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Abstract. An object is hidden in one of several discrete locations according to some known
probability distribution, and the goal is to discover the object in the minimum expected time
by successive searches of individual locations. If there is only oneway to search each location,
this search problem is solved using Gittins indices. Motivated bymodern search technology,
we extend earlier work to allow twomodes—fast and slow—to search each location. The fast
mode takes less time, but the slowmode ismore likely to find the object. An optimal policy is
difficult to obtain in general, because it requires an optimal sequence of searchmodes for each
location in addition to a set of sequence-dependent Gittins indices for choosing between
locations. Our analysis begins by—for each mode—identifying a sufficient condition for a
location to use only that search mode in an optimal policy. For locations meeting neither
sufficient condition, an optimal choice of search mode is extremely complicated, depending
on both the probability distribution of the object’s hiding location and the search parameters
of the other locations. We propose several heuristic policies motivated by our analysis and
demonstrate their near-optimal performance in an extensive numerical study.
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1. Introduction
An object is hidden in one ofN discrete locations, and
a searcher wishes to find it. For i ! 1, . . .N, the object
is hidden in location i with known hiding probability
pi, with ∑N

i!1 pi ! 1. The discrete distribution (p1, p2, . . . ,
pN) is a prior distribution describing the searcher’s
knowledge about the object’s location in advance of
the search. After any (unsuccessful) search of a lo-
cation is completed, Bayes’ rule is applied to update
the probability distribution about the object’s loca-
tion to a posterior distribution.

There are two search modes available to look for
the object in each location: a fast mode and a slow mode.
For example, a search squad can use a dog (fast mode)
or a metal detector (slow mode) to locate a hidden
bomb. When using an unmanned aerial vehicle to
look for survivors in mountains or airplane crash
sites, the speed of the unmanned aerial vehicle can be
adjusted to be either fast or slow. Each search mode
is characterized by its search time and detection prob-
ability, which are both known in advance by the

searcher. A slow (fast) search in location i will take
search time ti,s (ti,f ) and, if the object is hidden there,
find the object with detection probability qi,s (qi,f ),
independent of everything else, for i ! 1, . . . ,N.
A slow search has a larger detection probability but
takes longer; therefore, qi,s > qi,f , and ti,s > ti,f . The goal
of the searcher is to minimize the expected time to
find the object—namely, the expected search time.
Search problems with multiple search modes are

of increasing importance because of advanced tech-
nologies resulting in severalways to search a location.
There may be several choices of search agents, such
as humans, animals, and robots. For any one such
agent (for example, a robot), there may be multiple
settings on the travel speed or the sensor mode.
Notwithstanding this increased relevance, such
problems have received little attention in the academic
literature. Shechter et al. (2015) investigate a search
problem involving two search modes. A fast search at a
location may damage the object, resulting in a failure.
A slow search, however, may expose the searcher to
additional risk, such as enemy fire, which is considered
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a failure as well. The searcher’s goal is to minimize the
probability that the search ends in a failure. Contrary
to our model, a search will discover the object with
certainty if the object is hidden in the searched lo-
cation; in other words, there is no possibility of
overlook. Alpern and Lidbetter (2015) study a search
game on a network where the searcher moves along
arcs to look for a hidden object. The searcher can
choose between two speeds and is guaranteed to
find the object when passing it at the slower speed.
For readers interested in a general survey on search
theory, please see Washburn (2002), Alpern and Gal
(2003), Stone (2004), and Alpern et al. (2013).

The version of our search problem (outlined in the
opening two paragraphs) in which there is only one
search mode for each location has been studied ex-
tensively in the literature. For this simpler problem,
we write ti for the search time of location i and qi for
its detection probability. Expanding on a comment
by Kelly in Gittins (1979), Gittins (1989) gives an ac-
count of this problem that exploits the fact that it
is equivalent to a multiarmed bandit problem for
which Gittins indices provide an optimal solution.
The single-mode problem may also be formulated as
what Cowan and Katehakis (2015) call a multiarmed
bandit under general commitment, in which the pe-
riod between one decision time and the next depends
on the arm played. An optimal policy is to always search
a location that has amaximal value of p′i qi/ti, where p′i is
the object’s current (posterior) hiding probability for
location i, i ! 1, . . . ,N. This result was first attributed
to Blackwell in his notes on dynamic programming
(Matula 1964, Black 1965). When ti ! 1 for i ! 1, . . .N,
Chew (1967) and Kadane (1968) showed that the same
policy maximizes the probability of discovering the
object within m searches, for every m ! 1, 2, . . .. For
variants of this search problem, please seeRoss (1969),
Kadane (1971), Chew (1973), Wegener (1980), Kress
et al. (2008), and Lin and Singham (2015, 2016).

The search problem becomes significantly more
challenging if multiple search modes are available
for each location. In addition to decidingwhere to look
next, the searcher needs to choose a search mode.
Hence, the problem is now equivalent to what Gittins
et al. (2011) call a family of alternative superprocesses.
This is a radical extension of the multiarmed bandit
problem in which each arm has its own decision
structure. There is a general theory for such problems
based on a sufficient condition from Whittle (1980).
For our search problem, we have found that a more
direct approach that makes selective use of this gen-
eral theory gives the most natural account.

In Section 2, we show that the simple single-search-
mode result can be extended to yield the following
conclusion. If each location in our two-mode prob-
lem has a prespecified sequence mandating how

successive searches should be conducted (i.e., using
which search mode), then a policy optimal under these
within-location sequences (which now only needs to
specify the order in which locations are searched) is
a Gittins index policy. This fact reduces our two-mode
problem to the determination of within-location se-
quences respected by an optimal policy. A natural
conjecture is that such a within-location sequence
for location i might coincide with one that is opti-
mal when pi ! 1, namely always search slow when
qi,s/ti,s ≥ qi,f /ti,f and always search fast otherwise. It
turns out that, although it is indeed optimal to always
search slow in location i if qi,s/ti,s ≥ qi,f /ti,f , it is not
always optimal to search fast there if qi,s/ti,s < qi,f /ti,f .
In Section 3, we give a sufficient condition for each
mode to dominate the other mode in the same lo-
cation such that the latter should never be used.
This analysis both solves the problem in some spe-

cial cases and yields insightful bounds on the optimal
expected search time in general. Additional insight is
derived in Section 4 by the study of some two-location
problems in which one location has just one search
mode, which has perfect detection. Section 5 presents
a range of heuristic policies with suboptimality
bounds for the general two-mode problem based on the
analyses of Sections 3 and 4. Section 6 demonstrates
the performance of these heuristics in an extensive
numerical study. Finally, Section 7 concludes and
suggests a few future research directions.

2. Model and Preliminaries
We formulate our two-mode search problem as a semi-
Markovdecisionmodelwith the followingspecial features:

1. A single object is hidden in one of N discrete
locations (henceforth, boxes for conciseness) labeled
1, . . . ,N. The object is hidden in box i with hiding
probability pi > 0 for i ! 1, . . . ,N, with ∑N

i!1 pi ! 1.
2. At each decision epoch preceding the object being

discovered,a singleaction is taken,whichspecifiesboth the
box to be searched next and the search mode to be used.

3. A slow (fast) search in box i takes search time ti,s
(ti,f ) to complete and finds the object—if it is hidden
in box i—with detection probability qi,s (qi,f ). The
search times satisfy 0< ti,f < ti,s and the detection
probabilities 0< qi,f < qi,s < 1.

4. Decision epochs occur at time 0 and at the comple-
tion of each unsuccessful search until the object is found.

5. The goal of the analysis is to determine a policy—
a rule for choosing actions—to minimize the expected
time to find the object, namely, the expected search time.
Standard theory indicates that there exists an op-

timal policy that is stationary, nonrandomized, and
Markov, which here means that, before discovery, the
next action will be a deterministic function of the
history of actions taken to date (Puterman 2014).
That history can be summarized by the number of
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unsuccessful slow and fast searches in each box to
date. Following any such optimal policy generates an
optimal search sequence of actions to be taken before
the object’s discovery. For i ! 1, . . . ,N, the condition
pi > 0 implies that any such optimal search sequence
must mandate the search of box i (via some search
action) infinitely often. Any search sequence that does
not satisfy this requirement will have a strictly pos-
itive probability of failing to find the object and
consequently, an expected search time that is infinite.
From any optimal search sequence, we can extract an
infinite subsequence determining the search modes
(slow or fast) of successive visits to box i for i ! 1, . . . ,N.
We call this subsequence an optimal within-box sub-
sequence for box i and denote it by A∗

i :! {a∗i,n, n ∈ Z+},
where a∗i,n is the mode at which the nth search of box
i is made in the optimal search sequence in question
and Z+ is the set of positive integers.

A discussion of the single-mode version of the
above search problem may be found in section 8.2
of Gittins (1989). That analysis serves to show that,
when there is only one search mode for each box, a
search sequence that minimizes the expected search
time can be found by implementing a Gittins index
policy. The two-mode search problem is substantially
more difficult, because the searcher needs to decide
not only where to search next, but also which search
mode to use. To begin our analysis, consider a simpler
version of this problem, where the searcher needs to
decide only which location to search next, because the
choice of search mode is predetermined. Assume
that, for i ! 1, . . .N, the within-box subsequence Ai !
{ai,n,n ∈ Z+} is prespecified, where ai,n is the mode at
which the nth search of box i is to be made. How do
we then optimally interlace these N within-box subse-
quences to produce a search sequence that minimizes the
expected search time? The discussion in Gittins (1989)
makes it clear that this may be achieved by the fol-
lowing simple extension of the single-mode analysis.

Write σ(A) for a search sequence that arbitrarily in-
terlaces within-box subsequencesA ! {Ai, i ! 1, . . . ,N},
and write τ(σ(A)) for the random search time under
σ(A). In order to minimize E[τ(σ(A))], we first try to
maximize E[βτ(σ(A))] for some β ∈ (0, 1) and then later
take the limit β → 1. By conditioning on the location
of the object, we have

E βτ(σ(A))
[ ]

!
∑N

i!1
pi
∑∞

n!1
∏
n−1

m!1
(1 − qi,ai,m)

{ }
qi,ai,nβ

t(i,n), (1)

where t(i,n) is the time of completion of the nth search
of box i under σ(A) given that the object is yet to be
found. It follows simply that the task of choosing σ(A)
to maximize E[βτ(σ(A))] may be formulated as a semi-
Markov multiarmed bandit with the following features.

1. At each decision epoch, one of the N arms of the
bandit is pulled.
2. Inspection of (1) shows that the nth pull of arm i

takes time ti,ai,n and earns a deterministic reward

pi ∏
n−1

m!1
(1 − qi,ai,m)

{ }
qi,ai,n .

This reward is receivedat the completionof thenth pull
of arm i at time t(i,n), and it is discounted by factor β.
3. Decision epochs occur at time 0 and at the com-

pletion of successive arm pulls.
4. An optimal policy chooses successive arms to

pull to maximize the aggregate reward received.
The analysis in chapter 2 of Gittins (1989) may be

deployed as follows to demonstrate that the above
multiarmed bandit may be solved by a Gittins index
policy. Consider a situation in which box i has been
searched someni ∈ N times already, i ! 1, . . . ,N, where
N denotes the set of nonnegative integers. The Gittins
index associated with box i, i ! 1, . . . ,N, is given by

Gi(ni,Ai, β) ! pi ∏
ni

m!1
(1 − qi,ai,m)

{ }

· max
r∈Z+

∑ni+r
u!ni+1 ∏u−1

v!ni+1(1 − qi,ai,v)
{ }

· qi,ai,uβ
∑u

v!ni+1
ti,ai,v

1 − β
∑ni+r

u!ni+1
ti,ai,u

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We say a search sequence is consistent with the within-
box subsequences A if the search sequence can be
obtained by interlacing elements of A. The following
theorem solves the multiarmed bandit.

Theorem 1. A search sequence consistent with the within-
box subsequences A that maximizes E βτ(σ(A))[ ]

is charac-
terized as follows. At any point at which box i has been
searched ni ∈ N times, i ! 1, . . . ,N, the next search will be of
any box j satisfying j ! argmaxi!1,...,N Gi(ni,Ai, β) and will
use search mode aj,nj+1.
The Gittins index policy described in the above

result plainly minimizes E 1 − βτ(σ(A))[ ]
/(1 − β) among

all search sequences consistent with the within-box
subsequences A. The problem of determining a search
sequence consistent with A to minimize E τ(σ(A))[ ]
is now solved using the Gittins indices,
Gi(ni,Ai) ! lim

β→1
(1 − β)Gi(ni,Ai, β)

! pi ∏
ni

m!1
1 − qi,ai,m
( ){ }

· max
r∈Z+

∑ni+r
u!ni+1 ∏u−1

v!ni+1(1 − qi,ai,v)
{ }

qi,ai,u
∑ni+r

u!ni+1 ti,ai,u

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

ni ∈ N (2)
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for i ! 1, . . . ,N. We state this conclusion explicitly as
follows.

Corollary 1. A search sequence consistent with the within-
box subsequencesA that minimizes E τ(σ(A))[ ] is characterized
as follows. At any point at which box i has been searched ni ∈ N

times, i ! 1, . . . ,N, the next search will be of any box j
satisfying j ! argmaxi!1,...,N Gi(ni,Ai) and will use search
mode aj,nj+1.

Remark 1. An equivalent set of indices (in the sense of
determining the same optimal search sequences) can
be obtained by dividing all Gittins indices Gi(ni,Ai),
i ! 1, . . . ,N, in (2) by the quantity

∑N

j!1
pj ∏

nj

m!1
(1 − qj,aj,m)

{ }

to obtain new indices, which take the form

G′
i (ni,Ai)!p′i max

r∈Z+

∑ni+r
u!ni+1 ∏u−1

v!ni+1(1−qi,ai,v)
{ }

qi,ai,u
∑ni+r

u!ni+1 ti,ai,u

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where p′i is the object’s current (posterior) hiding prob-
ability for box i. The indices G′

i (ni,Ai), i ! 1, . . . ,N, are
not Gittins indices in the classical sense, not least
because they all change as each (unsuccessful) search
is completed and not only the index of the box just
searched.

To summarize, after we know how to conduct
successive searches of each box optimally—namely,
an optimal within-box subsequence for each box—
a suitable collection of Gittins indices will then de-
termine how we should choose optimally which box
to search. The next section will identify sufficient
conditions for a box such that an optimal within-box
subsequence consists of only one search mode.

3. Structural Properties of an
Optimal Policy

Generally speaking, an optimal choice of search
mode for any box depends on the object’s current
(posterior) hiding probabilities and the search modes
of the other boxes (see Online Appendix A for a nu-
merical example). It would be useful, however, to
identify boxes where one search mode is so much
better than the other that the latter should never be used
in an optimal policy, regardless of the search modes of
the other boxes. Sections 3.1 and 3.2 present sufficient
conditions for such dominance to occur. Based on
these findings, Section 3.3 introduces a Monte Carlo
(MC) method to estimate the optimal expected search
time, and Section 3.4 presents a lower bound on it.
Section 3.5 extends the sufficient conditions to search
problems with three or more search modes per box.

3.1. A Sufficient Condition for the Slow Mode
to Dominate

We consider the two-mode search problem described
in Section 2. Our first result states that, if the fast
mode and the slow mode for some box have the same
detection rate (i.e., the ratio between detection proba-
bility and search time), then an optimal policy never
needs to use the fast mode for that box.

Theorem 2. In the two-mode search problem, if any box j
satisfies

qj,s
tj,s

! qj,f
tj,f

,

then there exists an optimal search sequence in which box
j is always searched slowly.

Without loss of generality, we prove Theorem 2 for
j ! 1. The proof requires the introduction of a variant
of the two-mode search problem and two lemmas. To
begin, suppose that q1,s/t1,s ! q1,f /t1,f . Furthermore,
suppose that we fix within-box subsequences
A2,A3, . . . ,AN—which determine the modes of suc-
cessive visits to boxes 2, 3, . . . ,N—and consider
competing choices for the within-box subsequence for
box 1. Because our focus will be primarily on box 1,
we shall, for the remainder of the Theorem 2 proof,
omit the identifying subscript 1 from the notations
q1 and t1, but it will assist clarity to retain it for p1.
For box 1, we write A for some arbitrary within-box
subsequence and S for the within-box subsequence
consisting entirely of the slow mode. In addition,
write TA for the optimal expected search time under
within-box subsequences A,A2,A3, . . . ,AN and TS for
the optimal expected search time under within-box
subsequences S,A2,A3, . . . ,AN . To prove Theorem 2,
we will show that TS ≤ TA.
In order to proceed, we introduce a variant of the

two-mode search problem, which will facilitate a
comparison between TS and TA. In this variant, when
searching in box 1, instead of making fast and slow
searches in the usual manner, the searcher sweeps
box 1 continuously as described below. Imagine that
box 1 is represented by a line segment [0, ts]. If the
object is hidden in box 1, then its position is distrib-
uted uniformly over [0, ts]. By sweeping box 1 con-
tinuously, the searcher moves on this line segment,
starting from zero toward ts at constant speed 1, and
finds the object with probability qs when she meets it
independent of everything else. In addition, at any
point, the searcher may stop searching box 1 in
order to search another box, and when she returns
to box 1, her search is resumed from the place where
she abandoned it last. After reaching the end point
ts, the searcher then jumps back to zero and moves
toward ts again. We write TW for the minimized
expected search time when the searcher uses the
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within-box subsequences Ai for boxes i ! 2, . . . ,N and
sweeps continuously for box 1.

Please note that, if the searcher searches a random
subset of the line segment [0, ts] with length tf , then
the probability of finding the object, if it is hidden in
box 1, is qs(tf /ts) ! qf . One way to interpret the stan-
dard two-mode search problem is that, each time the
searcher visits box 1 to conduct a fast search, she sweeps
a random subset of [0, ts] of length tf independent of
the subsets that she has searched before, whereas to
conduct a slow search, she does one complete sweep
of the interval. In the continuous-sweeping variant of
the problem, the searcher has an advantage, because
each time that she visits box 1, she begins by sweep-
ing the subset that has been searched least hitherto. This
advantage is quantified in the next lemma.

Lemma 1. TA − TW ≥ p1ts/2.

Proof. Consider two searchers. Searcher 1 uses within-
box subsequence A for box 1, whereas searcher 2 uses
continuous sweeping. Both searchers use within-box
subsequence Ai for box i for i ! 2, . . . ,N. Searchers 1
and 2 have optimal expected search times equal to TA
and TW , respectively.

Let searcher 1 conduct her optimal search, choosing
between boxes using Gittins indices, as detailed in Cor-
ollary 1. Below, we describe a feasible policy for
searcher 2, which mimics searcher 1’s optimal policy.
Whenever searcher 1 searches box i *! 1, let searcher 2
search the same box using the same mode. When
searcher 1 searches box 1 using the slow (fast) mode,
let searcher 2 also search box 1 starting at the place
that she abandoned last time and moving toward ts at
constant speed 1 for ts (tf ) time units unless she either
finds the object or reaches the end point ts before the
allotted time expires. In the former case, the search is
over, whereas in the latter case, she jumps back to
zero and moves toward ts again until either the allotted
time is exhausted or the object is found. With this
feasible policy for searcher 2, we can see that, if the
object is not hidden in box 1, the conditional expected
search time is identical for both searchers.

Now, consider the case in which the object is hidden
in box 1. First, we examine the expected time spent in
box 1 for each searcher. For searcher 1, one can show
that this amount is ts/qs ! tf /qf , regardless of A—the
within-box subsequence for box 1. For searcher 2, let
Y denote the number of times that the searcher needs
to meet the object to find it. In other words, searcher 2
sweeps the whole of [0, ts] a total of Y − 1 times in vain
and finds the object on the Yth sweep. Furthermore,
it is plain that Y follows a geometric distribution with
success probability qs. Each of the first Y − 1 failed
complete sweeps takes time ts, whereas the last suc-
cessful pass takes an expected time of ts/2, because the

object’s position is uniformly distributed over [0, ts].
Hence, the expected time spent in box 1 by searcher 2 is

ts E[Y − 1] + ts
2
! ts
qs

− ts
2
.

Second, we examine the expected time spent in boxes
i ! 2, . . . ,N by each searcher if the object is hidden in
box 1. By comparing the detection probabilities of each
searcher on their nth visit to box 1, we show that this
quantity for searcher 2 is no greater than for searcher 1.
Suppose that searcher 1 uses the fast mode on her

nth visit to box 1, and therefore, her relevant detection
probability is qf . Correspondingly, searcher 2 will sweep
box 1 for tf time units on her nth visit, but her detection
probability will depend on the point x ∈ [0, ts] at which
her (n − 1)th unsuccessful visit to box 1 ended. Consider
two cases:

1. x ∈ [0, ts − tf ]. In this case, the probability re-
quired is given by

P object found in (x, x + tf ] |
(

object was not found in [0, x]
)
!

tf
ts
· qs

1 − x
ts
· qs

≥ qf .

2. x ∈ (ts − tf , ts]. In this case, the probability required
is given by

P object found in (x, ts] or in [0, x + tf − ts] |
(

object was not found in [0, x]
)

!
ts−x
ts

( )
· qs + x+tf−ts

ts

( )
· (1 − qs) · qs

1 − x
ts
· qs

≥
tf
ts
· qs − xtf

t2s
· q2s

1 − x
ts
· qs

! qf .

Now suppose that searcher 1 uses the slow mode on
her nth visit to box 1, and therefore, her relevant de-
tection probability is qs. Correspondingly, searcher 2’s
nth visit to box 1 takes ts time units and will discover
the object with probability qs, regardless of where in
[0, ts] this visit begins.
From these calculations, we conclude that the de-

tection probability for searcher 2 on her nth visit to box
1 is no smaller than the corresponding quantity for
searcher 1. Consequently, if the object is in box 1, the
number of searches of box 1 required to find the object
for searcher 2 is stochastically no larger than that for
searcher 1. Therefore, if the object is hidden in box 1,
the expected time spent in boxes i ! 2, . . . ,N is no larger
for searcher 2 than for searcher 1.
We conclude from the above calculations that

TA − TW ≥ p1
ts
qs

− ts
qs

− ts
2

( )( )
! p1ts

2
,

which completes the proof.
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The next lemma shows that the inequality in Lemma 1
becomes an equality when, in the standard problem,
box 1 is always searched using the slow mode.

Lemma 2. TS − TW ! p1ts/2.

Proof. We again consider two searchers. Searcher 2
uses continuous sweeping for box 1 (as in the proof of
Lemma 1), whereas searcher 3 always searches box 1
slowly, namely using the within-box subsequence S.
Both searchers use within-box subsequences Ai for
boxes i ! 2, . . . ,N. Searchers 2 and 3 have optimal
expected search times equal to TW and TS, respectively.

An optimal policy for searcher 3 chooses which box
to search next according to a suitable collection of
Gittins indices as detailed in Corollary 1. To study an
optimal policy for searcher 2, divide the interval [0, ts]
into m equal-length subintervals 1r :! [(r − 1)ts/m,
rts/m), r! 1, . . . ,m−1, and 1m :![(m−1)ts/m, ts]. Think
of these subintervals as m small boxes and enforce
the rule for searcher 2 that she must search each
small box in its entirety without interruption. De-
note the optimal expected search time for searcher
2 under this constraint by Tm

W , noting that Tm
W ↓TW as

m→∞. Note also that, if searcher 2’s most recent
search among the small boxes was of 1r (i.e., of the box
corresponding to that subinterval of [0, ts]), then
her next search of a small box must be of 1r+1 if r!
1, . . .m−1 or 11 if r!m. For each small box, the search
time is ts/m, and the detection probability is qs.

Thismeans that searcher 2 has regular boxes 2, 3, . . . ,N
alongsidem identical small boxes 11, 12, . . . , 1m, whereas
searcher 3 has regular boxes 1, 2, . . . ,N. For both searchers,
pi is the object’s hiding probability for box i, i ! 2, . . . ,N.
For searcher 2, p1/m is the object’s hiding probability
for each of the small boxes 1r, r ! 1, . . . ,m, whereas
for searcher 3, p1 is the object’s hiding probability for
box 1. For searcher 3, a suitable Gittins index policy
determines an optimal search sequence. In fact, this is
also the case for searcher 2 notwithstanding the or-
dering constraints among the small boxes, because
there exists a Gittins index policy for searcher 2 that
guarantees that those constraints are satisfied. To see
this, consider a situation in which the object has not
been discovered and all of the m small boxes have been
visited k times, having corresponding Gittins indices
denoted byG1r(k), r ! 1, . . . ,m, which are plainly equal.
Assume also that these m indices are maximal among
those for the N − 1 +m boxes available to searcher 2.
A Gittins index policy is free to break ties in any
manner, and therefore, we suppose that box 11 is
searched next by searcher 2. Following this search,
assumed unsuccessful, the small boxes now have
indices G11(k + 1)<G1r(k), r ! 2, . . . ,m, and therefore,
the small boxes 1r, r ! 2, . . . ,m, continue to have the
maximal index. We suppose that searcher 2’s Gittins

index policy next chooses box 12 for searching
and so on. Continuing in this fashion, we see that
there is a Gittins index policy for searcher 2 with
the property that, in the absence of any discovery of
the object, after small box 11 is searched, all of the
remaining small boxes are then searched in the
correct order.
Now, we stochastically couple the location of the

object between the two searchers such that, if the object
is in box i *! 1 for searcher 3, then it is in the same box
for searcher 2, and if the object is in box 1 for searcher
3, then it is equally likely to be in any of the m small
boxes 1r, r ! 1, . . . ,m, for searcher 2. In addition, we
stochastically couple the search outcomes for the two
searchers in boxes i ! 2, . . . ,N.
At the beginning of the search, it is easy to show

that searcher 3’s Gittins index for box 1 is p1qs/ts,
which is equal to G1r (0), r ! 1, . . . ,m, namely searcher
2’s Gittins indices for her m small boxes 1r, r ! 1, . . . ,m.
Hence, the two searchers may follow the same opti-
mal search sequence until one of two things happens.

1. The object is found before searcher 3 searches
box 1. Because we stochastically couple the object’s
location and the search outcomes in boxes i *! 1,
searcher 2 will find the object at the exact same time.

2. Searcher 3 searches box 1 before the object is
found. When searcher 3 searches box 1, the current
Gittins index for box 1must be maximal among boxes
i ! 1, . . . ,N. Because searcher 2 follows the exact same
search sequence, it will follow that them small boxes 1r,
r ! 1, . . . ,m, will all be of maximal index for searcher
2 at this point and, by the above discussion, will now
all be searched in order before searcher 2 moves on.
When the object is in box 1, we stochastically

couple the search outcomes in box 1 for the two
searchers such that searcher 3 finds the object in box 1
if and only if searcher 2 finds the object in a single
sweep through them small boxes 1r, r ! 1, . . . ,m. With
probability qs, both searchers find the object on this
visit of box 1. In this case, searcher 3’s search ends in
additional ts time units, whereas the expected future
search time for searcher 2 is

(∑m
r!1 r) · ts
m2 ! m + 1

2

( )
· ts
m
,

because searcher 2 does not need to search small boxes
1r+1, 1r+2, . . . , 1m should the object be found in 1r.
With probability 1 − qs, neither searcher finds the

object on this visit of box 1, and the search continues. At
this moment, the current index for searcher 3’s box 1
and those for searcher 2’s m small boxes are identical.
Therefore, some optimal policy for each searcher will
henceforth instruct them to follow the same search
sequence until finding the object in some box i, i !
2, . . . ,N, or it again becomes optimal for both searcher 3
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to return to box 1 and searcher 2 to return to the
boxes 1r, r ! 1, . . . ,m. The same argument then repeats.

Consequently, the time spent in boxes i ! 2, . . . ,N
is identical for the two searchers, and the time spent
in box 1 (or boxes 1r, r ! 1, . . . ,m, for searcher 2) is
identical for the two searchers if the object is not
hidden there. The only difference between TS and Tm

W
arises in the time spent in box 1 when the object
is hidden in box 1. From the above, we conclude that

TS − Tm
W ! p1 ts −

m + 1
2

( )
· ts
m

( )
.

Taking m → ∞ in the above yields TS − TW ! p1ts/2,
which completes the proof.

From Lemmas 1 and 2, we can conclude that
TS ≤ TA, which completes the Theorem 2 proof. We
next conclude this section with our main result, which
extends Theorem 2 as follows.

Theorem 3. In the two-mode search problem, if any box
j satisfies

qj,s
tj,s

≥ qj,f
tj,f

, (3)

then there exists an optimal search sequence in which box
j is always searched slowly.

Proof. Without loss of generality, set j ! 1. If (3) is an
equality, the result is an immediate consequence
of Theorem 2. Suppose now that (3) is a strict in-
equality, and let

t̂1,f :!
q1,f · t1,s
q1,s

< t1,f , so
q1,s
t1,s

! q1,f
t̂1,f

. (4)

Suppose now that we fix within-box subsequences
to be A for box 1 and Ai for boxes i ! 2, 3, . . . ,N, and
write TA for the corresponding optimal expected
search time. Fix the same within-box subsequences in a
new two-mode search problem in which the fast search
time of box 1 is reduced from t1,f to t̂1,f , with all other
parameters being unchanged. We write T̂A for the
corresponding optimal expected search time. Because
t̂1,f < t1,f , it is clear that T̂A ≤ TA. In addition, by (4), it
follows from Theorem 2 that T̂S ≤ T̂A, where T̂S is the
optimal expected search time using within-box sub-
sequences S,A2,A3, . . . ,AN for the problem with the
new search time t̂1,f . However, under within-box
subsequence S, box 1 is never searched fast, and
therefore, the reduction of t1,f to t̂1,f is immaterial to the
computation of T̂S. It follows that TS ! T̂S ≤ T̂A ≤ TA,
completing the proof.

3.2. A Sufficient Condition for the Fast Mode
to Dominate

This section gives a sufficient condition for a box such
that an optimal policy never need to use the slow
mode for that box. We first need a lemma.

Lemma 3. In the two-mode search problem, if any box j
satisfies

qj,f
tj,f

>
qj,s
tj,s

,

then a slow search of box j followed immediately by a fast
search of the same box j is suboptimal.
The proof of Lemma 3 relies on a simple argument

featuring a pairwise interchange of consecutive
fast and slow searches of box j and is, therefore,
omitted.

Theorem 4. In the two-mode search problem, if any box j
satisfies

qj,f (1 − qj,s)
tj,f

≥ qj,s
tj,s

, (5)

then there exists an optimal search sequence in which box
j is always searched fast.

Proof. Without loss of generality, set j ! 1. Fix the
within-box subsequence for box i to take an optimal
value A∗

i for i ! 2, . . . ,N. We first suppose that the
within-box subsequence for box 1, namely A1 !
{a1,n,n ∈ Z+}, contains some finite, strictly positive
number of slow modes. Thus, for some ν ∈ Z+, we
have A1 ∈ Σ(ν), the set of within-box subsequences
for box 1 with precisely ν slow modes. Write r for the
position of the last occurrence of the slow mode
within A1. In the absence of discovery of the object,
consider the point in the application of some opti-
mal search sequence at which box 1 is to be searched
for the rth time. At this point, box 1 has Gittins in-
dex G1(r − 1,A1), which is maximal among all boxes.
Because the last slow mode within A1 occurs at
position r, it follows from (2) that G1(r − 1,A1) is
given by

G1(r − 1,A1) ! p1 ∏
r−1

m!1
(1 − q1,a1,m )

{ }

· max
q1,s
t1,s

,
q1,s + q1,f (1 − q1,s)

t1,s + t1,f
,G

( )[ ]
,

where

G ! sup
l≥1

q1,s + q1,f (1−q1,s) + q1,f (1 − q1,s)·∑l
u!1(1−q1,f )u

t1,s+(l + 1)t1,f
.

Note that we clearly have

q1,f (1 − q1,s)
t1,f

>
q1,f (1 − q1,s)(1 − q1,f )u

t1,f
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for any u ∈ Z+. Combining the preceding with (5), it
follows that

p1 ∏
r−1

m!1
(1 − q1,a1,m )

{ }
q1,f (1 − q1,s)

t1,f

( )
≥ G1(r − 1,A1).

In addition, note that we have

G1(r,A1) ! p1 ∏
r−1

m!1
(1 − q1,a1,m)

{ }
(1 − q1,s)

· sup
l≥0

∑l
u!0 q1,f (1 − q1,f )u

(l + 1)t1,f

! p1 ∏
r−1

m!1
(1 − q1,a1,m)

{ }
q1,f (1 − q1,s)

t1,f

( )
,

from which it follows that G1(r,A1) ≥ G1(r − 1,A1).
Consequently, there exists a search sequence

G{A1;A∗
i , i *! 1}, optimal for the fixed within-box sub-

sequences, at which the rth search of box 1 (which is
slow) is followed immediately by the (r + 1)th search
of box 1 (which is fast). According to Lemma 3,
however, G{A1;A∗

i , i *! 1} would be strictly improved
by reversing the order of these two searches. Denote
this new search sequence by G1(r↔r+1){A1;A∗

i , i *! 1}.
Next, write A(r↔r+1)

1 for the within-box subsequence for
box 1 obtained by interchanging the rth and (r + 1)th
modes within A1. According to Corollary 1, the search
sequence G1(r↔r+1){A1;A∗

i , i *! 1} is no better than the
search sequence G{A(r↔r+1)

1 ;A∗
i , i *! 1}, where the within-

box subsequence A(r↔r+1)
1 is a member of Σ(ν) in which

the last slow mode occurs at position r + 1.
The foregoing argument that G{A1;A∗

i , i *! 1} is
strictly worse than G{A(r↔r+1)

1 ;A∗
i , i *! 1} can be re-

peated to show that the latter is strictly worse than
G{A(r↔r+2)

1 ;A∗
i , i *! 1}, where by A(r↔r+2)

1 , we mean the
within-box subsequence for box 1 obtained by inter-
changing the rth mode (slow) and (r + 2)th mode (fast)
withinA1. This argument repeats to show thatG{A(r↔r+n)

1 ;

A∗
i , i *! 1} is strictly worse than G{A(r↔r+n+1)

1 ;A∗
i , i *! 1},

n ∈ N. Now, write A(r:s→f )
1 for the within-box sub-

sequence for box 1 obtained from A1 by replacing the
slow mode at the rth position with a fast mode. If we
write E[τ(π)] for the expected search time under search
sequence π, we then have

lim
n→∞

E[τ(G{A(r↔r+n)
1 ;A∗

i , i *! 1})]
! E[τ(G{A(r:s→f )

1 ;A∗
i , i *! 1})],

from which we can further deduce by the foregoing
argument that

E[τ(G{A(r:s→f )
1 ;A∗

i , i *! 1})]<E[τ(G{A1;A∗
i , i *! 1})].

We conclude that the within-box subsequence A1 ∈
Σ(ν) is dominated by A(r:s→f )

1 ∈ Σ(ν − 1) in the strong
sense above. We can repeat this argument another

ν − 1 times to infer that A1 ∈ Σ(ν) is dominated by
F ∈ Σ(0), whichconsists entirelyof the fastmodeofbox1.
It is clear that any within-box subsequence—

including those having infinitely many slow modes—
can be arbitrarily well approximated by a within-box
subsequence in Σ(ν) for some ν ∈ Z+. Hence, for any
ε> 0, there exists some ν ∈ Z+ and A1 ∈ Σ(ν) such that

E[τ(G{A1;A∗
i , i *! 1})] − inf

A
E[τ(G{A;A∗

i , i *! 1})]< ε,

where the infimum is over all within-box subse-
quences for box 1. Because A1 is dominated by F, we
have that

E[τ(G{F;A∗
i , i *! 1})] − inf

A
E[τ(G{A;A∗

i , i *! 1})]< ε.

Finally, because ε> 0 is arbitrary, it follows that

E[τ(G{F;A∗
i , i *! 1})] ! inf

A
E[τ(G{A;A∗

i , i *! 1})],

which concludes the proof.

3.3. A Monte Carlo Method to Estimate the Optimal
Expected Search Time

In the two-mode search problem, if each box meets
either the condition in Theorem 3 or that in Theorem 4,
then the problem reduces to the single-mode search
problem solved in the literature (Matula 1964, Black
1965); otherwise, an optimal policy remains un-
known. One way to estimate the optimal expected
search time is to discretize the state space and use
standard algorithms for the solution of Markov de-
cision processes, such as value iteration. Although this
approach produces satisfactory results for N ! 2, it
becomes computationally intractable for N ≥ 3.
In this subsection, we present a method to estimate

the optimal expected search time based on Monte
Carlo simulation. To begin, we classify each box into
one of three types according to Theorems 3 and 4. If
a box’s search times and detection probabilities sat-
isfy (3), we say that it is a type S box; if they satisfy (5),
we say that it is a type F box. Otherwise, we say that
it is a type H box. For a two-mode search problem
with N boxes labeled 1, 2, . . . ,N, let 6 denote the set
of type S boxes,^denote the set of type F boxes, and*
denote the set of typeHboxes. According to Theorems 3
and 4, it is optimal to use only the slowmode of boxes
in 6 and only the fast mode of boxes in ^.
Recall fromCorollary 1 that, if wefix thewithin-box

subsequence Ai for box i, i ! 1, . . . ,N, then Gittins
indices determine optimal ways to interlace these
subsequences to produce a search sequence. We al-
ready know optimal subsequences for boxes in 6
and ^, and calculation of their respective indices is
straightforward, because, if only one search mode is
used, the maximum in (2) is always obtained at r ! 1.
For boxes in *, the next lemma shows that, given any
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subsequence, the index calculation is just as easy. The
proof of this lemma can be found in Online Appendix B.

Lemma 4. If i ∈ *, then for any within-box subsequence
Ai ! ai,m,m ∈ Z+{ }

and any n ∈ N, we have

Gi(n,Ai) ! pi ∏
n

m!1
(1 − qi,ai,m )

{ }
qi,ai,n+1
ti,ai,n+1

.

In other words, the maximum in (2) is always obtained at
r ! 1.

If we are lucky and guess the right subsequence for
each box in *, then we recover an optimal search
sequence. This observation motivates a method to
estimate the optimal expected search time as follows.

1. Fix the known optimal subsequence for each box
in 6 and for each box in ^.

2. Generate a random subsequence for each box
in *.

3. Use Corollary 1 to interlace all subsequences
optimally, and compute the corresponding expected
search time.

4. For every subsequence obtained in step 2, replace
each element with the other available search mode to
obtain an opposite subsequence for each box in *. For
example, ( f , s, f , . . .) becomes (s, f , s, . . .). Repeat step 3.

5. Repeat steps 2–4 a large number of times, and
return the minimal expected search time.

Because our goal is to estimate the optimal ex-
pected search time, it would be a wasted effort if the
within-box subsequences used in one simulation run
were identical to those in a previous run. For a fixed
number of runs, we are more likely to obtain near-
optimal subsequences if each run contains a distinct
set of subsequences for boxes in *. Therefore, in step 4,
we construct subsequences opposite to those in the
previous run to improve the diversity of our simula-
tion runs. For example, to obtain an estimate based on
1,000 runs, we generate 500 independent sets of sub-
sequences and use both these and the corresponding
500 sets of opposite subsequences.

3.4. Lower Bounds on the Optimal Expected
Search Time

WriteV∗ for the optimal expected search time. If there
is no box in *, then V∗ can be readily computed.
Otherwise, to compute a lower bound on V∗, consider
box i ∈ *. By definition, we have

qi,f (1 − qi,s)
ti,f

<
qi,s
ti,s

<
qi,f
ti,f

.

Suppose that, for each i ∈ *, we reduce the slow search
time to

t̂i,s :!
ti,f qi,s
qi,f

< ti,s, (6)

and we write V′ for the optimal expected search
time for this modified search problem. It is clear that
V′ ≤ V∗, because in this modified version, for each
box, the search time of each searchmode is less than or
equal to its counterpart in the original problem. In
addition, in this modified problem, each box i ∈ * is
type S, because the sufficient condition (3) in Theorem 3
is now met. Thus, all boxes in the modification are
either type F or type S; therefore, an optimal policy is
known, and V′ can be readily computed.
Another way to compute a lower bound on V∗ is to

reduce the fast search time for each box i ∈ * to

t̂i,f :!
qi,f ti,s(1 − qi,s)

qi,s
< ti,f (7)

so that the fast mode dominates the slow mode for
box i, because (7) meets the sufficient condition (5)
in Theorem 4. It is also possible to compute a lower
bound by reducing the slow search time for some
boxes in * according to (6) and reducing the fast
search time for the other boxes in * according to (7).
There are 2|*| lower bounds of this kind where |*| is the
number of boxes in *, and one can choose the larg-
est of these to obtain the tightest such lower bound.
In somecases,wecanapplya similar idea toget another

lower bound on V∗ by increasing either the fast or the
slow detection probability so that one search mode
dominates in each box—provided that the increased
detection probability does not exceed one. A lower
bound computed by increasing a detection probability,
however, is weaker than one computed by reducing a
search time. This can be seen either by Theorem 3 or
by direct comparison of the adjusted search modes.

3.5. Dominance Among Multiple Search Modes
Although the paper focuses on the case where there
are two modes per box, in this subsection, we ex-
tend Theorems 3 and 4 to boxes with three or more
search modes to find conditions for one mode to
dominate the others.
To proceed, for any search mode with detection

probability q′ and search time t′, we define a function
g(t) for t> 0 based on Theorems 3 and 4 as follows:

g(t) :!
(q′/t′) t, if t ≤ t′,
q′, if t′ < t ≤ t′/(1 − q′),
t/(t + t′/q′), if t> t′/(1 − q′).

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(8)

In addition, define a set of search modes based on
(q′, t′) as follows:

D(q′, t′) :! {(q, t) : t> 0, q ≤ g(t)}.

Figure 1 illustrates g(t) andD(q′, t′) for (q′, t′) ! (0.4, 1).
Now consider a search problem with N boxes

where, for i ! 1, . . . ,N, box i has some Ki ∈ Z+ search
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modes, namely (qi,k, ti,k) for k ! 1, . . . ,Ki. For any box
i, if there exists j ∈ {1, . . . ,Ki} such that (qi,k, ti,k) ∈
D(qi,j, ti,j) for k ! 1, . . . ,Ki, then we say that mode
(qi,j, ti,j) is dominating for box i. Based on this definition,
each box can have at most one dominating mode.
The following is an extension of Theorems 3 and 4
to this multiple-mode setting.

Theorem 5. In the above multiple-mode search problem, if
some box has a dominating mode, then there exists an op-
timal search sequence in which that box is always searched
using its dominating mode.

The proof of Theorem 5 involves similar argu-
ments used to prove Theorems 3 and 4 and is de-
ferred to Online Appendix C.

Theorem 5 extends Theorems 3 and 4 from the
standpoint of a dominating mode and identifies boxes
for which only one search mode is needed in an optimal
policy. Based on Theorem 5, it is reasonable to con-
jecture a more general result—extending Theorems 3
and 4 from the standpoint of what we call a dominated
search mode. We say that mode (qi,k, ti,k) is dominated
in box i if there exists j ∈ {1, . . . ,Ki}, with j *! k, such
that (qi,k, ti,k) ∈ D(qi,j, ti,j). We conjecture that, if some
box has a dominated mode, then there exists an op-
timal search sequence in which that box is never
searched using the dominated mode. If this conjec-
ture is true, then it can substantially simplify a
multiple-mode search problem by enabling the re-
moval of all dominated modes in each box. Whether
this conjecture is true, however, remains an open
question, and it will be left as future research.

4. A Special Case with Two Boxes
This section presents an optimal policy for a partic-
ular search problem with two boxes. Box 1 has the
usual two search modes with respective search
times tf and ts and detection probabilities qf and qs.

Neither the condition in Theorem 3 nor the condi-
tion in Theorem 4 applies; therefore, neither search
mode dominates, and box 1 is type H. Box 2 has only
one search mode, with search time t2 and detection
probability q2 ! 1. Optimal policies for this seemingly
simple search problem demonstrate the complexity
of optimal policies in general and provide insight
into the design of effective heuristic policies for the
general two-mode problemwithN boxes in Section 5.
With only two boxes, the state of the search can be

delineated by a single number p, which represents the
object’s current hiding probability for box 1. Because
q2 ! 1, after searching box 2 for the first time, the
searcher either finds the object or learns that the object
is in box 1. In the latter case, because qf /tf > qs/ts, it is
then optimal to use the fast mode in box 1 repeatedly
until finding the object, yielding an additional ex-
pected search time of tf /qf .
Together with Lemma 3, we deduce that, in any

state p ∈ (0, 1), it is sufficient to consider search se-
quences of the type

f , f , . . . f⏟̅̅⏞⏞̅̅⏟
m

, s, s, . . . s⏟̅̅⏞⏞̅̅⏟
n

, 2, f , f . . . , (9)

where f and s represent the fast and slow modes of
box 1, respectively, and 2 represents the sole mode of
box 2. In other words, any candidate for an opti-
mal search sequence consists of m fast searches in
box 1 followed by n slow searches in box 1, a search
in box 2, and an infinite sequence of fast searches in
box 1, in that order, where m,n ∈ N. We now make
additional inferences on an optimal policy via two
propositions (Propositions 1 and 2), the proofs of
which are deferred to Online Appendices D and E,
respectively.
Proposition 1. Define P1 :! (tf /qf )/(t2 + tf /qf ). An opti-
mal action in state p is to search box 2 if and only if p ≤ P1.
Now let Vi(m,n) denote the expected search time

under (9) if the object is hidden in box i for i ! 1, 2
andm, n ∈ N. Because q2 ! 1, we haveV2(m, n) ! mtf +
nts +t2. If the object is hidden in box 1, then we can
compute that

V1(m,n) !
∑m

j!1
(1 − qf ) j−1qf · (jtf )

+ (1 − qf )m
∑n

j!1
(1 − qs)j−1qs · (mtf + jts)

+ (1 − qf )m(1 − qs)n mtf + nts + t2 +
tf
qf

( )
.

After some algebraic work, we see that

V1(m, n) ! tf
qf

+ (1 − qf )m∆ + (1 − qf )m(1 − qs)n(t2 − ∆),

Figure 1. An Example of a Dominating Mode

Notes. The black line shows the different parts of the function g(t) for
(q′, t′) ! (0.4, 1). The set D(0.4, 1) is shown by the line alongside the
shaded gray areas.
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where ∆ ! ts/qs − tf /qf > 0. In state p, the expected
search time is, therefore,

V(m,n, p) ! pV1(m, n) + (1 − p)V2(m, n). (10)

The next proposition uses (10) to provide additional
insight into an optimal policy.

Proposition 2. Define P2 :! (tf /qf )/(ts/qs)< 1. The unique
optimal action in state p is to search fast in box 1 if
p>max(P1,P2).

In the case P1 ≥ P2, an optimal policy is completely
characterized by Propositions 1 and 2. In the case
P1 <P2, however, Propositions 1 and 2 only specify an
optimal action for p ≤ P1 and p>P2. To determine an
optimal action in state p ∈ (P1,P2], it is sufficient to
compare V(m,n, p) for all m,n ∈ N that are relevant.
Define

h(p) :! p(1 − qf )
p(1 − qf ) + (1 − p) ,

which is the new state after a fast search in box 1
does not find the object if the current state is p. Sup-
pose that we have p ! P2; then, after k consecutive
unsuccessful fast searches in box 1, the state becomes

h(k)(P2) :! h ◦ h ◦ · · · ◦ h⏟̅̅̅̅̅ ⏞⏞̅̅̅̅̅ ⏟
k

(P2).

Compute k′ :! min k : h(k)(P2) ≤ P1
{ }

. In other words,
if p ! P2, then after k′ consecutive unsuccessful fast
searches in box 1, it is optimal to next search box 2.
It then follows that, for p ∈ (P1,P2], it is sufficient
to consider search sequences in (9) for which m +
n ≤ k′, because after k′ consecutiveunsuccessful searches
in box 1—whether fast or slow—the resulting state
will be less than or equal to P1, where it is optimal to
next search box 2. An optimal action in state p is then the
first element in the search sequence thatyields the smallest
value of V(m,n, p) among those with m + n ≤ k′.

5. Heuristic Policies
We now return to considering a general two-mode
search problem with N boxes labeled 1, 2, . . . ,N. Re-
call that we can partition {1, 2, . . . ,N} into three
subsets6,^, and*using Theorems 3 and 4. Although
Theorem 3 proves that the slow mode is optimally
designated for boxes in 6 and Theorem 4 proves the
same for the fast mode for boxes in ^, it is not at all
clear which search mode to use when searching a
box in *. We propose two types of heuristic policies
for the two-mode problem in Sections 5.1 and 5.2
and derive corresponding suboptimality bounds in
Section 5.3. In Section 5.4, we extend suboptimality
bounds for selected heuristics to the multiple-mode
search problem.

5.1. Single-Mode Heuristic Policies
A single-mode heuristic policy designates one search
mode for each box and then chooses between boxes
using Gittins indices as detailed in Corollary 1.
Clearly, we should only consider policies that desig-
nate the slow mode for boxes in 6 and the fast mode
for boxes in ^, but the best search mode to designate
forboxes in* is unclear. Ifwe simply choose the search
mode leading to the larger Gittins index, which, by
Lemma 4, is equivalent to the searchmodewith the larger
detection probability per unit time q/t, then the desig-
nated search mode is fast for any box in *. This heu-
ristic is referred to as the detection rate (DR) heuristic.
Although DR is appealing for its simplicity, it is not

always the single-mode heuristic with the smallest
expected search time. To find the best single-mode
(BSM) heuristic, one has to test 2|*| different single-
mode policies. The computational effort to determine
BSM grows exponentially in |*|. To overcome this
computational burden, we propose a heuristic based
on the following idea.
From Theorems 3 and 4, for each box i ∈ *, there

exists θi ∈ (0, 1) that satisfies
qi,f
ti,f

! qi,s
ti,s(1 − qi,s)θi

.

Solving the preceding yields

θi ! log
qi,s/ti,s
qi,f /ti,f

( )
× 1
log(1 − qi,s)

, (11)

which we interpret as box i’s relative resemblance to
a type F box compared with a type S box, because
under some limit where θi → 0 (resp. 1), box i be-
comes type S (resp. type F).
We propose a heuristic that chooses a parameter

θ ∈ [0, 1] and then designates the slow mode for box
i ∈ * if θi ≤ θ and the fast mode if θi >θ. Call this
heuristic the adjusted detection rate (ADR) heuristic
with parameter θ, and note that setting θ ! 0 retains
DR, whereas setting θ ! 1 designates the slow mode
for all boxes in *.
To determine the best parameter for ADR, first

relabel the boxes so that 0<θ1 ≤ θ2 ≤ · · · ≤ θ|*| < 1. For
j ! 1, . . . , |*| − 1, the application of any θ ∈ [θj, θj+1) in
ADR results in a single-mode heuristic that designates
the slow mode for boxes 1, 2, . . . , j and the fast mode
for boxes j + 1, . . . , |*|. Applying θ ∈ [0, θ1)designates
the fast mode for every box, whereas applying θ ∈
[θ*, 1] designates the slow mode for every box. Be-
cause there are only |*| + 1 different single-mode
heuristics of this type, the computational effort to
find the best of them—which we call the best adjusted
detection rate (BADR) heuristic—grows linearly in |*|.
Figure 2 shows, for each θ ∈ [0, 1], the percentage

of times that ADR with parameter θ coincides with
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BADR for the numerical experiments of Section 6.
For each choice of N and |*|, there is a clear bias to-
ward smaller θ values, showing that it is usually
better to designate the fast mode unless a type H box
closely resembles a type S box. This bias becomes
less pronounced as N grows. Throughout all of these
numerical experiments, BADR could always be recov-
ered by taking some θ ≤ 0.5 within ADR. This obser-
vation indicates that the computational effort involved
to find BADR can be reduced by always designating
the fast mode for any box i ∈ * with θi > 0.5, with a
negligible impact on performance.

5.2. A Threshold-Type Heuristic Policy
Recall the special search problem with two boxes
studied in Section 4, where any optimal policy uses
the fast mode of box 1, a type H box, if the proba-
bility that the object is in that box exceeds a certain
threshold. This observation makes intuitive sense,
because if it is very likely that the object is hidden
in some type H box, then an optimal policy will likely
search that box many times before moving on to any
another box. Because, in a type H box, the fast mode
is more effective at finding the object—namely as
qf /tf > qs/ts—it is intuitive that these many searches
will optimally involve at least one fast search. It then
follows from Lemma 3 that it is optimal to make the
fast searches first. This argument motivates a heu-
ristic that, for each type H box, fixes a threshold
and then chooses fast if the object’s current hiding
probability for that box exceeds this threshold.

To come up with a reasonable threshold for this
heuristic, consider a type H box with the usual de-
tection probabilities qf , qs and search times tf , ts. The
benefit of searching this box using some mode comes
from two sources: the immediate benefit and the fu-
ture benefit. The immediate benefit concerns the

possibility of finding the object on the search, whereas
the future benefit looks at the information gained
about the object’s actual location if the search fails. We
use the detection probability per unit time to measure
the immediate benefit, namely qf /tf for the fast mode
and qs/ts for the slow mode. For a type H box, by
definition, we have qf /tf > qs/ts, and therefore we mea-
sure the advantage of the fast mode over the slowmode
in immediate benefit by

α :! qf /tf
qs/ts

− 1, (12)

which is always positive.
To examine the future benefit, we first consider the

probability that the object is elsewhere after one or
more failed searches. If we search fast for any x> 0
time units, then this probability is

f (x) ! 1 − p
p(1 − qf )x/tf + 1 − p

, (13)

where p is the object’s hiding probability for the type
H box before these failed fast searches. We measure
the future benefit by the rate at which the probabil-
ity in (13) grows per unit time when the searches
begin. Hence, our measure of future benefit for the
fast mode is

f ′(0) ! −p(1 − p) log(1 − qf )
tf

,

and it is similar for the slow mode.
Extended to all box types, these notions of imme-

diate and future benefit provide an intuition for the
theoretical results of Sections 3.1 and 3.2.

Proposition 3. Both the immediate and future benefit are
larger for the fast mode in a type F box and larger (or at least
the same) for the slow mode in a type S box.
The proof of this proposition is deferred to Online

Appendix F.
Although in a type H box, the immediate benefit is

clearly always larger for the fast mode, the future
benefit may go either way. If both the immediate and
future benefit are larger for the fast mode, then it is
reasonable to designate fast for that box. Otherwise,
the advantage of the slow mode over the fast mode
in future benefit can be measured by

β :! log(1 − qs)/ts
log(1 − qf )/tf

− 1, (14)

which is positive and does not depend on p. Finally,
because the immediate benefit only materializes if
the object is in the searched box, whereas the future
benefit only materializes if the object is elsewhere, a

Figure 2. The Percentage of Search Problems Generated in
Section 6 in Which ADR with Parameter θ Coincides with
BADR for θ ∈ [0, 1] and Various Values of N and |*|
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natural choice of threshold over which we designate
the fast mode is the probability p̂ satisfying p̂α !
(1 − p̂)β, which solves to

p̂ ! β
α + β

. (15)

To demonstrate the threshold, consider a search
problem with two boxes, where box 1 is in * with
q1,f ! 0.4, q1,s ! 0.64, t1,f ! 1, and t1,s ! 1.7. Box 2 has
only one search mode, and we vary its detection
probability q2 between 0.3 and 0.9 and its search time
t2 between 0.5 and 2.5. For 15 choices of (q2, t2), the
left panel of Figure 3 plots the threshold in (15) against
an optimal policy estimated via value iteration in
which the state space [0, 1] is discretized into 105
equal-length subintervals. It seems that, when it is
optimal to search box 1 for p> p̂ ! 0.738, the fast mode
is mostly optimal, regardless of the values of q2 and t2.
Hence, our threshold seems to fit well for a wide range
of parameters q2 and t2. Another example on the right
panel of Figure 3 and many additional choices that
we made of a type H box 1 drew a similar conclusion.

Also seen in Figure 3, when box 1 is optimally
searched for p ≤ p̂, an optimal search mode seems to
depend heavily on the parameters of box 2. It may be
difficult to incorporate such dependence into a heu-
ristic. Therefore, we define a heuristic as follows. For
each box in *, if β ≤ 0, it can be shown that p̂ ≤ 0, and
therefore we simply designate the fast mode for that
box; if β> 0, we designate the fast mode for p> p̂ and
try both the policy that designates the fast mode for
p ≤ p̂ and that which designates the slow mode for
p ≤ p̂. For each box, after choosing a search mode, we
simply calculate the Gittins index according to the

chosen mode and then search a box with a maximal in-
dex. This method results in up to 2|*| of these threshold-
type policies. We call the one with the smallest ex-
pected search time the best threshold (BT) heuristic.

5.3. Suboptimality Bounds for Heuristic Policies
If |*| ! 0, then all of our heuristics are optimal. To
bound the suboptimality of our heuristics when
|*| ≥ 1, we first define a quantity to measure the
distance of a type H box from being a type S box and a
type F box, respectively. For i ∈ *, let

δi,s :!
qi,f /ti,f
qi,s/ti,s

− 1, δi,f :!
qi,s/ti,s

(1 − qi,s)qi,f /ti,f
− 1. (16)

Note that δi,s coincides with the measure of the ad-
vantage of the fast mode over the slow mode in im-
mediate benefit for box i in (12).
We now present a proposition that can be used to

bound the suboptimality of our four heuristics in
terms of δi,s and δi,f in (16). The proofs of the propo-
sition and the corollary below are deferred to Online
Appendix G.

Proposition 4. Suppose that |*| ≥ 1, and write V∗ for the
optimal expected search time. Write Π for some single-mode
policy and VΠ for its corresponding expected search time. For
all i ∈ *, let δi ! δi,s (resp. δi,f ) ifΠ designates the slow (resp.
fast) mode for box i.We can bound the suboptimality ofΠ by

VΠ − V∗

V∗ ≤ max
i∈*

δi.

Corollary 2. Suppose that |*| ≥ 1, and write V∗ for the
optimal expected search time. Write VDR,VBADR,VBSM, and

Figure 3. Optimal Actions for p ∈ (0, 1) for a Pair of Two-Box Problems

Notes. Box 2 has one search mode with q2 ! 0.3 (top line), 0.6 (middle line), and 0.9 (bottom line) and t2 ranging between 0.5 and 2.5. Box 1 is
type H. In the left panel, q1,f ! 0.4, q1,s ! 0.64, t1,f ! 1, and t1,s ! 1.7. In the right panel, q1,f ! 0.3, q1,s ! 0.5, t1,f ! 0.4, and t1,s ! 0.73. A thick (thin)
line indicates a slow (fast) search in box 1; no line indicates a search in box 2. The dotted line is the threshold p̂ in (15).
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VBT for the expected search times for the heuristics DR,
BADR, BSM, and BT, respectively. We can bound the
suboptimality of these heuristics as follows:

VDR − V∗

V∗ ≤ max
i∈*

δi,f ; (17)

VBADR − V∗

V∗ ≤ min{max
i∈*

δi,s,max
i∈*

δi,f }; (18)

VBSM − V∗

V∗ ≤ max
i∈*

min δi,s, δi,f
{ }

; (19)

VBT − V∗

V∗ ≤ max
i∈*

δi,f . (20)

Among those in Corollary 2, the bounds for VDR
and VBT are the weakest, whereas that for VBSM is the
strongest. If we consider some limit in which, for all
i ∈ *, either δi,s ↓ 0 or δi,f ↓ 0, then BSM approaches
optimality. In addition, if δi,s ↓ 0 for all i ∈ * or δi,f ↓ 0
for all i ∈ *, then BADR also approaches optimality.
Finally, if δi,f ↓ 0 for all i ∈ *, then all four heuristics
approach optimality. Note that all of the bounds in
Corollary 2 do not depend on the object’s hiding
probabilities at all; they depend only on detection
probabilities and search times. Although these
bounds provide analytical insight, they do not neces-
sarily predict heuristic performance well. In the
numerical experiments of Section 6, the heuristics
consistently and substantially outperform these
bounds.

5.4. Heuristic Policies and Suboptimality Bounds
for Multiple Search Modes

Consider the multiple-mode search problem intro-
duced in Section 3.5, where box i has some Ki ∈ Z+

search modes, namely (qi,k, ti,k) for k ! 1, . . . ,Ki and
i ! 1, . . . ,N. Without loss of generality, label the
search modes of box i such that qi,1 < · · · < qi,Ki for
i ! 1, . . . ,N. The single-mode heuristic policies DR
and BSM introduced in Section 5.1 can be extended
to this setting as follows. For box i, write mi for the
mode with the largest detection probability per unit
time q/t. The heuristic DR simply designates mode mi
for box i, i ! 1, . . . ,N. There are a total of ∏N

i!1 Ki
different single-mode policies, and BSM is the one
with the smallest expected search time.

We can also extend the ideas in Section 5.3 to bound
the suboptimality of DR and BSM in the multiple-
mode setting. For any box i and any mode k, define

δi,k :! max max
j!1,...k

qi,j/ti,j
qi,k/ti,k

{ }
,

(

max
j!k+1,...Ki

qi,j/ti,j
(1 − qi,j)qi,k/ti,k

{ })
− 1. (21)

If mode k for box i satisfies the condition of Theorem 5
so that it is dominating for box i, then the left-hand

inner maximization term is equal to one, and the right-
hand inner term is no greater than one; therefore,
we have δi,k ! 0. Otherwise, for any mode j for which
(qi,j, ti,j) /∈ D(qi,k, ti,k), the corresponding term in (21) is
greater than one and can be interpreted as a measure
of the distance of mode (qi,j, ti,j) from the set D(qi,k, ti,k).
Thus, we interpret δi,k as the distance of mode k from
satisfying the conditions of Theorem 5 and hence
dominating for box i.
We next present a version of Proposition 4 for the

multiple-mode search problem, which can be used to
bound the suboptimality of DR and BSM in terms of
δi,k in (21). The proofs of the proposition and the
corollary below are deferred to Online Appendix H.

Proposition 5. Write V∗ for the optimal expected search
time. Write Π for the single-mode policy that designates
mode ki for box i and VΠ for its corresponding expected
search time. We can bound the suboptimality of Π by

VΠ − V∗

V∗ ≤ max
i!1,...,N

δi,ki .

Corollary 3. Write V∗ for the optimal expected search time
and VDR and VBSM for the optimal expected search times
for the heuristics DR and BSM, respectively. We can bound
the suboptimality of DR and BSM as follows:

VDR − V∗

V∗ ≤ max
i!1,...,N

δi,mi (22)

VBSM − V∗

V∗ ≤ max
i!1,...,N

min
k!1...,Ki

δi,k. (23)

The bound for BSM in Corollary 3 is at least as
strong as that for DR. For each i ! 1, . . . ,N, if we
consider some limit under which we have δi,ki ↓ 0 for
some ki ∈ {1, . . . ,Ki}, then mode ki becomes domi-
nating for box i, and BSM approaches optimality. If
δi,mi ↓ 0 for i ! 1, . . . ,N, then both DR and BSM ap-
proach optimality. As in Corollary 2, all bounds in
Corollary 3 depend only on detection probabilities
and search times; they do not depend on the object’s
hiding probabilities.

6. Numerical Results
This section presents several numerical experiments.
Additional details, including code and samples, on
any of the numerical experiments can be obtained by
contacting the authors. To generate search times and
detection probabilities for a box, we first draw

qs ∼ U(0.2, 0.9), tf ∼ U(0.1, 4.5),
a ∼ U(0.1, 1), b ∼ U(0.1, 1), (24)

and then we set qf ! aqs and ts ! tf /b. For a search
problemwithN boxes, we control the number of boxes
in*. If |*| ! 0, then the theoretical results of Section 3
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provide an optimal solution. As |*| increases, the
extent to which this theory can be applied decreases,
and therefore we want to see how our heuristics
perform for different values of |*|.

Our sampling plan in (24) satisfies several desirable
properties. The measures of immediate benefit qs/ts
and qf /tf are identically distributed and condition-
ally independent given qs and tf . It can be shown that
the probabilities that any drawn box is in 6, ^, or *
are 0.5, 0.1727, or 0.3273, respectively. In addition,
because the advantage of the fast mode over the
slow mode in immediate benefit, namely α from (12),
satisfies α ! a/b − 1, it follows that α + 1 and (1 − qs)−1
are independent, and both have an upper limit of 10.
Hence, rearrangement of the condition of Theorem 4
in (5) shows that any draws of qs and tf do not pre-
cludeadrawnbox frombeing anyof the three box types.

6.1. Estimating the Optimal Expected Search Time
via Monte Carlo Simulation

To assess the effectiveness of the MC method pro-
posed in Section 3.3, we compare its output with the
optimal expected search time obtained via value it-
eration for search problems with two boxes, where
the latter is computationally feasible.

With only two boxes, the state of the search can be
delineated by p ∈ [0, 1], namely the object’s current
hiding probability for box 1. By dividing the con-
tinuous state space [0, 1] into 105 equal-length sub-
intervals, we formulate a Markov decision process
and use value iteration to compute the optimal ex-
pected search time in each state. The value iteration
algorithm stops when the values in successive itera-
tions are within 10−6 for all states.

According to numerical results from this value it-
eration, it is extremely rare for an optimal policy to
involve the slow mode for a type H box in which the
future benefit is larger for the fast mode. In those rare
cases, the slow mode is optimal only for a very small
subinterval of the state space. Furthermore, if we
ignore the slow mode altogether for such boxes, the
increase in expected search time from the optimum is
close to negligible. For these reasons, we improve
the efficiency of our MC method by fixing the within-

box subsequence for such boxes to consist of only
the fast mode.
To assess our MC method for search problems

with two boxes, we first use (24) and rejection sam-
pling to generate the search times and detection
probabilities of these two boxes such that |*| ! 1. We
set p equal to 0.5 and run the MC method to estimate
the optimal expected search time; then, we do the
same for p = 0.9. We repeat the preceding 2,000 times
to collect data. Finally, we redo the whole procedure
with |*| ! 2. The results of the MC method for vari-
ous run lengths are reported in the left-hand side of
Table 1 as average percentages over the optimal values
obtained from value iteration (the right-hand side of
Table 1 will be explained in Section 6.2). As seen in
Table 1, for |*| ! 2, with 10,000 runs (5,000 sets of in-
dependent subsequences and 5,000 sets of opposite
subsequences), the MC method estimates the optimal
value on average within 0.12%, and the improvement
with more runs is small.

6.2. Performance of Heuristics with N ! 2
For search problems with N ! 2 boxes, we can eval-
uate our heuristics against optimal values obtained
via value iteration. Recall that our four heuristics
from Section 5 are the detection rate (DR) heuristic,
the best adjusted detection rate (BADR) heuristic, the
best single-mode (BSM) heuristic, and the best thresh-
old (BT) heuristic.
To compute the expected search time for a heu-

ristic, we use the formula

E[T] ! E[T|T ≤ b]P(T ≤ b) + E[T|T> b]P(T> b), (25)

where T is the total search time under that heuristic.
For any b> 0, we can use (25) to compute an upper
bound and a lower bound on E[T], where the dif-
ference between the two bounds decreases as b in-
creases. We choose b large enough so that our esti-
mate is within 0.001% of the true value.
To assess our four heuristics, we first fix |*| ! 1

and use the same 2,000 pairs of boxes generated in
Section 6.1. However, for each pair, instead of using
only p ! 0.5 and p ! 0.9, we take the midpoints of the
105 subintervals used in the value iteration as our

Table 1. Performance of the MC and Ensemble Methods for Search Problems with N ! 2
Boxes

Number of runs

MC method Ensemble method

|*| ! 1 |*| ! 2 |*| ! 1 |*| ! 2

p ! 0.5 p ! 0.9 p ! 0.5 p ! 0.9 p ! 0.5 p ! 0.9 p ! 0.5 p ! 0.9

10,000 0.0464 0.0467 0.1198 0.1026 0 0.0002 0.0011 0.0011
100,000 0.0310 0.0300 0.0725 0.0627 0 0.0001 0.0009 0.0008
200,000 0.0284 0.0267 0.0636 0.0562 0 0.0001 0.0009 0.0007
400,000 0.0254 0.0238 0.0568 0.0497 0 0 0.0008 0.0007

Note. Reported as average percentage above the optimum calculated via value iteration.
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values of p. For each p, the expected search time of
each heuristic is computed using (25) and then
expressed as a percentage over the corresponding
optimal value obtained via value iteration. We then
repeat the procedure for |*| ! 2. Table 2 displays the
results.

As seen in Table 2, all four heuristics are close to
optimal on average, although their performance de-
grades for |*| ! 2. The DR heuristic achieves within
0.001% of optimality for 75% of the search problems
with |*| ! 2, which suggests that a large proportion
of boxes in* are optimally designated the fast mode.
Recall that, by definition, the other three heuristics
must perform at least as well as DR. As seen in the last
two rows of Table 2, in the problems where DR is
suboptimal, the other three heuristics show a remark-
able improvement on DR, which can perform poorly.

Recall that BSM is the best performing among all
2|*| single-mode policies, whereas BADR is the best
performing among a subset of these of size |*| + 1.
The two heuristics are identical for |*|! 1, but by
definition, BSM is stronger for |*|≥ 2. Yet, for N !
|*|! 2, the difference is very small as seen in Table 2.
The BT heuristic is clearly the best-performing heu-
ristic, which, even when |*|! 2, achieves within 0.02%
of optimality in 95% of search problems and within
0.2% of optimality in 99% of problems.

Also seen in Table 2, for either value of |*|, one or
more of our heuristics achieve optimality for more
than 75% of the search problems in our numerical
study. For these search problems, it is impossible for
the MC method of Section 6.1 to beat the best of these
heuristics. In fact, in many search problems, although
the MCmethod gets very close to optimality, at least
one of our four heuristics gets even closer. By
combining the MC method and our four heuristics,
we obtain our best estimate of the optimal value.
The right-hand side of Table 1 shows the perfor-
mance of this ensemble method to estimate the opti-
mal value for comparison with value iteration for
search problems with two boxes. Because value iter-
ation is computationally infeasible for search problems
with more than two boxes, we will use this ensemble
method as our benchmark to evaluate our heuristics
for N > 2.

6.3. Performance of Heuristics with N ! 4 and N ! 8
We next present numerical results for search problems
withN ! 4 andN ! 8 boxes. Because value iteration is
computationally infeasible, we evaluate our heuris-
tics against estimated optimal values from the en-
semble method discussed at the end of Section 6.2.
For N ! 4, the ensemble estimate is based on 6 × 105
runs. Because the average improvement in the en-
semble estimate is only 0.00015% when the number
of runs increases from 3 × 105 to 6 × 105, conducting
additional runs beyond 6 × 105 is not likely to im-
prove the accuracy much further. For N ! 8, the en-
semble estimate is based on 106 runs for the same
reason.
For each N, we first use (24) and rejection sampling

to generate search times and detection probabilities
for N boxes with |*| ! N/2. To choose prior distri-
butions on the object’s location, we consider five
different scenarios. Details can be found in Table 3 in
which the scenarios are ordered roughly according to
the entropy of the prior. For each prior, the expected
search time for each heuristic is evaluated using (25)
and expressed as a percentage over the optimal es-
timate obtained using the ensemble method. To ac-
count for increasing variety in the search problems as
N grows, we repeat the preceding N × 1,000 times to
collect data. The whole process is then repeated for
|*| ! N.
Table 4 displays the results for N ! 4. For each |*|,

the best-performing heuristic across all five scenar-
ios is BT, which, even with |*| ! 4 and in its worst-
performing scenario, is within 0.3% of optimality in
99% of search problems. The performance of the
second-best heuristic BSM relative to that of BT de-
pends on the entropy of the prior. Imagine a search
problem starting with p close to one; therefore,
the prior has a small entropy. Typically, an optimal
search sequence will begin with a few searches of
box 1 before moving on to search any other box. After
this initial transient period, the posterior probability
distribution on the object’s location will stay in some
envelope that centers at the probability distribution
that makes each box equally attractive to search next.
Generally, the larger the entropy of the prior, the more
likely it is that the posterior stays in this envelope from

Table 2. Performance of Heuristics for Search Problems with N ! 2 Boxes

Metric

|*| ! 1 |*| ! 2

DR BADR BSM BT DR BADR BSM BT

Mean 0.204 0.017 0.017 0.004 0.403 0.036 0.029 0.007
75th Percentile 0 0 0 0 0.001 0 0 0
95th Percentile 1.11 0.006 0.006 0.002 2.73 0.134 0.096 0.011
99th Percentile 5.23 0.545 0.545 0.108 7.05 1.00 0.839 0.196

Note. Reported as percentage above the optimum calculated via value iteration.
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the very beginning, and therefore the more likely it is
that BT and BSM produce similar or even identical
search sequences. Consequently, the difference in per-
formance between BT and BSM decreases as the en-
tropy of the prior increases. By similar reasoning, BSM
andBT are closer to optimalwhen the prior has a larger
entropy, because a smaller proportion of the state
space is explored by the posterior.

Recall that DR designates fast for all type H boxes.
Its performance is much inferior to that of the other
three heuristics, becoming worse as the entropy of
the prior increases. The latter effect occurs because,
as discussed in Section 5.2, the importance of the
immediate benefit, which is larger for the fast mode
for all type H boxes, decreases with the size of the
hiding probability.

We next increase the number of boxes to N ! 8. As
seen in Table 5, the BT heuristic again performs the

best across all scenarios. Patterns on relative performance
between the heuristics in Table 4 are also observed in
Table 5. In particular, as |*| increases, BADR be-
comes computationally more efficient relative to BSM
(|*| + 1 versus 2|*| policies evaluated), yet its rela-
tive performance degrades only slightly and is still
close to optimum. For N ! |*| ! 8, BADR requires
3.5% (9 of 256) of the computational effort of BSM,
yet, in their worst-performing scenario, BADR is on
average about 0.1% above optimality compared with
0.02% for BSM.
By comparing the results in Tables 4 and 5, we also

see that the performance of DR degrades as N in-
creases. To understand this phenomenon intuitively,
first note that, as N increases, in general, the en-
tropy of the prior increases, and therefore the fu-
ture benefit of a search—how a failed search gains
information about the object’s location—becomes

Table 3. Five Scenarios and Their Prior Probability Distributions on the Object’s Location

Scenario Prior for N ! 4 Prior for N ! 8

Uniform (0.25, 0.25, 0.25, 0.25) (0.125, . . . , 0.125)
Two dominate (0.36, 0.36, 0.14, 0.14) (0.23, 0.23, 0.09, . . . , 0.09)
Evenly spaced (0.4, 0.3, 0.2, 0.1) (0.195, 0.175, . . . , 0.055)
One dominates weakly (0.58, 0.14, 0.14, 0.14) (0.37, 0.09, . . . , 0.09)
One dominates strongly (0.7, 0.1, 0.1, 0.1) (0.51, 0.07, . . . , 0.07)

Table 4. Performance of Heuristics for Search ProblemswithN ! 4 Boxes in Five Scenarios

Scenario and metric

|*| ! 2 |*| ! 4

DR BADR BSM BT DR BADR BSM BT

Uniform
Mean 0.738 0.010 0.004 0.003 1.42 0.040 0.007 0.006
75th Percentile 0.510 0 0 0 2.11 0 0 0
95th Percentile 4.33 0.018 0.013 0.009 6.59 0.176 0.042 0.034
99th Percentile 7.98 0.258 0.105 0.087 10.2 1.04 0.168 0.153

Two dominate
Mean 0.700 0.012 0.007 0.004 1.33 0.041 0.012 0.007
75th Percentile 0.431 0 0 0 1.83 0 0 0
95th Percentile 4.10 0.037 0.025 0.011 6.43 0.240 0.067 0.037
99th Percentile 8.23 0.325 0.196 0.113 10.3 0.868 0.299 0.201

Evenly spaced
Mean 0.700 0.013 0.008 0.005 1.31 0.039 0.013 0.008
75th Percentile 0.452 0 0 0 1.72 0 0 0
95th Percentile 4.20 0.035 0.022 0.010 6.08 0.219 0.062 0.037
99th Percentile 8.42 0.389 0.241 0.144 10.3 0.951 0.332 0.216

One dominates weakly
Mean 0.637 0.019 0.013 0.005 1.25 0.050 0.024 0.009
75th Percentile 0.388 0 0 0 1.73 0 0 0
95th Percentile 3.73 0.070 0.052 0.010 5.88 0.325 0.131 0.042
99th Percentile 7.81 0.546 0.362 0.140 10.4 1.02 0.600 0.237

One dominates strongly
Mean 0.569 0.028 0.023 0.005 1.09 0.066 0.043 0.010
75th Percentile 0.320 0 0 0 1.42 0 0 0
95th Percentile 3.31 0.097 0.064 0.015 5.01 0.474 0.271 0.043
99th Percentile 7.38 0.756 0.638 0.141 10.1 1.28 0.995 0.265

Note. Reported as percentage above the estimated optimum from the ensemble method.
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more important. Consequently, the appeal of the slow
mode—which was found to almost exclusively have
a larger future benefit in boxes where both search
modes were used in an optimal policy—increases as
N increases. Table 6 provides empirical evidence of
this intuitive argument. Recall that DR corresponds to
taking θ ! 0 in ADR. A similar phenomenon can also
be seen in Figure 2, which shows that the best choice
of θ for ADR increases with N.

Finally, both BSM and BT see their performance
slightly improve as N increases, particularly the for-
mer. This phenomenon is again linked to the size of
the initial transient period before the posterior settles
into some envelope. In general, the entropy of the prior
increases as N increases, and therefore the length of
this transient period will decrease, meaning that it is
more likely that BSM or BT will produce a search se-
quence that is near optimal.

6.4. Sensitivity Analysis of Heuristics
This section extends the numerical experiments to
investigate how the characteristics of a type H box
affect the performance of our heuristics. Consider a
type H box with the usual parameters qf , qs, tf and ts,
and write θH ∈ (0, 1) for its relative resemblance to a
type F box compared with a type S box, as defined in
(11). Recall δs and δf from (16), which measure the
distance of a type H box from being type S and type

F, respectively. It is straightforward to show that
δs < δf if and only if θH < 0.5. In addition, θH ! 0 co-
incides with δs ! 0, and θH ! 1 coincides with δf ! 0.
Finally, recall β from (14), which measures the ad-
vantage of the slow mode over the fast mode in future
benefit. The following proposition, the proof of which is
deferred toOnlineAppendix I, connectsθH , δs, δf , and β.

Proposition 6. If δs ≥ δf (or equivalently θH ≥ 0.5), then
β< 0.
Recall that Proposition 3 shows that β< 0 for any

type F box; Proposition 6 identifies some type H boxes
for which β< 0.
Proposition 6 also tells us that, if a type H box is

closer to being type F than type S, then both the
immediate and future benefits are larger for the fast
mode. It further provides an intuition for the obser-
vation in Section 5.1 that, throughout all of the nu-
merical experiments, BADR could always be recovered
by taking some θ ≤ 0.5 within ADR. If, for some

Table 5. Performance of Heuristics for Search Problems withN ! 8 Boxes in Five Scenarios

Scenario and metric

|*| ! 4 |*| ! 8

DR BADR BSM BT DR BADR BSM BT

Uniform
Mean 1.14 0.027 0.003 0.003 2.24 0.104 0.004 0.004
75th Percentile 1.77 0 0 0 3.45 0.034 0 0
95th Percentile 3.43 0.020 0 0 5.43 0.376 0.008 0.007
99th Percentile 4.66 0.140 0.014 0.013 6.70 0.648 0.028 0.026

Two dominate
Mean 1.11 0.026 0.004 0.003 2.20 0.098 0.006 0.005
75th Percentile 1.66 0 0 0 3.31 0.034 0 0
95th Percentile 3.34 0.020 0.001 0.001 5.36 0.352 0.011 0.009
99th Percentile 4.46 0.136 0.016 0.015 6.86 0.609 0.034 0.029

Evenly spaced
Mean 1.12 0.025 0.003 0.003 2.21 0.099 0.005 0.005
75th Percentile 1.61 0 0 0 3.31 0.030 0 0
95th Percentile 3.44 0.019 0.001 0.001 5.47 0.343 0.010 0.008
99th Percentile 4.79 0.133 0.016 0.015 6.95 0.625 0.032 0.029

One dominates weakly
Mean 1.09 0.027 0.005 0.003 2.15 0.100 0.008 0.005
75th Percentile 1.60 0 0 0 3.20 0.039 0 0
95th Percentile 3.23 0.024 0.001 0.001 5.19 0.348 0.012 0.008
99th Percentile 4.38 0.153 0.020 0.014 6.69 0.619 0.040 0.027

One dominates strongly
Mean 1.05 0.031 0.011 0.004 2.06 0.103 0.017 0.006
75th Percentile 1.46 0 0 0 2.98 0.051 0 0
95th Percentile 2.98 0.035 0.004 0.002 4.98 0.368 0.023 0.009
99th Percentile 4.28 0.200 0.031 0.018 6.67 0.619 0.080 0.031

Note. Reported as percentage above the estimated optimum from the ensemble method.

Table 6. The Percentage of Type H Boxes to Which BSM
Designates Fast in Each Numerical Study

N |*| ! N/2 |*| ! N

2 91.1 91.4
4 83.7 84.6
8 79.9 80.3
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search problem, BADR was only attainable with
θ> 0.5, there would be a box in* designated slow by
BADR for which θH > 0.5, therefore with both the
immediate and future benefits larger for the fast
mode. As discussed in Section 6.1, problems where it
is optimal in any subset of the state space to use the
slow mode of such a type H box are very rare.

To make inference on the effects of type H boxes
with θH < 0.5 on the performance of our heuristics, we
focus our analysis on search problems with N ! 2
boxes and one type H box. We generate 8,000 such
search problems using (24) and rejection sampling.
For each, we study p ! 0.5, 0.7, and 0.9, where p is the
object’s hiding probability for the type H box. Table 7
sorts search problems into bins based on their values
of p and θH, before presenting the average percentage
over optimum for each bin. The table reports results
only for θH ≤ 0.24, because, forθH > 0.24, the difference
between any heuristic performance and optimal
performance is negligible. Because BADR and BSM
are equivalent when |*| ! 1, we do not report them
separately.

Recall that DR designates the fast mode for the
type H box and θH measures the type H box’s relative
resemblance to a type F box compared with a type S
box. Therefore, it is intuitive that DR’s performance
improves monotonically as θH increases as seen in
Table 7. The other two heuristics, BT and BSM, how-
ever, share a different behavior. Also seen in Table 7,
both heuristics are near optimal when θH is close to
0 or when θH exceeds 0.2, but their performance
degrades as θH falls in the range 0.04–0.16. This be-
havior is explained by the following.

When θH is very small, the type H box is very close
to being type S, and therefore the single-mode pol-
icy Πs that designates the slow mode for the type H
box will have close to optimal performance. Because

BSM chooses among all single-mode policies, BSMwill
perform at least aswell asΠs. Recall that BT can choose
a policy that, for the type H box, designates slow for
p ≤ p̂ from (15). When θH is small, p̂ is close to one;
therefore, BT can choose a policy that is very close to
Πs, and hence will also perform close to optimally.
Finally, recall that BSM and BT can also choose DR,
the performance of which improves as θH increases.
For most problems with θH > 0.2, DR is optimal, and
therefore all three heuristics coincide with optimal
performance.

7. Conclusion
Motivated by advanced search technology, in this pa-
per, we extend a search model in the literature to allow
a choice between two search modes in each possible
location. This extension complicates the problem sub-
stantially if one search mode takes less time but the
other finds the hidden object with a higher probability.
We develop theorems to derive the optimal policy for
many cases; otherwise, we use these theorems to sim-
plify the search problem in general and design heu-
ristic policies that consistently deliver near-optimal
performance in an extensive numerical study.
A natural extension to our search problem is to

allow three or more search modes per location. Al-
though Theorem 5 in Section 3.5 extends Theorems 3
and 4 to identify when one mode dominates all of the
others, additional work is required to determine
whether Theorems 3 and 4 can be adapted to rule out
inferior search modes in cases where no single mode
dominates. Although several of our single-mode heu-
ristics can be extended to this multiple-mode setting,
developing more sophisticated heuristics requires ad-
ditional study beyond the scope of this paper.
Future research directions may include the incorpo-

ration of a network structure to our two-mode search

Table 7. Performance of Heuristics for Search Problems with N ! 2 and |*| ! 1 by Value
of θH

Heuristic and p

θH

(0, 0.04] (0.04, 0.08] (0.08, 0.12] (0.12, 0.16] (0.16, 0.2] (0.2, 0.24]

DR
0.5 2.76 1.11 0.437 0.151 0.037 0.012
0.7 3.09 1.13 0.383 0.126 0.031 0.010
0.9 2.06 0.594 0.204 0.070 0.019 0.006

BSM
0.5 0.008 0.019 0.019 0.018 0.011 0.011
0.7 0.019 0.085 0.089 0.091 0.030 0.010
0.9 0.130 0.393 0.198 0.070 0.019 0.006

BT
0.5 0.007 0.014 0.010 0.008 0.005 0.001
0.7 0.012 0.032 0.023 0.012 0.003 0.001
0.9 0.031 0.053 0.015 0.007 0.002 0.0002

Note. Reported as average percentage above the optimum calculated via value iteration.
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problem. After the completion of a search, the searcher
can only next choose a location adjacent to their current
location. In addition, we may consider our two-mode
model as a two-person, zero-sum game between a
searcher and a hider, with the latter choosing where
to hide the object before the search begins.
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