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T his study considers the scheduling of limited resources to a large number of jobs (e.g., medical treatment) with uncer-
tain lifetimes and service times, in the aftermath of a mass casualty incident. Jobs are subject to triage at time zero,

and placed into a number of classes. Our goal is to maximize the expected number of job completions. We propose an
effective yet simple index policy based on Whittle’s restless bandits approach. The problem concerned features a finite
and uncertain time horizon that is dependent upon the service policy, which also determines the decision epochs. More-
over, the number of job classes still competing for service diminishes over time. To the best of our knowledge, this is the
first application of Whittle’s index policies to such problems. Two versions of Lagrangian relaxation are proposed in order
to decompose the problem. The first is a direct extension of the standard Whittle’s restless bandits approach, while in the
second the total number of job classes still competing for service is taken into account; the latter is shown to generalize
the former. We prove the indexability of all job classes in the Markovian case, and develop closed-form indices. Extensive
numerical experiments show that the second proposal outperforms the first one (that fails to capture the dynamics in the
number of surviving job classes, or bandits) and produces more robust and consistent results as compared to alternative
heuristics suggested from the literature, even in non-Markovian settings.
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1. Introduction

In the aftermath of natural or man-made disasters,
resource scarcity is potentially the biggest hurdle to a
successful emergency response (Green and Kolesar
2004). With the sudden surge of demand and limited
resources available to deal with rescue-like missions,
jobs varying from medical treatment for casualties to
evacuations from affected areas all require prioritiza-
tion decisions (Sun et al. 2017). A typical process of
an emergency response may include: first, an initial
assessment of the urgency of jobs (known as triage in
practice); second, an assignment of jobs to different
categories depending on the initial assessment; third,
allocation of emergency resources to the category of
the most urgent jobs, and then to less urgent ones
once all jobs in the preceding categories are com-
pleted. This common practice is often known as Sim-
ple Triage and Rapid Treatment (START) (see, e.g.,
Nocera and Garner 1999, Sacco et al. 2007). However,
such widely adopted practice has been criticized for
being short-sighted by not taking into account the

scarcity of emergency resources and/or the dynamics
of the remaining jobs. Most notably, the simple policy
described in the third step above may not help to save
the most lives in the aftermath of a casualty event
(Jacobson et al. 2012). Therefore, the primary objec-
tive of this study is to contribute to this important and
ongoing debate by providing a simple yet near opti-
mal policy to the scheduling of emergency resources
following triage.
In a nutshell, we consider a scenario in which a col-

lection of impatient jobs is seeking service which is
provided by a single server. There are two major
sources of uncertainty related to each job. Firstly, its
service is of uncertain duration. Second, the job’s life-
time, namely the period of time during which it is
available for service, is also uncertain. We shall
assume that a job abandons the system unserved if its
service does not begin before the expiration of its life-
time. Further, any job whose service begins is guaran-
teed to be served to completion. No preemptions are
allowed. Each job is subject to triage at time zero and
is placed in one of J classes. Jobs in each class are
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assumed to have independent and identically dis-
tributed (i.i.d.) lifetimes and i.i.d. service times. Fol-
lowing triage, the central challenge addressed by the
paper concerns how the jobs should be scheduled for
service such that the expected number of jobs served
to completion is maximized.
Optimal solutions (as illustrated by Argon et al.

2008, Jacobson et al. 2012) to the problem described
above may well have a structure of threshold policies.
When the switch happens, the prioritized job class is
not necessarily emptied yet. Nonetheless, the general
optimal policy is hard to elucidate. Optimal solutions
obtained using a stochastic dynamic programming
(DP) approach can only be obtained for problems of
small size. Naturally, the idea of developing an index
policy that assigns a state-dependent index value to
different job classes that require service is both intu-
itively and computationally desirable for the task of
interest.
Direct precursors to this study under operations lit-

erature include Glazebrook et al. (2004), Li and Glaze-
brook (2010), and Jacobson et al. (2012), which
develop heuristic policies to the resource scheduling
problem where all impatient jobs are present at the
outset (i.e., under the assumption of no further arri-
vals). Essentially, two types of policies have been pro-
posed: static and state-dependent. Both Glazebrook
et al. (2004) and Jacobson et al. (2012) develop simple
and static (state-independent) heuristic policies which
generate a fixed priority among the job classes over
time. Due to the fact that the optimal switch between
the job classes might happen before the prioritized job
class is completely emptied, the number of jobs
remaining in each class provides important informa-
tion in constructing effective scheduling policies.
Therefore, static policies generally yield inferior per-
formances than their counterparts, such as a two-step
policy and a threshold policy proposed also in Jacob-
son et al. (2012), and a single-step DP policy improve-
ment heuristic developed by Li and Glazebrook
(2010), which make explicit use of state information.
However, despite the near-optimal performance
demonstrated by the deployment of a single-step pol-
icy improvement approach in Li and Glazebrook
(2010), this is still computationally challenging due to
the DP formation employed. The threshold policy
generalizes to problems where the payoff for serving
a job is not necessarily one and could be different
between classes. It is however only applicable to two
job classes and thus its usage is restrictive. Among
others, Jacobson et al. (2012) provide a similar ratio-
nale to our approach in developing heuristic policies
to assign priorities among the job classes. That is,
given the resource scarcity and a tight time frame,
their two-step policy takes explicit account of oppor-
tunity costs incurred by not providing the service, as

well as the number of jobs remaining. Basically, the
two-step policy assigns priority to the classes which
lead to the minimal expected number of abandon-
ments from the system during the next service, which
is intuitive and is shown to perform strongly in a sys-
tem featuring “heavy premature job loss” (i.e., very
short lifetimes). Nonetheless, the development and
evaluation of strongly performing state-dependent
policies remains a central challenge in more general
cases which allow a wide variation among job classes
with different combinations of lifetimes and service
times. Our proposed index policy addresses this chal-
lenge by applying a suitable theoretical model to cap-
ture the “switch.”
Whittle’s restless bandit model seems perfectly

applicable to the aforementioned resource scheduling
problem, where job classes following triage with ran-
dom lifetimes evolve with or without being served.
Restless bandits (RBs) are known as a considerable
extension to the seminal work by Gittins (1979) where
index solutions were first proposed for classical mul-
ti-armed bandit problems (MABs). This is a class of
models concerned with the sequential allocation of a
single indivisible resource to a collection of stochastic
reward-generating bandits. However, in MABs, ban-
dits are thought to remain frozen while not in receipt
of resources. Whittle’s RBs relaxes this constraint by
allowing bandits to evolve in both active and passive
states. However, this generalization comes at signifi-
cant cost. In contrast to MABs, RBs are almost cer-
tainly intractable having been shown to be PSPACE-
hard by Papadimitriou and Tsitsiklis (1999). Whittle
(1988) proposes an index policy which emerges from
a Lagrangian relaxation of the original resource allo-
cation problem. Weber and Weiss (1991) establish a
form of asymptotic optimality for Whittle’s index pol-
icy under given conditions. The index derived may be
interpreted as a fair charge in receipt of resources to a
particular bandit in a particular state. A natural index
policy, emerging from the deployment of an adaptive
greedy algorithm, will use the fair charges/subsidies
to determine the allocation/scheduling of the
resources among the job classes. However, those
indices derived need to pass an indexability test.
Indexability is a structural property that is required to
establish the existence of the optimal solution to the
Lagrangian relaxation problem (Glazebrook et al.
2014). This has become a primary inhibitor for a range
of RB problems to which index theory can be applied,
leading to a number of theoretical developments to
remove this notorious obstacle. Ni~no-Mora (2001)
describes sufficient conditions to prove indexability
by the use of polyhedral approaches (as given by Bert-
simas and Ni~no-Mora 1996) when the system con-
cerned can be shown to satisfy so-called partial
conservation laws. Glazebrook et al. (2011) show full
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indexability for a small number of dynamic allocation
problems for which resources are divisible and evolu-
tion of the system is of birth-death type. More
recently, several studies have demonstrated the
power of Whittle’s index theory and approach in a
range of application areas. These include the queue-
ing (admission) control (see, e.g., Ding and Glaze-
brook 2013, Argon et al. 2009), machine maintenance
(see, e.g., Glazebrook et al. 2005), asset management
(see, e.g., Glazebrook et al. 2006), congestion con-
trol (see, e.g., Jacko and Sans�o 2012), dynamic assort-
ment (see, e.g., Caro and Gallien 2007) and inventory
routing (see, e.g., Archibald et al. 2009).
Further, Whittle (1988) and successive studies

developed and evaluated index policies by utilizing
a Lagrangian relaxation approach largely based on
a time average reward/cost criterion in an infinite
time horizon with either discrete or continuous
decision epochs; as Whittle comments, indices are
often simpler in this case. To the best of our knowl-
edge, the only work that develops index policies for
a finite (and deterministic) time horizon is due to
Graczov�a and Jacko (2014), who have studied a
knapsack problem for perishable inventories in the
context of retail revenue management. Yet they only
consider the problem in a discrete time setting.
From the extant literature, Whittle’s index policy
tends to perform more strongly in admission control
problems (where decision epochs are either discrete
or are exogenously determined by arrivals) than
those that require stochastic scheduling of
resources/servers (where future decision epochs are
also affected by current scheduling/allocation
actions). Our problem setting described above is
characterized with non-discrete decision epochs in a
finite and uncertain time horizon, both of which are
dependent upon the adopted service policies. Fur-
ther, unlike other works in the RB literature which
always consider a fixed number of bandits, the
problem concerned features a diminishing number
of bandits (surviving job classes) over time. Such
problems have wide applications in practice and
their unique features require different treatments to
the canonical Whittle’s RB approach. Hence, our
study aims to provide an initial attempt at address-
ing this existing research gap and to further extend
the index theory literature.
In summary, our contributions are twofold. To the

emergency response literature, we propose a strongly
performing yet simple index policy underpinned by
Whittle’s index theory for the scheduling of emer-
gency resources after mass casualty events. The
resulting index policy is state-dependent and can be
quickly derived, which is particularly important for
emergency responses where time is critical. Our
numerical study shows that the index policy performs

most strongly compared with other benchmarks for
problems featuring large variations between job
classes. To the index policy literature we fill the gap
for problems with continuous decision epochs and a
finite (and uncertain) time horizon, both of which are
dependent upon the service policy. To the best of our
knowledge, we are also the first to address an RB
problem with a changing number of bandits over
time. We extend Whittle’s Lagrangian relaxation
approach to accommodate these features and decom-
pose the original problem into single class problems.
We prove indexability and develop closed-form equa-
tions for the calculation of the index values in the
Markovian case. Furthermore, we argue and demon-
strate that for such problems a simple application of
the standard Whittle’s relaxation approach leads to
an index policy with comparatively poor perfor-
mance. The alternative relaxation that we propose to
account for all the competing job classes shows notice-
able improvements in maximizing the number of jobs
served to completion.
The study proceeds as follows: section 2 presents a

description of the problem, which is modeled as a
semi-Markov decision process. In section 3, the origi-
nal problem is relaxed and decomposed into single
class problems by extending Whittle’s Lagrangian
relaxation approach in two seemingly different ways,
although it is subsequently demonstrated that one is
in fact a generalization of the other. In section 4, we
show that the single class problems are indexable in
the Markovian case and develop closed-form index
values for different scenarios. We further propose a
heuristic policy based on the indices following our
second decomposition. The proposed heuristic is sub-
ject to numerical investigation in section 5 where it is
compared to earlier proposals in the literature, includ-
ing the index policy derived from the standard Whit-
tle’s approach (the first decomposition), and (where
possible) to the optimal solution. Both Markovian and
non-Markovian settings are considered. In section 6
we provide an in-depth analysis on the switching pat-
terns of alternative policies. Section 7 concludes the
study.

2. The Model

A collection of impatient jobs emerge at time zero for
service by a single server. Each job belongs to one of J
classes and the total initial number of jobs in class j is
Lj, 1 ≤ j ≤ J. All jobs in the same class j are character-
ized by two positive valued random variables: the
lifetime Xj and service time Yj. All lifetimes and ser-
vice times have finite expectation and are indepen-
dent of each other; we denote the lifetime and service
time distribution functions for jobs in class j as Fj and
Gj respectively. The single server processes individual
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jobs non-preemptively. A job will abandon the system
unserved if its service has not begun before its life-
time. It is assumed that once a job has begun service,
it will be served through to completion. The objective
is to find an optimal service policy to maximize the
expected total number of jobs served before the sys-
tem is empty.
This problem can be modeled as a semi-Markov

decision process as follows:

• Decisions are made at time zero and at all
service completion times. Denote the state at
decision epoch t by {n(t), t} where
nðtÞ ¼ fnjðtÞ : 1 � j � Jg and njðtÞ is the

number of class j jobs which at time t have
not yet begun service and have not aban-
doned the system. Write

X ¼ fðn; tÞ : 0� nj � Lj; 1� j� J; t� 0g

for the system’s state space.

• At each decision epoch, one of the jobs remain-
ing in the system is chosen for processing. The
collection of admissible actions is denoted U
and is given by

U ¼ fðu1; u2; . . .; uJÞ : uj 2 f0; 1g;
XJ

j¼1
uj � 1g; ð1Þ

where uj ¼ 1 means that a job from class j is chosen
to be served. In words, this says that each permissi-
ble action chooses at most one of the J classes to
process next. For clearing systems such as this, it
has been shown by Argon et al. (2008) that idling is
always suboptimal and thus the server would
always be busy under an optimal policy. In other
words, any optimal policy will choose the action in
which uj ¼ 0 for all j if and only if the system is
already empty.

• Let (n, t) be the system state at some decision
epoch t. If the action is to process a class j job
(uj ¼ 1) with a service time equal to s, the next
decision epoch will be t+s and with probability
pðn0jn; j; t; sÞ the system will transit to state
ðn0; tþ sÞ. The probability is given by

pðn0jn; j; t; sÞ ¼
YJ
i¼1

ni � dij
n0i

� �
1� Fiðtþ sÞ
1� FiðtÞ

� �n0i

Fiðtþ sÞ � FiðtÞ
1� FiðtÞ

� �ni�dij�n0
i

;

0� n0i � ni � dij; 1� i� J;

ð2Þ

where recall that Fi is the distribution function for
lifetimes in class i, and dij is the Kronecker delta

which is equal to one when i = j and is otherwise
zero.

• A policy p is any non-anticipative rule to
choose the next job for processing after observ-
ing the system state at each decision epoch.
Let Π denote the set of policies p : X ! U
whose actions are prescribed by U. We aim to
find such a policy that maximizes the expected
number of job completions from initial state
(L,0).

The problem described above can be solved in prin-
ciple by standard dynamic programming approaches;
however, this is only tractable for small scale prob-
lems due to the curse of dimensionality. Therefore
previous research has focused on the development of
heuristic policies. See for example Li and Glazebrook
(2010) and references therein.
In this work, we follow Whittle (1996) to develop

index policies, which are obtained by firstly decom-
posing the original problem into J single job class
problems, and then developing a mapping from states
(of the single class) to numerical indices for each class.
The computational complexity is significantly
reduced due to the latter step only concerning a single
class at a time.

3. Relaxation and Decomposition

Given a policy p 2 Π, let Zp denote the total number
of service completions (across all J classes) until the
time at which the system empties. Then we write

VpðLÞ ¼ E Zpjnð0Þ ¼ L½ �

for the expected total number of jobs served from the
initial state (L,0) under policy p. (Here, and through-
out, the expectation is taken with respect to the under-
lying distributions of lifetimes and service times.)
The original problem can be represented in the fol-

lowing form.

ðPÞ VðLÞ ¼ sup
p2P

VpðLÞ ð3Þ

subject to : pðn; tÞ 2 U; 8ðn; tÞ 2 X; ð4Þ

where the constraint in (4) requires that at each
decision epoch at most one class is selected for ser-
vice.
We now propose a different set of policies in which

more than one class can be chosen to receive service
at each decision epoch. The action space becomes

~U ¼ fðu1; u2; . . .; uJÞ : uj 2 f0; 1gg: ð5Þ

Li, Ding, and Connor: Index Policies in Emergency Response
244 Production and Operations Management 29(2), pp. 241–262, © 2019 Production and Operations Management Society



Clearly we have U � ~U. We denote by ~P the set of

policies ~p : X ! ~U whose action space is given by
~U, and thus P � ~P. We may also extend the defini-
tion of ~pðn; tÞ to all time points t rather than only
the service completion times. We still require that ~p
is non-preemptive, and so if ~pðn; tÞj ¼ 1 for some

class j at state (n,t) then this coordinate of the action
vector will remain unchanged until completion of
the class j service.
Under policies ~p, it is possible to choose more than

one class to serve simultaneously, and thus the total
resource consumed until the system is cleared in gen-
eral might exceed that which could be offered by a
single server. It is therefore natural to penalize poli-
cies ~pwhich lead to many classes being served at once
(or, equivalently, to reward those policies which do
the opposite): two versions of this idea are considered
in the remainder of this section. In section 3.1, we
attempt to penalize policies which on average con-
sume more total resource than that used when only
one class may be served at any time. This almost
allows us to decompose the optimization problem
into J independent single-class problems, but to do so
requires a further relaxation in which we bound the
final emptying time of the entire system by the sum of
emptying times of each class.
In section 3.2, we suggest an alternative strategy in

which the penalty applied varies over time, depend-
ing upon how many classes are currently non-empty.
This approach circumvents the problem of having to
(somewhat crudely) approximate the final emptying
time, but introduces its own complication: decompos-
ing our optimization into single-class problems now
requires us to assume that the number of non-empty
classes is in fact some constant, M ≥ 1. However,
using this additional parameter will prove to be use-
ful when developing our index policies in section 4.
Furthermore, it will transpire that even though the
two decompositions are obtained from seemingly dif-
ferent penalizations, the second one is in fact a gener-
alization of the first. (Setting M=1 gets us back to the
first decomposition.)

3.1. First Decomposition
Our first approach to decomposing the multi-class
problem is to impose the requirement that on average
the total resource consumed by ~p is the same as that
which would be consumed if only one class were
being served at any time while there are jobs remain-
ing in the system. To be more explicit, firstly define
T~p ¼ infft : njðtÞ ¼ 0; 81 � j � Jg to be the time
when the last job leaves the system. Due to the uncer-
tainty of jobs’ lifetimes and service times, T~p is a posi-
tive valued random variable which is dependent
upon the policy that has been implemented. In

addition, define k~pðn; tÞk1 to be the 1-norm of the
action vector. (Recall that this is simply equal to the
sum of the vector’s coordinates.) It is clear that any
policy p 2 Π solving problem (P) satisfies
kpðn; tÞk1 ¼ 1 for all t � Tp. The first constraint that
we consider applying when working with the larger
set of policies ~P is the following:

E

ZT~p

0

1� k~pðn; tÞk1ð Þdt
���nð0Þ ¼ L

2
64

3
75 ¼ 0; ð6Þ

where we shall always work under the natural con-
vention that ~pðn; tÞj ¼ 0 if njðtÞ ¼ 0. (That is, once
class j has emptied, it can no longer be selected for
service.)
Replacing the constraint (4) in problem (P) by (6),

we obtain a relaxed problem:

ðP1Þ ~VðLÞ ¼ sup
~p2 ~P

V~pðLÞ

subject to: E

ZT~p

0

1� k~pðn; tÞk1ð Þdt
���nð0Þ ¼ L

2
64

3
75 ¼ 0:

ð7Þ

Associating a non-negative Lagrangian multiplier
W to constraint (6) and adding it to (7), we obtain the
following problem. It is a relaxation of (P1) and thus
of the original problem (P).

ðP2Þ sup
~p2 ~P

E Z~pþW

Z T~p

0

1�k~pðn; tÞk1ð Þdt
���nð0Þ¼L

" #
:

ð8Þ

Now observe that since

k~pðn; tÞk1 ¼
XJ
j¼1

~pðn; tÞj;

we may write

E

Z T~p

0

1� k~pðn; tÞk1ð Þdt
���nð0Þ ¼ L

" #

¼ E T~p
���nð0Þ ¼ L

h i
�
XJ
j¼1

E

Z T~p
j

0

~pðn; tÞjdt
���nð0Þ ¼ L

" #
;

where we have written T~p
j for the (random) time at

which class j empties, and once again made use of
the convention that ~pðn; tÞj ¼ 0 for t � T~p

j . We may
also write
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Z~p ¼
XJ
j¼1

Z~p
j ;

with Z~p
j being the number of service completions in

class j. This allows us to rewrite (P2) as

ðP2Þ sup
~p2 ~P

E
XJ
j¼1

Z~p
j �W

ZT~p
j

0

~pðn;tÞjdt

0
B@

1
CA

2
64

þWT~p
���nð0Þ¼L

#
:

ð9Þ

This problem is still difficult to solve analytically,
but note that Equation (9) almost decomposes into J
independent single-class optimization problems. The

one thing preventing such a decomposition is the T~p

term, since the time at which the entire system emp-
ties depends upon all coordinates of ~p. However,

we may further relax the problem by bounding T~p

above by the sum of emptying times
PJ

j¼1 T
~p
j . Writ-

ing T~p
j as

R T~p
j

0 1dt then leads to our final relaxation of

the original optimization problem:

ðPWÞ VWðLÞ ¼ sup
~p2 ~P

XJ
j¼1

E

Z~p
j þW

Z T~p
j

0

1� ~pðn; tÞj
� �

dt
���nð0Þ ¼ L

" #
:

ð10Þ

As we have observed, problem (PW) can be decom-
posed into J single class problems as follows:

ðpW
j Þ vWj ðLjÞ¼sup

pj

E Zpj þW

ZTp
j

0

1�pjðnjðtÞ;tÞ
	 
2

64

dt
���njð0Þ¼Lj

#
; 1�j�J:

ð11Þ

Each single class problem can be understood as
that the class faces a dedicated server, and the
action is to either accept or reject service at each
decision epoch in light of the current state of that
class. In a slight abuse of notation we still use pj to
denote such single class policies for class j. The
Lagrangian multiplier W can be viewed as a sub-
sidy rate to a job class if it rejects the service. In
other words, if a job class chooses not to accept
service it receives a subsidy of W per unit time.
The first term in the right-hand side of Equation
(11) is the total expected service completions for
class j under a policy pj (since Zpj increases by one

each time that a job is served), while the second
term can be viewed as the total expected subsidy
received. It is reasonable to expect that if W is
high, the class would prefer to be subsidized for
job losses rather than accept service (pjðtÞ ¼ 0). On

the other hand, for small values of W the reward
from job completion will exceed the expected sub-
sidy received, and so we would expect the class to
prefer to accept service.

3.2. Second Decomposition
A weakness of the first decomposition is the way in

which we bounded T~p by
PJ

j¼1 T
~p
j ; bounding the max-

imum of a set of random variables by their sum
allowed us to decompose the problem, but is some-
what unsatisfactory. In addition, the resulting single
class problems take no account whatsoever of the
existence of the other classes, whereas it seems rea-
sonable that the selected job class should have to com-
pensate for occupying the single server when there
are other job classes competing for service. It may be
possible to obtain a better policy by allowing the deci-
sion of whether to accept or reject service in the single
class problem to use readily available information
about how many other classes currently have jobs
waiting.
To that end, we now propose an alternative

decomposition which, rather than using the con-
straint in (6) (which required bounding the maxi-
mum emptying time), instead uses a constraint
based directly on the sum of emptying times. We

begin by observing that if M~pðtÞ denotes the number
of classes which are non-empty at time t, when using
policy ~p, then any policy p 2 Π solving problem (P)
satisfies the following:

XJ
j¼1

Tp
j ¼

Z1
0

MpðtÞdt:

It follows that any policy p 2 Π also satisfies:

XJ
j¼1

Tp
j ¼

Z 1

0

MpðtÞkpðn; tÞk1dt

¼
XJ
j¼1

Z 1

0

MpðtÞpðn; tÞjdt

¼
XJ
j¼1

Z Tp
j

0

MpðtÞpðn; tÞjdt

where we still work under the natural convention
that pðn; tÞj ¼ 0 if njðtÞ ¼ 0. That is, any policy

p 2 Π satisfies the constraint:
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XJ
j¼1

Z Tp
j

0

1�MpðtÞpðn; tÞj
� �

dt ¼ 0:

When considering the larger set of policies ~P, it is
therefore reasonable to ask that this constraint is satis-
fied on average:

E
XJ
j¼1

ZT~p
j

0

1�M~pðtÞ~pðn; tÞj
� �

dt

2
64

3
75 ¼ 0: ð12Þ

Proceeding as with our first decomposition, we
associate a non-negative Lagrangian multiplier W to
this new constraint, yielding the following problem:

sup
~p2 ~P

XJ
j¼1

E Z~p
j þW

ZT~p
j

0

1�M~pðtÞ~pðn; tÞj
� �

dt
���nð0Þ ¼ L

2
64

3
75:

ð13Þ

This would now decompose into J separate single
class problems if they were they not still linked

together by M~pðtÞ, but since this process depends
upon all coordinates of ~p, it is infeasible to solve
analytically the problem in (13). So for the time
being, we instead propose to consider a related sin-

gle class problem in which we replace M~pðtÞ by an
arbitrary constant M ≥ 1:

ðpW;M
j Þ vW ;M

j ðLjÞ ¼ sup
pj

E

"
Zpj þW

ZTp
j

0

1�MpjðnjðtÞ; tÞ
	 


dt
���njð0Þ ¼ Lj

#
; 1� j� J: ð14Þ

This new single-class problem has a different inter-
pretation to that in our first decomposition. Once
again the job class has the choice of accepting or
rejecting a service and receives a constant subsidy of
W per unit time until the next decision epoch if it
rejects a service (i.e., if pjðtÞ ¼ 0); however, if it

accepts the service (pjðtÞ ¼ 1) then it receives an

instantaneous payoff of 1 unit (reflected by a unit
increase in Zpj) but also incurs a penalty at rate
W(M � 1) while completing this service. This penalty
reflects the fact that there are (M � 1) other non-
empty classes (not including class j) which might pos-
sibly want to be accepting service.
Note that if M = 1 in Equation (14) then problem

ðpW;M
j Þ reduces to ðpW

j Þ in Equation (11), and so it

suffices to study the more general problem ðpW;M
j Þ in

what follows. If there exists a critical value of W at
which the optimal policy is indifferent between
accepting or rejecting service, then we shall follow the
literature and call this critical subsidy rate Whittle’s
index. In the following section, we show the existence
of Whittle’s index for exponentially distributed life-
times and service times in problem (14), for all fixed
values of M ≥ 1, and develop closed form equations
to calculate the corresponding Whittle’s index values.
We then use these values to propose modified Whit-
tle’s index policies for the original problem (P), one of
which takes into account the fact that M(t) (the num-
ber of non-empty classes at time t) is of course a
decreasing stochastic process, rather than a constant.

4. Indexability and Index Policies for
the Markovian Case

Even though, in this section, we study the indexability
in the Markovian case, by no means do we claim that
the lifetime and service time are exponentially dis-
tributed in reality. However, this assumption facilitates
our analysis on indexability and the calculation of
index values. It also helps us develop insights into the
switching patterns of the index policies. As shown in
section 5, the proposed index policy works well even
in non-Markovian settings where the lifetime and ser-
vice time are no longer exponentially distributed. The
insights we obtain are therefore applicable to more
general conditions beyond the Markovian case.

4.1. Indexability for A Single Job Class
We now focus on a single class problem and thus
drop the subscript j in all notation. The problem
(pW;M) now concerns a single job class that is served
by a single server dedicated to this class. At each deci-
sion epoch, two actions may be selected; either to
accept the service or reject it. If the action is to accept
service, one job is chosen for service that carries on
until the service completion; this brings an immediate
reward of one, but at a penalty rate of W(M � 1)
while completing this service. If the decision is to
reject service, subsidy W is received for each time unit
that the server remains idle.
In the Markovian case, each job’s lifetime and service

time are exponentially distributed, with rates h and l
respectively. Define q = h/l to be the mean service
time divided by the mean lifetime. We name this rather
useful parameter opportunity loss, which essentially
measures the ratio of the mean number of jobs having
lost relative to the mean number of jobs still waiting
when the current service completes. Indeed, given that
there are currently n � 1 jobs waiting and one being
served, the probability that k jobs are still waiting when
the current service completes is given by

Li, Ding, and Connor: Index Policies in Emergency Response
Production and Operations Management 29(2), pp. 241–262, © 2019 Production and Operations Management Society 247



pðkjnÞ ¼
Z1
0

le�ls n� 1

k

� �
e�hskð1� e�hsÞn�1�kds

¼
n� 1

k

� � Xn�1�k

j¼0

n� 1� k

j

� �
ð�1Þj

1þ ðkþ jÞq

¼ CðnÞ
qCðnþ 1=qÞ

Cðkþ 1=qÞ
Cðkþ 1Þ ; k ¼ 0; ; n� 1:

ð15Þ

The second equality here is obtained by applying

the binomial theorem to ð1 � e�hsÞn�1�k, and in
Equation (15) we write Γ for the gamma function.
Thus, the mean number of jobs still waiting when
this service completes is given by (n � 1)/(1 + q),
and accordingly the mean number of jobs having
lost is (n � 1)q/(1 + q). The former/latter is clearly
a decreasing/increasing function of q, and when
q = 1 we expect exactly half of the remaining jobs to
expire before the current service completes and the
other half to survive. When q > 1 (i.e., more jobs are
expected to expire than those expected to survive
during the service completion), we might expect the
server to choose to reject service in favor of subsi-
dies when n is large, then to elect to accept service
when n has decreased sufficiently for the payoff
from completing a service to exceed the expected
gain from further subsidies. The opposite strategy
may similarly be expected to be optimal when
q < 1. We shall show below that this intuition is cor-
rect, and that the optimal service policy is pro-
foundly dependent upon the opportunity loss q.
Let Nt denote the number of jobs in the system at

time t, including the job being served (if there is one).
Thus we start with N0 ¼ L, and Nt decreases by one
whenever a job completes service or a waiting job
departs the system due to their lifetime being reached.
(Note that our assumptions on the lifetime and ser-
vice time distributions mean that the probability of Nt

instantaneously decreasing by more than one is pre-
cisely zero.) A policy p for the single-class problem
can be viewed as a function p: {0, 1, 2, . . .} ? {0, 1},
where

pðnÞ ¼ 0 if policy p rejects service when Nt ¼ n
1 if policy p accepts service when Nt ¼ n:

�

Given a policy p, the payoff is equal to the number of
jobs served over the period ½0; Tp�, minus the penalty
incurred while serving, plus the total subsidy received
while the server is idle during this time. Note that we
stop receiving any benefit when Nt hits zero, which
happens in finite time with probability one, whatever
policy we use. (But note also that the trajectory of Nt

depends on p, since the time at which jobs depart the
system will depend on whether or not they start service
before expiring, and so we shall henceforth write Np

t to
make this dependence explicit.) Given p, let Zp

t denote
the number of service initiations by time t. Then the
total payoff when using policy p over the interval [0, t],
with t � Tp, can be expressed as

Zp
t þW

Z t

0

ð1�MpðNp
s ÞÞds: ð16Þ

It is convenient for the single-class problem to set p
(0) = 1/M: this ensures that the integrand in Equa-
tion (16) is zero for s � Tp, and implies that the pay-
off received over [0, t] converges almost surely as
t?∞ to the random variable

Zp þW

ZTp

0

ð1�MpðNp
s ÞÞds:

The value function of policy p is defined as

vpðnÞ ¼ E Zp þW

ZTp

0

ð1�MpðNp
s ÞÞds

���N0 ¼ n

2
4

3
5: ð17Þ

Our aim is to determine a policy p� which maxi-
mizes this function.

THEOREM 1. Given values for h, l, M and W, define the
set A� as follows:

A� ¼
n 2N : n WM

l � 1
� �

� W
h q� 1ð Þ

n o
if q�1;

n 2N : n 1�W
l ðM� pð0jnÞÞ

� �
� W

h

n o
if q�1:

8<
:

ð18Þ

Then the policy p� defined by

p�ðnÞ ¼ 1 n 2 A�

0 otherwise

�

is the unique optimal policy which maximizes the value
function (17).

That is, A� determines the optimal acceptance set:
it is optimal to accept service if and only if the
number of jobs in the system belongs to A�. We
observe that if q = 1 (meaning that lifetimes and
service times have the same mean), both formulas
in (18) simplify to
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A� ¼ n 2 N : n
WM

l
� 1

� �
� 0

� �
:

In other words, when q = 1 the optimal policy is to
always accept service if WM ≤ l, and otherwise al-
ways to reject.

COROLLARY 1. The policy p� is monotonic in n:
p�ðnÞ � p�ðn þ 1Þ when q ≥ 1, and p�ðnÞ � p�ðn þ 1Þ
when q ≤ 1.

The proofs of Theorem 1 and Corollary 1 can be
found in the Appendix. An important consequence of
Corollary 1 is that when q ≥ 1, there exists some criti-
cal value n� with the property that the acceptance set
is given by f1; 2; ; n�g, where we write n� ¼ 0 if
A� ¼ ; and n� ¼ 1 if A� ¼ N. Similarly, if q ≤ 1
there exists n� with the property that
A� ¼ fn� þ 1; n� þ 2; g. We shall write A�ðWÞ and
n�ðWÞ when we wish to emphasize the dependence
upon the subsidy rateW.
We now formally define indexability of a job class

as follows.

DEFINITION 1. A job class is indexable if
W � W 0 ) A�ðW 0Þ � A�ðWÞ.

In other words, when a class is indexable, the set
of states at which it is optimal to accept service
decreases as the subsidy rate increases. Therefore
when the subsidy rate is larger it becomes more
attractive to reject the service and instead receive
subsidy, and vice versa. This motivates the follow-
ing definition.

DEFINITION 2. For an indexable job class, the Whittle’s
index is defined as

wðnÞ ¼ supfW : n 2 A�ðWÞg:

Thus, w(n) is the maximum subsidy rate under
which it is optimal to accept service when there are
n jobs left in the class. Proposition 1 shows that the
single class problem is indexable in the Markovian
case, for all values of q and M. Therefore, as W ? 0
the acceptance set grows until A�ðWÞ ¼
f1; 2; . . .; Lg, and at the other extreme, A�ðWÞ ! ;
as W ? ∞.

PROPOSITION 1. (WHITTLE’S INDEX VALUES). For any
fixed M ≥ 1, the job class with loss rate h and service rate
l is indexable, with Whittle’s index given as follows:

wðnÞ ¼
nh

1þðnM�1Þq if q� 1;
nh

1þnðM�pð0jnÞÞq if q� 1:

(
ð19Þ

PROOF. When q ≥ 1, rearranging Equation (18) we
see that n 2 A� if and only if

W �wðnÞ :¼ nh
1þ ðnM� 1Þq :

For any fixed n this inequality will hold (giving
p�ðnÞ ¼ 1) for all values of W less than the critical
value w(n), and fail otherwise (giving p�ðnÞ ¼ 0);
thus p�ðnÞ is a decreasing function of W. We con-
clude that as W increases the size of the acceptance
set can only decrease, and hence the class is index-
able.
Rearranging Equation (18) when q ≤ 1 shows that in
this case n 2 A� if and only if

W �wðnÞ :¼ nh
1þ nðM� pð0jnÞÞq ;

and so the same conclusion applies. h

COROLLARY 2. The index value w(n) is a decreasing
(respectively, increasing) function of n when q ≥ 1
(respectively, q ≤ 1). Furthermore, w(n) is a decreasing
function of M for all values of q.

PROOF. It is immediate from Equation (19) that w(n)
is a decreasing function ofM.

When q ≥ 1 we see that

wðnþ 1Þ � wðnÞ / ðnþ 1Þ 1þ ðnM� 1Þqð Þ
� n 1þ ððnþ 1ÞM� 1Þqð Þ
¼ 1� q� 0;

and so w(n) is decreasing in n. Similarly, when
q < 1, we obtain

wðnþ 1Þ � wðnÞ / ðnþ 1Þ 1þ nðM� pð0jnÞÞqð Þ
� n 1þ ðnþ 1ÞðM� pð0jnþ 1ÞÞqð Þ
¼ 1� nðnþ 1Þq pð0jnÞ � pð0jnþ 1Þð Þ

¼ 1� nðnþ 1Þq pð0jnÞ
1þ nq

where this final equality follows from Equation
(A.4) in the Appendix. We now use the inequality
p(0|n) ≤ 1/n (which holds for any q ≤ 1) to see that

1� nðnþ 1Þq pð0jnÞ
1þ nq

� 1� ðnþ 1Þq
1þ nq

¼ 1� q
1þ nq

� 0:

So in this case w(n) is an increasing function of n,
as claimed. h
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REMARK 1. Throughout this work, we always con-
sider the payoff for serving a job to be identically one.
Changing this to some other (positive) value is a tri-
vial exercise, and it is easy to see that the resulting
Whittle’s index values will scale linearly with the pay-
off value.

4.2. Index Policies for the Original Problem
Having shown that all job classes are indexable and
obtained their Whittle’s index values, we are ready
to develop service policies for the original problem.
We relax the assumption that M is a constant and
restore its original definition as the number of non-
empty classes in state n, written as MðnÞ ¼PJ

j¼1 Ifnj [ 0g, where I is an indicator. The Whittle’s

index values in Equation (19) now take the following
form for class j:

wjðnÞ ¼
njhj

1þðnjMðnÞ�1Þqj if qj � 1;
njhj

1þnjðMðnÞ�pð0jnjÞÞqj if qj � 1:

8<
: ð20Þ

We follow the seminal work of Whittle (1988) and
define the following index policy for the original pro-
blem.
Dynamic Whittle’s Index Policy (DWI): Suppose

that the system occupies state n at a decision epoch.
The index policy DWI always allocates the server to
the job class j� which satisfies

wj�ðnÞ ¼ max
1� j� J

nj � 1

wjðnÞ:

We call this policy “Dynamic Whittle’s Index policy”;
here “dynamic” emphasizes that the index values are
dependent upon the (dynamic) number of job classes
that still compete for service, in addition to the single
class state n.
We also derive an index policy that follows the first

decomposition.
Whittle’s Index Policy (WI): Suppose that the sys-

tem occupies state n at a decision epoch. The index
policy WI always allocates the server to the job class j�

which satisfies

w0
j�ðnj�Þ ¼ max

1� j� J

nj � 1

w0
jðnjÞ;

where the index values are calculated by letting M
(n) 	 1 in Equation (20), as shown below.

w0
jðnjÞ ¼

njhj
1þðnj�1Þqj if qj � 1;

njhj
1þnjð1�pð0jnjÞÞqj

if qj � 1:

8<
:

Note that w0
j values are solely determined by the

class j themselves.

4.3. An Illustrative Example
We consider a J = 2 class problem, with key parame-
ters as follows.

L1 ¼ 20; h1 ¼ 0:15; l1 ¼ 0:14;

L2 ¼ 20; h2 ¼ 0:05; l2 ¼ 0:20:

Therefore class 1 has shorter lifetime but longer ser-
vice time than class 2. Moreover we have
q1 [ 1 [ q2. We calculated the Whittle’s index val-
ues for different M and obtained both WI and DWI
policies. Furthermore, for this small example, we
calculated the optimal policy by solving the corre-
sponding Bellman equations. Also included is the
two-step policy proposed by Jacobson et al. (2012).
The results are plotted in Figure 1. The area above
each policy curve, including the curve itself, is
where class 2 jobs are prioritized, while that below
is where class 1 jobs are given priority.
It is first of all evident that, for fixed M, the index

values decrease with n for class 1 and increase for
class 2, and the index values decrease with M for both
classes; this is of course to be expected following
Corollary 2. The policy plot shows that all four poli-
cies (including the optimal policy) take the form of
threshold policies in this example. They all begin with
prioritizing class 2 jobs, due to their shorter service
times, and switch to prioritizing class 1 jobs after a
certain threshold. However, the switching points dif-
fer between policies, with WI switching much earlier
than the other two. Indeed, pretty much as soon as n2
drops below 10 and w0

2ðn2Þ falls below w0
1ðn1Þ (as

shown by the points corresponding to M = 1 in Fig-
ure 1a), the service is always allocated to class 1 jobs
under policy WI. In clear contrast, DWI’s switching
points come much later and are closer to those of the
optimum. The consideration of the other non-empty
classes helps delay the switching. From Figure 1a, it is
observed that the crossing point of the bottom two
index value curves (for M = 2) comes at n = 5, much
later than n = 10 for the top two curves (M = 1). The
two-step policy switches rather too late. We also cal-
culated the suboptimality for each heuristic (as
defined by Equation (24) in section 5.1). The subopti-
mality for DWI is only 0.06%, which is significantly
lower than 0.50% for WI and 0.37% for two-step. The
enhancement due to the second decomposition is
therefore substantial.

5. Numerical Experiments

In the following discussion, we study extensively the
performance of the proposed policies. Section 5.1 lists
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a few alternative heuristic policies from the literature
that are used as the benchmarks in all the experi-
ments. In section 5.2, we test their performances in
the Markovian case as described in section 4. In sec-
tion 5.3, we extend to non-exponential cases with
Weibull distributed lifetimes. A number of sensitivity
analyses are reported in section 5.4 and in section 5.5
we provide further discussions of our numerical
experiments.

5.1. Heuristic Policies
In addition to our proposed index policies WI and
DWI, the following five heuristics from the literature
are included. For brevity, we describe all these heuris-
tics for the Markovian problems. As we shall see in
section 5.3, they can be also applied in settings with
non-exponential distributions.

• two-step: A state-dependent policy was pro-
posed by Jacobson et al. (2012) for problems
with two classes. We extend this policy to mul-
tiple job classes. Given that the system occu-
pies state n at a decision epoch, the two-step
policy chooses to serve the non-empty class j
with the largest value of

lj

lj þ
PJ
i¼1

ðni � dijÞhi
: ð21Þ

Essentially this policy gives priority to the classes
which would result in the minimum mean number
of abandonments during the next service.

• Threshold: In Jacobson et al (2012) a threshold
policy was also proposed. For J = 2 problems,
the threshold T is obtained as follows.

T ¼ h1 � h2
l2 � l1

max
l2
h1

;
l1
h2

� �
: ð22Þ

For a state n, the threshold policy always chooses to
serve the class with larger loss rate if n1 þ n2 � T ;
otherwise the jobs from the other class are served.
Note that this policy is not applicable to problems
with three or more job classes.

• ThetaMu: Renumber the job classes in
descending order of the quantity hjlj, such that

h1l1 � h2l2 � 
 
 
 � hJlJ:

In any state n, the policy ThetaMu always chooses
to serve the non-empty class with the largest hjlj
value. Essentially this is a static priority policy
that favors job classes with large service rates
and/or larger loss rates. It has been shown by
Glazebrook et al. (2004) that the ThetaMu policy
has optimal performance in a “no premature job
loss” limit.
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Figure 1 The Whittle’s Index Values (a) and the Index Policies WI, DWI, Two-Step and An Optimal Policy (b) for the Illustrative Example [Color fig-
ure can be viewed at wileyonlinelibrary.com]
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• TCF: The time critical first rule resembles the
static START policy in practice and always pri-
oritizes jobs with shorter expected lifetimes.
Specifically, it always chooses to serve the non-
empty class j with the largest value of hj.

• SEPT: The shortest expected processing time rule
is another static policy commonly used in
many applications. SEPT favors jobs with
shorter expected service times. Specifically, it
always chooses to serve the non-empty class j
with the largest value of lj.

Moreover, we can obtain the optimal policy (for
modest values of J and L) by solving the Bellman
equations. For problems in the Markovian case, we
have

VðnÞ¼1þmax
1�j�J

nj�1

Z1
0

X
n0

pðn0jn;j;sÞVðn0Þlje�ljsds

8<
:

9=
;; n 6¼0;

Vð0Þ¼0;

ð23Þ

where

pðn0jn; j; sÞ ¼
YJ
i¼1

ni � dij
n0i

� �
e�hisn0i 1� e�his

	 
ni�dij�n0
i :

Similarly, the value functions for a specific policy p
can be obtained from solving the equations below.

VpðnÞ¼1þ
Z 1

0

X
n0

pðn0jn;pðnÞ;sÞVpðn0ÞlpðnÞe�lpðnÞsds

( )
;

n 6¼0;

Vpð0Þ¼0:

The performance of policy p can then be measured
by its suboptimality, defined as

DpðLÞ ¼ 100ðVðLÞ � VpðLÞÞ=VðLÞ: ð24Þ

5.2. The Markovian Case
As indicated in section 4, the opportunity loss
qj ¼ hj=lj has a significant impact on the resulting

heuristic policies and their performance. We first
study the scenario in which all job classes have a simi-
lar level of opportunity loss. In light of real emer-
gency response situations where jobs may well have
different degrees of urgency and service require-
ments, we move on to investigate the performance of
alternative policies when job classes have clearly dif-
ferent levels of opportunity losses. To cover a wide
range of different problem scenarios, we randomly
generate the problem parameters, as specified in each
section below.

5.2.1. Similar Level of Opportunity Losses
Between Job Classes. The key parameters in the
problem considered here are the service rates lj, loss
rates hj, and the initial numbers of jobs Lj, which are
randomly sampled as below.

lj �U½0:1; 1:0�; for all cases ð25aÞ

qj �
U½0:1; 0:5�; Low opportunity loss
U½0:5; 2:0�; Medium opportunity loss
U½2:0; 10:0�; High opportunity loss

8<
:

ð25bÞ

Lj �
DU½10; 20�; J ¼ 2
DU½5; 10�; J ¼ 3
DU½2; 5�; J ¼ 4

8<
: ð25cÞ

We consider three different levels of opportunity
loss as shown in Equation (25b), which are arranged
in ascending order of qj values. For each of these

levels and for each J 2 {2, 3, 4}, we randomly gen-
erate 500 testing instances according to Equation
(25a–25c). Specifically, for each level of opportunity
loss and each j≤J, we firstly sample the service rates
lj from the distribution U[0.1, 1.0], and qj from the

corresponding uniform distributions. These deter-
mine the loss rates hj ¼ ljqj. The initial number of

jobs Lj are then sampled from corresponding dis-

crete uniform distributions. Note that their values
are limited and reduced with J such that the optimal
policies can be obtained within reasonable time.
Moreover, we are only interested in situations where
the jobs with longer expected lifetimes have shorter
expected service times, and vice versa. These condi-
tions are common in practice and the optimal ser-
vice policies in such situations are far from obvious.
Without loss of generality, we require that
hj \ hjþ1; lj [ ljþ1. Therefore, instances which do

not meet these conditions are re-sampled.
For every problem instance, value iteration is

employed to compute the mean number of service
completions achieved under alternative heuristics
and an optimal policy. Then the suboptimality for
each heuristic is computed. For each opportunity loss
category, the average performance of every heuristic
across 500 instances is calculated and summarized in
Table 1.
The results in Table 1 confirm that ThetaMu

and two-step policies perform well when jobs
have low and high opportunity losses, respec-
tively, which agree with the previous results in
the literature. Their performances clearly worsen
in other scenarios, however. The index policy WI
produces rather weak results across the board.
Even though it is better than ThetaMu in the
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medium to high scenarios, it is always outper-
formed by two-step and Threshold (where appli-
cable). In sharp contrast, the other index policy
DWI achieves significant improvement over WI,
regardless of the opportunity loss level. The sub-
optimality of DWI is the lowest on average
among all heuristics in the medium category. In
the other two categories, the average suboptimal-
ity gap between DWI and ThetaMu(two-step) is
always less than 0.7%(0.3%). Therefore, DWI pro-
duces comparable average performance to the best
performing policies across all scenarios. However,
what makes DWI standing out is its consistency
and robustness in performance. In fact, its worst-
case performance and standard deviation are
always the best except for the high scenarios,
which makes DWI the most robust policy. Its
overall worst case performance is at most 5.47%,
while the value for the other alternatives is
12.89%(WI), 9.33%(2-step), 5.70%(Threshold),
21.14% (ThetaMu), 43.85%(TCF) and 17.23%
(SEPT). We also observe that Threshold is strong
when it is applicable; it is always the second best
policy on average. Its worst performance is quite

good as well. However, as we shall see, its perfor-
mance reduces significantly for the Weibull life-
time problems. Among the three static policies,
TCF is always the weakest, far worse than the
others, while SEPT shows much stronger perfor-
mance over ThetaMu in medium to high scenar-
ios.

5.2.2. Different Level of Opportunity Losses
between Job Classes. The numerical experiments
so far are restricted to situations where all job
classes have a similar level of opportunity loss,
either being low, medium, or high. In real life, how-
ever, this may not always be the case. It is very
likely that there exist a combination of jobs with
various degrees of urgency and treatment needs.
Indeed in some mass casualty incident situations, it
is reasonable to expect that some jobs will have a
low opportunity loss, while others have medium or
high opportunity losses. In this section we consider
the situation of this kind, by requiring that qj values
are sampled from different levels. Again we con-
sider problems with J = 2, 3, 4 classes, with their qj
values now sampled as below.

Table 1 Suboptimality (in %) for Problems with the Similar Level of Opportunity Loss in the Markovian Case (The strongest performances are
highlighted in bold)

Opportunity loss

J = 2 J = 3 J = 4

Mean Max SD Mean Max SD Mean Max SD

Low
WI 2.14 8.26 1.61 3.10 9.54 2.09 3.20 12.89 2.54
DWI 1.53 4.81 1.04 1.79 4.34 0.84 1.62 5.47 0.87
Two-step 1.18 8.67 1.82 1.41 9.33 1.85 1.42 7.20 1.61
Threshold 0.99 5.70 1.44 – – – – – –
ThetaMu 0.88 17.41 2.04 1.02 10.50 1.79 0.94 7.49 1.41
TCF 6.58 43.85 8.95 7.62 36.53 7.78 5.48 25.89 5.46
SEPT 2.15 17.23 3.34 2.68 17.06 3.33 2.74 14.25 3.08
Medium
WI 0.79 2.92 0.62 2.23 6.07 1.34 4.11 12.52 2.42
DWI 0.09 0.97 0.16 0.16 1.10 0.19 0.18 1.76 0.22
Two-step 0.12 1.57 0.23 0.27 2.61 0.49 0.37 4.41 0.64
Threshold 0.10 1.02 0.16 – – – – – –
ThetaMu 2.60 20.79 4.54 3.55 20.43 4.39 2.89 18.10 3.43
TCF 10.32 44.46 9.91 11.83 41.81 9.22 11.47 38.25 8.16
SEPT 0.74 8.13 1.36 1.25 10.04 1.89 1.45 11.14 1.92
High
WI 0.48 2.62 0.40 1.07 4.81 0.76 2.31 10.72 2.05
DWI 0.20 1.87 0.22 0.25 2.39 0.30 0.33 4.16 0.51
Two-step 0.01 0.23 0.03 0.05 1.75 0.13 0.08 2.49 0.22
Threshold 0.03 1.40 0.09 – – – – – –
ThetaMu 3.35 21.14 4.69 4.35 18.74 4.66 5.20 19.66 4.67
TCF 9.90 41.30 8.58 12.89 40.75 8.73 12.76 35.27 7.13
SEPT 0.20 3.39 0.42 0.40 3.74 0.64 0.49 6.49 0.84

q1�U½0:1;1:0�;q2�U½1:0;10:0� J¼2
q1�U½0:1;0:5�;q2�U½0:5;2:0�;q3�U½2:0;10:0� J¼3
q1�U½0:1;0:5�;q2�U½0:5;1:0�;q3�U½1:0;2:0�;q4�U½2:0;10:0� J¼4

8<
: ð26Þ
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The other two parameters for each class are still
sampled independently according to Equations
(25a) and (25c). Again 500 instances are randomly
generated for each J and the results are presented
in Table 2. The distributions of the suboptimality
and the confidence intervals are plotted in Fig-
ure 2, in which TCF is excluded in order to show
clearer contrast between the other policies.
It can be observed that DWI performs exception-

ally well in these problems, with the strongest
performance among all heuristics. Compared to
the results in Table 1, its mean suboptimality is
much smaller, while all the other heuristics per-
form significantly worse. The box plots indicate
that DWI has the lowest suboptimality on all mea-
sures (mean, median, and all quartiles) in every

scenario. Indeed, the mean suboptimality is at
most 0.45% and the worst case at most 3.18%
across all instances. These are far better than the
second best heuristic, two-step, whose mean sub-
optimality could be as large as 3.11% and worst
case 16.68%. Threshold shows comparable perfor-
mance, followed by WI. SEPT comes close and
outperforms ThetaMu. It also delivers better
results than WI when J = 2, but this relationship is
reversed for larger J. Still TCF provides the weak-
est performance with mean of 19.79% and maxi-
mum of 65.28%. The dominant performance of
DWI is further evidenced by its 95% confidence
interval of the mean suboptimality, which is tight
and significantly below all the other alternatives,
especially when there are more job classes.
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Figure 2 Suboptimality (in %) for Problems with Different Level of the Opportunity Loss in the Markovian Case [Color figure can be viewed at wile
yonlinelibrary.com]

Table 2 Suboptimality (in %) for Problems with Different Level of the Opportunity Loss in the Markovian Case (The strongest performances are
highlighted in bold)

J = 2 J = 3 J = 4

Mean Max SD Mean Max SD Mean Max SD

WI 1.63 9.24 1.74 4.08 13.63 3.19 6.49 24.61 4.49
DWI 0.24 1.61 0.36 0.45 3.16 0.63 0.45 3.18 0.59
Two-step 0.30 5.48 0.56 2.10 11.83 2.54 3.11 16.68 3.53
Threshold 0.35 4.85 0.69 – – – – – –
ThetaMu 7.41 40.40 9.87 8.66 36.16 8.76 8.85 32.26 7.93
TCF 15.30 65.28 16.99 19.12 62.46 14.87 19.79 58.5 12.88
SEPT 0.77 11.40 1.51 5.54 21.98 5.75 6.89 27.12 6.27
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5.3. Weibull Lifetime and Deterministic Service
time
In this section, we depart from the assumptions of
exponentially distributed lifetime and service times.
Although this makes questions of indexability etc.
rather intractable, it is very much of interest to investi-
gate numerically how well our heuristic policy per-
forms in other scenarios. Here we shall consider
deterministic service times and Weibull distributed
lifetimes.
For Weibull distributed lifetimes, the loss rate is no

longer constant but changes with time. We shall use
Weibullðaj; bjÞ to denote the distribution function for
class j:

FjðsÞ ¼ 1� e�ðs=bjÞ
aj
:

The mean remaining lifetime EðXj � tjXj [ tÞ can
be calculated as follows, where for presentation pur-
poses we temporarily discard the subscript j:

EðX � tjX[ tÞ ¼ bCð1=a; ðt=bÞaÞ
a

eðt=bÞ
a

;

where Cð1=a; ðt=bÞaÞ is the upper incomplete
Gamma function which takes the form

Cð1=a; ðt=bÞaÞ ¼
Z1

ðt=bÞa

x1=a�1e�xdx:

The loss rate at time t is given by the reciprocal of
EðX � tjX [ tÞ, as written below.

hðtÞ ¼ a
bCð1=a; ðt=bÞaÞ e

�ðt=bÞa ;

and this allows us to define qðtÞ ¼ hðtÞl�1, where
l�1 is the deterministic service time. In particular,
we have

hð0Þ ¼ 1

bCð1þ a�1Þ ; qð0Þ ¼ 1

bCð1þ a�1Þl :

We are only interested here in cases for which a>1,
as these would seem to correspond more closely to
more practical situations where jobs’ loss rates
increase over time if not being served.
We are now ready to extend the service policies

described in section 5.1 to the Weibull lifetime set-
ting, following the same approach as Jacobson et al.
(2012). For the two index policies, the loss rate is
replaced by the updated value h(t) to calculate the
Whittle’s index value for each class at decision epoch
t, which are then used in the same manner to derive
the service policies. The same approach applies to
the two-step and Threshold. For the static policy
ThetaMu and TCF, the initial value of h(0) is used to

determine the service order, which then remains
unchanged over time.
The optimal policy can be derived as follows. For

deterministic service times, the value iteration proce-
dure needs to only compute V(or Vp) at states (n, t)

for t-values of the form t ¼
PJ

j¼1 mjl�1
j where the mj

are non-negative integers. The optimality equa-
tion takes the form

Vðn; tÞ ¼ 1þ max
1� j� J

nj�1

X
n0

pðn0jn; t; j;l�1
j ÞVðn0; tþ l�1

j Þ
( )

;

n 6¼ 0;

Vð0; tÞ ¼ 0;

ð27Þ

with the transition probability

pðn0jn; t; j; l�1
j Þ ¼

YJ
i¼1

ni � dij
n0i

� �
1� Ftiðl�1

j Þ
� �n0i

Ftiðl�1
j Þ

� �ni�dij�n0
i
;

in which FtjðsÞ is given by

FtjðsÞ ¼ 1� exp
t

bj

 !aj

� tþ s

bj

 !aj" #
:

5.3.1. Similar Level of Opportunity Losses
Between Job Classes. As in the Markovian case, we
first of all sample the key problem parameters as fol-
lows.

lj �U½0:1; 1:0� for all cases ð28aÞ

aj �Uð1:0; 2:0� for all cases ð28bÞ

qjð0Þ�
U½0:1; 0:5�; Low opportunity loss
U½0:5; 2:0�; Medium opportunity loss
U½2:0; 10:0�; High opportunity loss

8<
:

ð28cÞ

Lj �
DU½10; 15�; J ¼ 2
DU½5; 10�; J ¼ 3
DU½2; 5�; J ¼ 4

8<
: ð28dÞ

Note that values of bj are derived from the values of

lj and aj obtained from the draws in Equations

(28a) and (28b), and the value of qjð0Þ obtained

from whichever is appropriate of the draws in
Equation (28c). As before, we require that
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hjð0Þ\ hjþ1ð0Þ; lj [ ljþ1; instances which do not

meet these conditions are resampled. We are forced
to impose a lower limit on the maximum number of
jobs when J=2 due to the added complexity of the
recursion (27) in comparison with Equation (23).
As with the Markovian case, we randomly generate

500 instances for each J and each level of opportunity
loss. The comparison results of the suboptimality
between the policies are reported in Table 3.
The evidence provided in Table 3 yield similar con-

clusions as those obtained from Table 1. The policies
ThetaMu and two-step still have poor worst-case per-
formance in settings for which they are not designed.
The index policy WI is stronger than ThetaMu in
medium to high categories, but is always outper-
formed by two-step. DWI continues to show strong
and robust performance across all scenarios. Indeed,
it is always one of the top 2 policies on all three mea-
sures, with no other heuristic having such consistent
performance. Its mean suboptimality is always less
than 1.67%, while the values for the others are 6.77%
(WI), 2.58%(two-step), 2.26%(Threshold, J=2 only),
8.28%(ThetaMu), 18.47%(TCF) and 4.94%(SEPT). DWI
is also the best policy on average for half of the med-
ium to high scenarios, and its worse case performance
and standard deviation are the strongest in most sce-
narios. Unlike in the Markovian case, Threshold does
not work particularly well any more in the Weibull
case. TCF continues to deliver the weakest

performance among static policies, and SEPT still
beats ThetaMu in medium to high scenarios.

5.3.2. Different Level of Opportunity Losses
between Job Classes. The values of qjð0Þ are sampled
in the same way as Equation (26) in the Markovian
case, while all the other parameters are still sampled
from Equations (28a–28c). Comparisons between
heuristic policies are still based on 500 randomly gen-
erated instances. The results are reported in Table 4
and Figure 3. Again TCF is excluded from the plots.
The conclusions are similar to those drawn from

the Markovian case. DWI continues to provide uni-
formly excellent performance. It is significantly stron-
ger than WI and performs consistently with different
numbers of job classes. ThetaMu and TCF perform
much worse in the Weibull lifetime case than in the
Markovian case. In contrast, the performance of SEPT
is stronger when J = 2, even though it deteriorates
quickly for larger J. The policy two-step delivers
respectable performances, but is still significantly
worse than DWI.

5.4. Sensitivity Analysis
We further study the performance sensitivity to the
distribution of initial jobs among classes. We focus
our attention on Weibull lifetime cases for J = 2 with
different levels of opportunity loss. The problem
parameters for this and the subsequent experiments

Table 3 Suboptimality (in %) for Problems with Similar Level of Opportunity Loss in the Weibull Lifetime Case (The strongest performances are
highlighted in bold)

Opportunity loss

J = 2 J = 3 J = 4

Mean Max SD Mean Max SD Mean Max SD

Low
WI 1.88 7.62 1.60 3.10 11.64 2.37 3.50 17.00 2.97
DWI 1.31 5.35 1.12 1.61 5.24 1.00 1.67 5.45 0.97
Two-step 1.52 9.45 2.22 2.31 12.79 2.88 2.58 12.96 2.59
Threshold 2.17 37.79 4.21 – – – – – –
ThetaMu 0.88 11.94 1.99 1.50 12.37 2.32 0.96 6.81 1.25
TCF 7.56 53.79 9.83 8.89 41.20 9.00 6.52 36.06 6.71
SEPT 3.78 19.75 5.21 4.55 21.92 4.95 4.94 19.60 4.63
Medium
WI 1.73 8.28 1.32 3.85 12.76 2.47 6.77 21.09 4.03
DWI 0.31 2.65 0.45 0.40 2.76 0.46 0.33 1.95 0.35
Two-step 0.11 1.38 0.23 0.41 3.83 0.67 0.43 4.23 0.65
Threshold 2.26 40.24 6.22 – – – – – –
ThetaMu 3.81 27.92 5.95 5.02 24.12 5.43 4.98 20.57 4.70
TCF 15.62 54.08 13.38 16.06 47.92 10.65 15.95 50.23 9.64
SEPT 0.81 7.36 1.43 1.89 14.69 2.65 2.35 15.79 2.82
WI 0.05 2.03 0.19 0.26 5.89 0.83 2.64 23.77 4.68
High
DWI 0.02 1.14 0.10 0.08 2.28 0.28 0.42 7.61 1.10
Two-step 0.02 2.54 0.17 0.06 3.89 0.31 0.25 5.12 0.79
Threshold 0.12 6.20 0.55 – – – – – –
ThetaMu 4.73 31.87 7.39 8.28 39.97 9.15 7.42 32.09 7.54
TCF 13.60 48.80 12.46 18.47 42.66 11.04 15.64 36.03 8.80
SEPT 0.03 2.29 0.17 0.11 2.60 0.35 0.46 7.61 1.14
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are sampled as before unless specified otherwise.
Therefore we have q1ð0Þ � 1 � q2ð0Þ. The total num-
ber of jobs is fixed at 50 and we sample L1 from three
different uniform distributions. Since the optimal pol-
icy cannot be obtained for problems of this size, we
calculate the percentage improvement of DWI over
the other alternatives via simulation. For each scenar-
io, 500 instances are solved and the average improve-
ments are reported in Table 5.

The results are interesting; clearly the relative
performances are not the same across the three
scenarios. The improvements of DWI over two-
step and SEPT reduce when L2 (the number of
jobs with higher opportunity loss) decreases. In
contrast, the improvement of DWI over WI
increases with smaller L2, while for the others the
biggest improvements are seen for the balanced
scenario.
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Figure 3 Suboptimality (in %) for Problems with Different Level of the Opportunity Loss in the Weibull Case [Color figure can be viewed at wileyon
linelibrary.com]

Table 5 Average Performance Improvement (in %) of DWI over the Alternatives with Different Initial Settings, J = 2, Weibull Lifetime

Initial setting L1 L2 Two-step WI Threshold ThetaMu TCF SEPT

Class 2 dominant DU[5,7] 50� L1 1.39 1.00 1.48 11.63 41.57 1.80
Balanced DU[24,26] 50� L1 �0.23 3.51 1.69 12.67 47.37 �0.31
Class 1 dominant DU[43,45] 50� L1 �0.26 5.50 1.38 11.58 44.21 �0.30

Table 4 Suboptimality (in %) for Problems with Different Level of the Opportunity Loss in the Weibull Case (The strongest performances are
highlighted in bold)

J = 2 J = 3 J = 4

Mean Max SD Mean Max SD Mean Max SD

WI 3.12 18.79 4.01 5.66 27.94 6.09 7.80 29.17 6.70
DWI 0.32 5.97 0.77 0.48 4.20 0.76 0.54 5.61 0.93
Two-step 0.41 6.00 0.83 1.94 10.57 2.35 4.16 23.97 4.41
Threshold 1.21 37.76 4.12 – – – – – –
ThetaMu 10.38 64.79 13.10 10.65 55.96 12.05 12.60 55.37 11.97
TCF 19.67 78.63 20.31 23.13 77.68 19.41 25.48 72.50 17.31
SEPT 0.37 10.78 1.03 5.97 27.28 6.06 11.28 37.79 9.57
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We also study the performance with different val-
ues of J (with Lj � ½10; 15�; 8j) and Lj (with J = 4) for

Weibull lifetime scenarios with different levels of
opportunity loss. For each scenario 500 problems are
generated as before. The average improvements are
reported in Table 6.
Table 6(a) reports the results with increasing num-

ber of classes, and Table 6(b) with increasing number
of initial jobs. It is shown that the improvements of
DWI over the others are clearly bigger with more job
classes. The improvements, however, do not necessar-
ily increase with larger initial number of jobs in each
class. Indeed, the improvements over two-step and
SEPT reduce with more jobs in each class, while the
improvements do not change much for the other poli-
cies. It is worth mentioning that in these scenarios jobs
are evenly distributed into different classes. The per-
formance will be very different if one or few job
classes dominate the others, as shown in Table 5. In
particular, the DWI’s performance is expected to be
much stronger when the higher opportunity loss
classes make up most of the jobs. Therefore, more jobs
do not always result in better (or worse) relative per-
formance between alternative policies. The number of
job classes, the initial number of jobs in each class,
and the distribution of jobs between classes all make a
difference.
At last, we undertake an experiment to study the

performance when the same number of jobs are com-
posed of more and more classes (J = 2, 4, 10, 20). Jobs
are evenly distributed between classes. We sample q
(0) values as follows. For each J, the interval [0.1, 1.0]
is divided into J/2 consecutive subintervals with
equal length, and so is the interval [1.0, 10.0]. The
qjð0Þ value is then sampled uniformly from the jth
subinterval. Again 500 instances are solved for each J
and the results are shown in Table 7.
It is shown that the advantage of DWI over two-

step clearly increases when jobs are composed of
more classes. The average improvement is only
0.21% for J=2, but it increases to 9.58% when J

becomes 20. Similar results are observed for the
other policies.

5.5. Further Discussions
The numerical results show the clear and significant
enhancement of the index policy derived from the
second decomposition over that from the first one.
Not only is the policy DWI much stronger on average
than WI, but also its performance is consistent and
robust across all opportunity loss scenarios and num-
ber of job classes. These results highlight the limita-
tion of the classical Whittle’s index policies
in situations where the number of bandits competing
for resource varies over time. (We use bandits and
classes interchangeably in this discussion.) In a stan-
dard Whittle’s RB approach, the index values are
obtained solely based on the dynamics of each bandit
themselves, while all the information outside is
ignored. Such locally focused approaches might still
work well when the number of bandits stay the same
throughout the time horizon, as shown by previous
works in the RB literature. However, as our results
have indicated, they are not good enough for prob-
lems with a changing number of bandits. In such
cases, it becomes essential to take into account other
information apart from each single bandit itself, such
as the number of bandits still competing for service as
we have suggested. Indeed, if there was just one ban-
dit left, there would be no need to have the penalty
for receiving service. On the other hand, if there were
many others competing for service, a high penalty
would need to be imposed to reflect the severity of
resource scarcity.
The approach that we have developed provides a

simple yet effective way to include the number of job
classes when deriving the class specific index values.
This is captured by a penalty term for receiving ser-
vice, which is proportional to the total number of job
classes. More attractively, such information is avail-
able at no extra cost, as it can be trivially obtained
from the system state. This approach can be readily
applied to other restless bandit problems where the
number of bandits varies over time (not necessarily
decreasing), such as situations where new/existing
projects are being started/terminated or customer
queues are dynamically opened/closed. We strongly

Table 6 Average Performance Improvement (in %) of DWI over the
Alternatives with Different Initial Settings, J = 2, Weibull
Lifetime

(a) Lj � ½10; 15�
J Two-step WI ThetaMu TCF SEPT

2 0.09 3.08 14.50 37.75 0.06
3 0.45 6.42 15.10 40.44 2.24
4 0.78 8.70 18.12 45.65 3.99

(b) J = 4
Lj Two-step WI ThetaMu TCF SEPT

�DU[2, 5] 4.02 8.70 16.29 43.31 13.56
�DU[10, 15] 0.78 8.70 18.12 45.65 3.99
�DU[20, 25] 0.11 8.48 18.77 45.60 1.63

Table 7 Average Performance Improvement (in %) of DWI over the
Alternatives with the Same Number of Initial Jobs But
Different Number of Classes, Weibull Lifetime

J Lj Two-step WI ThetaMu TCF SEPT

2 10 0.21 2.93 14.74 35.95 0.34
4 5 2.88 8.35 16.87 44.68 11.11
10 2 7.76 10.29 18.73 43.79 15.51
20 1 9.58 44.28 23.01 44.97 16.32

Li, Ding, and Connor: Index Policies in Emergency Response
258 Production and Operations Management 29(2), pp. 241–262, © 2019 Production and Operations Management Society



believe that it has the potential to produce much
stronger index policies compared to those from the
classical RB approaches for such problems.

6. When to Switch

Figure 1 in section 4.3 suggests that the three alterna-
tive heuristic policies, that is, two-step, WI, and DWI
have very different switching patterns. In this section,
we explore further the switching time for each of
them and how this compares to the optimal policy.
Since DWI works particularly well in the scenarios
where job classes have mixed levels of opportunity
losses (as shown in Table 2), we focus our attention
first on such problems. A number of problem
instances that were generated in section 5.2 for the
Markovian case and J = 2 have been studied. Figure 4
shows the typical switching curves identified in these
problems. Once again, the area above/below each
curve corresponds to states in which class 2/1 jobs
are prioritized.
In most scenarios, the four policies start with serv-

ing class 2 jobs due to their shorter service times. With
jobs leaving the system (either via service completion
or abandonment), the service is gradually switched
over to class 1 jobs. In all three examples, the two-step
policy is the last to switch while WI always switches
first; DWI sits in the middle in all scenarios. (The only
exception to this is scenario (c), in which WI always
prioritizes class 1 jobs. However, this can simply be
viewed as a situation in which the switch from class 2
to class 1 for WI occurs at a larger number of jobs than
is plotted here.)

Such switching patterns can be explained by the
index values of each policy. According to Equation
(21), the index values for two-step are largely deter-
mined by the service rate at the beginning (note that
the total number of remaining jobs is large and thus
the second term in the denominator is similar
between classes). With jobs leaving the system the
index values for both classes increase. Even though
the loss rate begins to make more effect, the catching
up takes time and thus the switching points always
come quite late, usually when only few jobs still
remaining. For DWI, in sharp contrast, the index
value for class 2 decreases while that for class 1
increases with smaller nj (see Corollary 2). Thanks to
such a property, the switching takes place much ear-
lier than two-step. Figure 5 plots the index values for
both two-step and DWI policies for the illustrative
example in section 4.3, clearly demonstrating the dif-
ference between the policies. For WI, however,
because its index values for both classes are larger
than their counterparts in DWI (as illustrated in Fig-
ure 1a), the switching points are pulled even earlier
and in most cases too early, as shown in Figures 1b
and 4.
As a result of such switching patterns, DWI is the

closest to the optimal policy in most cases where job
classes have different levels of opportunity losses, as
illustrated in scenario (a) and (c) in Figure 4. In sce-
nario (b), the loss rate of class 1 is not large enough to
compensate the much smaller service rate and justify
an earlier switch, and thus two-step works better than
DWI with a marginal advantage; indeed, they only
differ in states when n1 ¼ 1. But in cases where the
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loss rate of class 1 is obviously larger and/or the ser-
vice rate is closer to class 2, and thus should be priori-
tized much earlier in the process, two-step still
switches very late. This behavior explains why the
worst-case performance could be very poor for two-
step. It is also not surprising why DWI is the most
robust (and the strongest) policy across all scenarios.
Furthermore, the advantage margin of DWI increases
with the number of job classes J, as shown in the
results in section 5.
The same switching order between the three poli-

cies is also observed in both low opportunity loss
(qj � 0:5 for all j) and high opportunity loss (qj � 2
for all j) problems. In either case the average perfor-
mance of DWI is not necessarily the strongest. Indeed,
due to the relatively smaller difference of loss rates, it
is often optimal to switch late (as explained in the pre-
vious paragraph), or “so late” that no switching actu-
ally takes place. We also found that in some of the
low opportunity loss problems DWI and two-step
start with the “wrong” class, as it is actually optimal
to clear the faster leaving class before switching to the
other class that has a much smaller loss rate (and thus
barely any abandonment). In such cases the same
switching order still holds, and WI delivers the best
results as it is the first one to switch to the “right”
class (even though not as early as ThetaMu). There-
fore ThetaMu and two-step often have the best aver-
age performance in the low and high opportunity loss
scenarios, respectively. Nevertheless, being able to
switch at “right” timing (i.e., neither too early nor too

late) warrants DWI still the most robust policy in
these problems.

7. Conclusions

In the aftermath of mass casualty incidents, a critical
decision problem is how to optimally allocate limited
resources to a large number of jobs with different and
uncertain lifetimes and service times. In this study,
we have addressed such an important and ongoing
debate and proposed an effective yet simple service
policy, based on the celebrated Whittle’s index poli-
cies for restless bandits. Unlike most of the literature
which develops indices based on a time average
reward/cost criterion with an infinite horizon, the
problem concerned features a finite and uncertain
time horizon. Moreover, the decision epochs are com-
pletely determined by the endogenous actions
defined by the service policy, which differs signifi-
cantly from previous works where the decision
epochs are either discrete or largely exogenously
determined. Furthermore, in our setting, the number
of bandits (job classes) diminishes over time. We have
proved the indexability of all job classes in the Marko-
vian case, and developed closed-form equations to
compute the corresponding index values. Our numer-
ical experiments demonstrate that our proposal has
stronger and more consistent performance over pre-
existing heuristics in the literature, even in the non-
Markovian settings where jobs’ lifetimes follow Wei-
bull distributions and service times are deterministic.

Figure 5 Index Values for Two-Step and DWI for the Illustrative Example [Color figure can be viewed at wileyonlinelibrary.com]
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From the methodological point of view, our work
extends Whittle’s index policies to problems with a
finite and uncertain time horizon which depends
upon the service policy, and in which the number of
bandits changes over time. Such problems cannot be
decomposed by a straightforward application of the
classical Whittle’s Lagrangian relaxation approach.
To accommodate the complexity we have developed
two versions of Lagrangian relaxation that allow the
decomposition of the original problem into single
class problems. The first one is a direct extension of
the standard Whittle’s restless bandits approach. In
the second one the total number of job classes still
competing for service is taken into account, and this
approach reduces to the first decomposition when
assuming the total number of job classes to be always
one. The second decomposition leads to a strong per-
forming (and consistent) index policy, compared to
that from the first. We show that the relatively simple
act of taking into consideration a piece of system-wide
information that is readily available can make a sub-
stantial improvement to performance. This intuitive
and effective idea is not restricted to the problem con-
cerned, and should be straightforward to apply to
other restless bandit problems where the number of
bandits varies over time.
Both approaches proposed in this study entail

index policies calculated in two different forms
depending on the level of opportunity loss (i.e., the
value of q). As mentioned above, when q ≥ 1 (respec-
tively, q ≤ 1), the index values decrease (respectively,
increase) with the number of remaining jobs n. This
property derived from the application of Whittle’s
Restless Bandits helps to explain the different levels
of performance of our policies among scenarios fea-
turing “heavy premature job loss” versus “no prema-
ture job loss”. It also explains why the proposed
index policy performs particularly well where com-
peting job classes have different levels of opportunity
losses. In sum, what makes our proposed DWI stand
out is the way that the index values are derived: 1) it
differentiates at the level of opportunity loss; 2) it
incorporates other system-wide information (the
number of other classes competing for service).
For emergency response researchers and practition-

ers, our study generates a number of useful insights.
First, prioritization decisions solely dependent on
urgency of treatment (i.e., length of remaining life-
times) may not work well in the aftermath of mass
casualty events due to the severity of resource scar-
city. The level of resources required to complete the
service (i.e., the service time) of each job should also
be given sufficient weight in determining priority
level and resource scheduling decisions. It may lead
to more survivals to give treatment/priority to less
urgent casualties with lower resource requirement.

Second, common practices (such as START), which
direct resources to the next casualty category only if
the preceding categories are completely emptied, fail
to be efficient. We demonstrate that the optimal
“switch” between casualty categories is state-depen-
dent. Therefore, the choice of an effective state-depen-
dent scheduling policy is important for the overall
success of emergency response effort. Our numerical
study shows that our proposed policy performs better
and more consistently, across a variety of parameter
combinations, than a number of well-established
benchmarks in the field. Last but not least, by having
other-regarding nature embedded in our index policy
DWI, we attempt to provide a response to the call
(Jacobson et al. 2012 and many cited within) that pri-
oritization decisions shall take explicit account of
resource scarcity constraint in the modeling of emer-
gency resource allocation policies in the aftermath of
mass casualty incidents.
In this work, we have restricted attention to the sit-

uation in which all jobs are to be served by a single
server; it would clearly be desirable to understand
how well our index policy works when this assump-
tion is relaxed. Interesting directions for future work
include tackling the question of indexability, and a
practical investigation into the performance of the
proposed index policy, in more general scenarios
where the number of bandits changes over time.
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