels of performance compared to MoD systems.

D. Application to System Sizing

Though the linear programming approach (Section IV-A)
does not yield identical availabilities across all stations, it is

Fig. 5. (a) Color-coded regions we consider in this case study. (b) Total
cost as a function of the vehicle-to-driver ratio for cr values ranging from
1 to 10. The values of mv and md at each point in each curve can be
solved using (20). For each curve, mv and md satisfy the constraint
that the availability at each station is greater than the threshold of 90%.
(c) Optimal vehicle-to-driver ratio for the 3 suburbs of Manhattan and 3
availability thresholds (85%, 90%, 95%). For example, the curve A1-90%
in (c) is constructed by taking the minimum cost of each curve in (b).

nonetheless useful for applications such as fleet sizing due to its
scalability and efficiency. In this section, we provide a simplified
example of how to use the MRP approach to gain insight into
the optimal vehicle-to-driver ratio (mv/md ) of a MoD system.
The idea is to find the optimal number of vehicles and drivers
that would minimize total cost (or maximize profit) while
maintaining an acceptable quality of service. For this simple
example, the total cost (normalized by the cost of a vehicle) is

ctotal = mv + crmd (20)

where cr is the cost ratio between a vehicle and a driver. It is rea-
sonable to assume that the cost of a driver is greater than the cost
of a vehicle, so cr ≥ 1. Three MoD systems are generated using
portions of the New York City taxi data: 1) Lower Manhattan
(A1); 2) Midtown Manhattan (A2); and 3) Upper Manhattan
(A3). Taxi trips within each region are aggregated and clustered
into 20 stations, and the system parameters (λi , pij , and Tij ) are
estimated. Different travel patterns in the three systems allow
us to generalize our insights about the optimalmv/md required
to minimize the cost (20). For each system with a fixedmv/md ,
the MRP is solved and the number of vehicles and drivers
needed are found such that the lowest availability across all sta-
tions is greater than the availability threshold. Three availability
thresholds are investigated (85%, 90%, and 95%). Fig. 5(b)
shows the total cost as it varies with the vehicle-to-driver ratio
and with cr for Lower Manhattan with a 90% availability
threshold. The optimal vehicle-to-driver ratio is the minimum
point of each line in Fig. 5(b). Fig. 5(c) shows the optimal
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vehicle-to-driver ratios plotted against the cost ratio cr for all
three Manhattan suburbs and all three availability thresholds.

A few insights can be gained from this example. First, the
optimal mv/md ratio does not significantly increase with in-
creasing cost ratio. Second, the optimal mv/md ratio decreases
as the availability threshold is raised, consistent with the idea
that a high quality of service requires more rebalancing and,
thus, more drivers. Third, the optimal mv/md ratio is clearly
different for each of the Manhattan suburbs (which highlights
the important system-dependent nature of this value) but stays
between 3 and 5 for a wide range of costs.

V. CLOSED-LOOP CONTROL OF MOD SYSTEMS

In this section, we formulate a real-time closed-loop con-
trol policy inspired by the open-loop problems presented in
Section IV. The closed-loop policy relies on receding-horizon
optimization and is targeted toward a practical scenario where
customers wait in line for the next available vehicle rather than
leave the system. The control policy must perform two tasks:
1) rebalance empty vehicles throughout the network by issuing
instructions to drivers, and 2) assign vehicles (with or without a
driver) to waiting customers at each station. In analogy with the
approach in Section IV, we perform these tasks separately: that
is, we design both a vehicle rebalancing policy and a customer-
assignment policy. A vehicle rebalancing policy was introduced
in [2] for autonomous MoD (AMoD) systems, which has been
shown to be quite effective [9]; hence, we adapt it for our sys-
tem with little modification. The customer-assignment policy is
trickier, and we propose a mixed-integer linear program (MILP)
to select the best assignment of customers to customer-driven
vehicles or taxis based on the current state of the system. In the
proposed policy, customers arriving at each station join a queue
of “unassigned” customers. A system-wide optimization prob-
lem is solved to try to match as many customers as possible with
either an empty vehicle or a taxi while keeping the distribution of
the customer-driven vehicles balanced across the system. Once
a customer is assigned, he/she moves to the departure queue
from where he/she will depart with an empty vehicle or with
a taxi. The optimization procedure is performed every time a
departure queue is empty and there are unassigned customers.
The goal of keeping the distribution of customer-driven vehicles
balanced stems from early studies we performed using simple
heuristic policies, where we observed customer-driven vehicles
aggregating at a small number of stations unused for long pe-
riods of time, effectively decreasing the number of vehicles in
the system.

Let nvij be the number of customers traveling from station i
to j to be assigned to drive themselves. Let ndij be the number
of customers traveling from station i to j to be assigned to a taxi.
Denote by vei the number of excess unassigned customer-driven
vehicles at station i, vtji the number of customer-driven vehicles
traveling from station j to i, and vaji the number of customer-
driven vehicles at station j assigned to travel to station i , but
that have not yet left the station. Assuming these quantities
are known, the number of customer-driven vehicles at a future
time step is v +

i = vei +
∑

j (v
a
ji + vtji + nvji − nvij ). We can

Algorithm 1: Real-time closed-loop control policy.
procedure REALTIMEREBALANCEANDASSIGN

{ndij , nvij} ← solve Problem (21)
for all waitingCustomer(i, j) do

if nvij > 0 and vehicle available at i then
assign waitingCustomer(i, j) to empty vehicle
nvij− = 1

else if ndij > 0 and vehicle and driver avail. then
assign waitingCustomer(i, j) to taxi
ndij− = 1

{RebQueue(s)} ← AMODREBALANCING(vei j ,d
u
i j )

for s ∈ Stations do
while RebQueue(s) �= ∅ and driver and vehicle

available at station s do
Send vehicle and driver to a destination in

RebQueue(s)
Remove destination from RebQueue(s)

additionally define a desired vehicle distribution vdes
i . For ex-

ample, an even vehicle distribution would be vdes
i = (mv −

md)/N . Alternatively, the desired vehicle distribution could
be based on demand estimation, for example, vdes

i = (mv −
md)λi/

∑
j λj . The assignment policy is given by solving the

following optimization problem:

minimize
ndi j ,n

v
i j

∑

i

|v +
i − vdes

i | − w
∑

i,j

(ndij + nvij ) (21)

subject to ndij + nvij ≤ cuij
∑

j

nvij ≤ vei ,
∑

j

ndij ≤ dui

nvij ≥ 0, ndij ≥ 0, nvij ∈ Z, ndij ∈ Z

where cuij is the number of unassigned customers traveling from
i to j, dui is the number of unassigned drivers at station i,
and w is a weighting factor. The objective function trades off
the relative importance of system balance and customer wait
times (increasing w would allow the system to assign more
customers and reduce wait times). The constraints ensure that
the assignment policy is feasible, i.e., there are enough vehicles,
drivers, and customers. Problem (21) is formulated as a MILP
and solved using the IBM CPLEX solver [18].

The overall real-time closed-loop control policy is presented
in Algorithm 1. Outstanding customers are assigned to either a
customer-driven vehicle or a rebalancer-driven vehicle by solv-
ing Problem (21). The AMoD controller in [2] is then used
to compute a desired rebalancing policy for empty vehicles. Fi-
nally, idle drivers are assigned to drive empty vehicles according
to the desired rebalancing policy.

VI. CASE STUDIES: MOD IN MANHATTAN AND HANGZHOU

We assess the performance and scalability of the real-time
closed-loop control policy through case studies based on real-
world transportation data of two hypothetical MoD systems.
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The first MoD system operates over all of Manhattan (as op-
posed to small regions as in Section IV-D) and its customer
demand is derived from the dataset used in Section IV. We
place 100 stations within Manhattan based on k-means cluster-
ing of taxi requests. The resulting station positions are such that
customer demands are, on average, less than 300 m from the
nearest station. The second MoD system operates in Hangzhou,
China, and its customer demand is derived from a dataset pro-
vided by Didi Chuxing. For this case study, customer demand
data are only available at an aggregate level, in terms of 66
districts—while this dataset has a rather coarse spatial resolu-
tion, it is nonetheless interesting as it represents a challeng-
ing setting for the operation of a MoD system, as detailed
below.

Specifically, the two case studies illustrate the performance
of the real-time closed-loop algorithm in markedly different
settings: In particular, transportation demand in Hangzhou is
significantly more unbalanced than in Manhattan. We measure
the level of imbalance of transportation requests with the first
Wasserstein distance between the spatial distribution of cus-
tomer destinations fd and the spatial distribution of customer
origins fo [19], [20]. The first Wasserstein distance (also known
as the earth-mover distance) is defined as follows:

W (fd, fo) := inf
γ∈Γ(f d ,f o )

∫
D(pd, po)dγ(pd, po)

where Γ(fo , fd) is the set of all distributions with marginals fo

and fd , and D(x, y) is the distance between locations x and y.
The average Wasserstein distance between the origin distribu-
tion and the destination distribution in Manhattan is 0.509 km;
the average Wasserstein distance in Hangzhou is 2.129 km, over
four times higher.

For each hour of the day, customer arrival rates λi and routing
probabilities pij are estimated by counting the number of trips
that originate and end at each station (or district). The travel
times Tij are estimated from the average vehicle speed and the
Manhattan distance between stations (or districts). Customer
arrivals are generated at each station as a Poisson process with
mean λi and routing probabilities pij . In contrast with the anal-
ysis in the previous section, simulated customers wait at the
station until a vehicle has been assigned to them.

Simulations are performed for different vehicle-to-driver ra-
tios, for 24 h with a time step of 6 s. The results of the simulations
are shown in Fig. 6.

In Manhattan, for a vehicle-to-driver ratio of 3, a system con-
sisting of 12 000 vehicles and 4 000 drivers yielded a maximum
average wait time of under 5 min, which is indicative of adequate
service. For a vehicle-to-driver ratio of 4, satisfactory quality of
service is reached between 12 000 and 14 000 vehicles (3 000
to 3 500 drivers). For comparison, New York City has more
than 13 000 taxis, and 85% of trips are within Manhattan. This
suggests that by operating a fraction of the vehicles as a taxi
service to maintain system balance, a MoD system can achieve
comparable quality of service to taxi systems with only 1/4 to
1/3 the number of drivers.

Instead, in Hangzhou, where transportation demand is sig-
nificantly more unbalanced, a lower vehicle-to-driver ratio is

Fig. 6. Average customer wait times throughout the day.

Fig. 7. Vehicle availability during peak demand.

required to achieve good quality of service. With a vehicle-to-
driver ratio of 2, 9 000 cars are sufficient to keep wait times
below 20 min, and 15 000 cars reduce the peak wait time below
15 min; conversely, with a vehicle-to-driver ratio of 3, 18 000
vehicles are required to reduce the peak wait time below 20
min and with a vehicle-to-driver ratio of 4 (not shown), a fleet
of 24 000 vehicles is needed to achieve the same peak wait
time.

We also compare the simulation results to the queueing net-
work analysis in Section IV. Using the linear approximate rebal-
ancing analysis presented in Section IV-A, we study the avail-
ability of vehicles in Manhattan and Hangzhou during the peak
period from 9 to 10 A.M. The availability curves are shown in
Fig. 7, and compared to a balanced taxi or autonomous vehi-
cle system (shown in red). In Manhattan, for a MoD system to
achieve the same theoretical performance as an autonomous
MoD system with 8 000 vehicles (which, according to [9],
achieves acceptable quality of service, with peak wait times
under 5 min), 9 789 vehicles are needed for a vehicle-to-driver
ratio of 3, and 10 267 vehicles are needed for a vehicle-to-driver
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ratio of 4. This is in good agreement with well with simulation
results in Fig. 6, which suggest that between 11 000 and 12 000
vehicles are needed. In Hangzhou, 7 473 and 7 880 vehicles are
required to achieve 95% availability at all stations for vehicle-
to-driver ratios of 2 and 3, respectively; such a discrepancy
between high availability and long peak customer wait times is
most likely due to the spatial coarseness of the data.

The driver assignment optimization problem in the simula-
tions was solved in an average of 0.5 s. Since the problem size
only scales with the number of stations and the constraints con-
sist mostly of bounding hyperplanes, the feasible set is easy to
compute and the problem can be solved in real-time for large-
scale systems.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented a queueing network model
of a MoD system and developed two open-loop control ap-
proaches useful for design tasks such as system sizing. We ap-
plied such approaches to a system sizing example for three
Manhattan neighborhoods, which showed that the optimal
vehicle-to-driver ratio is between 3 and 5. Drawing insights
from these techniques, we developed a real-time closed-loop
control policy and demonstrated its effectiveness with case
studies of two hypothetical MoD systems in Manhattan and
Hangzhou.

This work paves the way for several important extensions.
First, we plan to include other methods of rebalancing drivers
such as allowing them to use public transit or to shuttle multi-
ple other drivers to stations with excess unused vehicles. Sec-
ond, it is of interest to include congestion effects in our model.
A possible strategy is to modify the IS nodes by consider-
ing a finite number of servers, representing the capacity of
the road. Third, we plan to test our strategies on microscopic
and mesoscopic models of transportation networks. Finally, we
would like to incorporate the effects of dynamic pricing in-
centives for customers on the amount of rebalancing that is
required.
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