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We analyze a variant of the whereabouts search problem, in which a searcher looks for a target hiding in one of n possible
locations. Unlike in the classic version, our searcher does not pursue the target by actively moving from one location to the
next. Instead, the searcher receives a stream of intelligence about the location of the target. At any time, the searcher can
engage the location he thinks contains the target or wait for more intelligence. The searcher incurs costs when he engages the
wrong location, based on insufficient intelligence, or waits too long in the hopes of gaining better situational awareness, which
allows the target to either execute his plot or disappear. We formulate the searcher’s decision as an optimal stopping problem

and establish conditions for optimally executing this search-and-interdict mission.
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1. Introduction

Operation Neptune Spear led to the capture and elimination of
Osama bin Laden by the United States in 2011. Although U.S.
intelligence agencies had continuously collected information
regarding his whereabouts, the dilemma was when to act.
Raiding a wrong location, based on insufficient or false
information, would cause collateral damage, diplomatic
blowback, and loss of intelligence assets. On the other hand,
waiting too long for more information could result in bin
Laden escaping. The dilemma between “act now” or “wait
and see” was acute but fortunately was resolved successfully
in this case. Another example of such a dilemma concerns
a “ticking bomb” scenario (Kaplan 2012). In this scenario,
a hiding terrorist plots to attack a target (e.g., a suicide
bomber), and the authorities must race to stop the attack.
A final example involves an operation to rescue hostages
held by an insurgency group. The insurgents may kill the
hostages (e.g., in an escape attempt) if the authorities delay
the operation for too long. However, a failed rescue attempt
may alert the insurgents, resulting in the deaths of the
hostages. Many military, law enforcement, and intelligence
investigations face a similar trade-off decision concerning
timing and cost of premature action.

Motivated by the aforementioned examples, we consider
a search situation called the whereabouts search problem
(Kadane 1971, Stone 1975). In its simplest form, a target
lies hidden in one of n cells, where p; is the probability
that the target resides in cell i, Y, p, =1, and ¢, is the
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cost of searching cell i. The searcher examines one cell at a
time and the search is error free; if a cell contains the target,
the searcher will detect it. The objective is to find a search
strategy—an order in which to search the cells—to minimize
the expected total search cost. Several variations of this
problem include, among others, situations where a search is
subject to error (Kress et al. 2008, Wilson et al. 2011); the
target moves (Komiya et al. 2006) or acts strategically (An
et al. 2013); and multiple targets arrive and disappear in a
random fashion (Szechtman et al. 2008). However, all of the
aforementioned cases share the same definition of a strategy,
namely, a search sequence for an active searcher.

In this paper, we consider the same physical description
of the whereabouts problem: a single static target hidden in
one of n cells. However, the operational setting is different
in two major aspects: (a) the searcher does not actively
search the cells but instead relies on occasional pieces of
intelligence of the form “cell i contains the target,” and
(b) the search mission is time critical. The searcher does not
control the arrival rate of intelligence, and an intelligence
item may be wrong. At a certain point the searcher may
choose a cell to engage in the hope of interdicting the target.
If the searcher chooses the wrong cell, he incurs a cost
comprising collateral damage, loss of intelligence assets,
political ramifications, etc.

We describe the problem in §2 and formulate the mathe-
matical model in §3. The cases of n =2 and n = oo appear
in §§4 and 5, respectively. Section 6 examines the optimal
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strategy when 2 < n < oo. We present numerical illustrations
in §7. Section 8 discusses extensions. All proofs appear in
the online appendix (available as supplemental material at
http://dx.doi.org/10.1287/opre.2016.1488).

2. The Problem

A searcher wants to interdict a target, residing in one of
n possible cells, before some event occurs. Such an event
would be, for example, the disappearance of bin Laden from
a certain region or an execution of a terror plot, which we
use as our reference scenario. An attack occurs when the
plot fully matures, and the plotting time is exponentially
distributed with mean 1/u (a similar assumption appears in
Kaplan 2010). Although the searcher may have some initial
notion regarding the target’s location based on exogenous
intelligence, we will often focus on the case where there is
none: the uniform prior location distribution.

Independent intelligence items from human informants,
intercepted communications, and interrogations of the form
“cell i contains the target” arrive according to a Poisson
process with rate A. The searcher has no control over the
timing or content of the items. Thus, scheduled sensor cues
(e.g., RADAR, SONAR, images, videos) from cells do not
apply here. Although our model applies to a variety of
intelligence sources, we use, as a reference setting, human
informants who provide tips. For most of our analysis the
parameters w and A only appear via the intensity ratio
p=H/A.

If, following a certain number of tips, the searcher decides
to engage a specific cell, the search ends, even if the searcher
chooses incorrectly. If the searcher engages the correct cell,
the target is interdicted. However, if the searcher engages the
wrong cell, then the target realizes that he is being hunted
and therefore immediately executes his (not fully mature)
plot before the searcher finds him. In §8.1 we consider a
variant where the target only executes mature plots and the
searcher continues obtaining intelligence and engaging cells
until he either finds the target or the target attacks.

The searcher desires to minimize the expected cost of two
possible negative outcomes: (a) engaging a wrong cell or (b)
execution of a mature attack by the target. The costs of (a)
and (b) are ¢ and d, respectively. The false positive cost
¢ comprises collateral damage resulting from engaging an

innocent cell and the (possible) cost of a premature attack.

We neither need nor make any assumption regarding the
relative values of ¢ and d. Because the results to follow
only depend on the cost-ratio « = d/c, we assume without
loss of generality that c=1 and d = a.

A tip specifies the correct cell with probability g. We
often refer to g as the informant’s reliability. Informants
are neither clueless nor malevolent; that is, g > 1/n. If the
informant provides an incorrect tip (with probability 1 — ¢),
then the error is uniform; the informant specifies each one
of the n — 1 incorrect cells with equal probability.

The question is when should the searcher engage a cell?
We have here a “race” between the flow of tips and the

time of attack. On the one hand, the searcher wants to
receive as many tips as possible to reduce his uncertainty
about the target’s location. On the other hand, this “wait and
see” approach may lead to the target attacking before the
searcher has the chance to do so. If the searcher instead
rushes to engage a cell, the likelihood of a false positive
error increases. The searcher knows the values of all the
parameters involved in this process: n, g, @, and p.

This search problem is an example of an optimal stopping
problem (Chow et al. 1971, Shiryaev 2007, Ferguson 2004).
Wald and Wolfowitz (1948) examine a similar problem in
their work on the sequential probability ratio test. They
show that the decision between selecting a hypothesis and
receiving another observation is optimally determined by
a threshold policy. In our model, when n =2 cells, we
find a similar threshold result (see §4), which does not
hold for n > 2. For n > 2, our problem can be framed
as a higher dimensional stopping problem. Lange (2012)
examines optimal stopping of an n-dimensional Brownian
motion and shows that the continuation region is generally
also n-dimensional. Although standard one-dimensional
techniques do not apply, he shows that the continuation
region can be found by reformulating the problem as a
free-boundary problem in n dimensions.

When n > 2 cells, our problem relates to the family of
multinomial selection problems (Kim and Nelson 2006)
in which an observation specifies the “winner” among n
competing alternatives. A decision maker may either observe
a fixed number of samples before choosing the best option
(Bechhofer et al. 1959) or may dynamically decide, after each
observation, whether to pick an alternative or receive another
observation (Ramey and Alam 1979). Most formulations
desire to achieve a lower bound on the probability of
choosing the correct alternative, provided certain conditions
about the system hold. These conditions usually relate to the
relationship between the true probabilities of the two best
alternatives (Chen 1988). A good survey of the techniques
used in multinomial selection problems appears in Vieira
et al. (2014). Most selection problems assume a deterministic
number of observations. In our problem the number of tips
is random because the time until the plot matures is random.
We found only two multinomial selection papers that examine
a random maximum number of observations (Frazier and Yu
2007, Dayanik and Yu 2013). The model in Frazier and Yu
(2007) considers only the n =2 case and allows for a general
stochastic deadline, which is analogous to the time until
the attack occurs in our model. The approach in Dayanik
and Yu (2013) does allow for n > 2 alternatives. It focuses
on neuroscience applications and considers a cost-rate, as
opposed to total cost in our model.

Finally, note that our model has one decision maker,
the searcher. One could view the problem as having three
strategic players: the searcher, the target, and the informant.
We consider here a simpler yet, we believe, realistic situa-
tion where the target does not really know the searcher’s
operational options and the informant is incentivized by
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the searcher to do the best he can. One could develop a
two-player Markov game between the searcher and target
similar to the Inspection Game (see Chapter 4 of Washburn
2014). However, the formulation would quickly become
unwieldy because one would need to specify not only the
intelligence picture of each player but also each player’s
perceived intelligence picture.

3. Mathematical Preliminaries

The decision to engage a cell or wait for more tips depends
on the expected cost of each option. In this section we
develop the mathematical building blocks to compute these
expected costs. Two factors determining the expected costs
are Location probability, which specifies the likelihood that
cell i contains the target, and Pointing probability, which
specifies the likelihood that the next tip points at cell i. In
§3.1 we compute these probabilities, and in §3.2 we use
these probabilities to derive the expected costs.

3.1. Location and Pointing Probabilities

Let p=(p;,...,p,) denote the current location probabilities
and let p denote the initial location probabilities before the
first tip. Let s; be the number of tips thus far specifying cell i
as the target’s location, and s = (s, ..., s,). In this subsection
we assume that s; > --- > s,. The location probability of
cell i given s is
o P[s | target in i]p,

p;(s) =P[target in i | 5] ST P[s | target in /15, (1)

An informant points to the correct cell with probability ¢

and a specific incorrect cell with probability (1 —¢)/(n—1).

Thus, utilizing the multinomial nature of s, we have

_ (es)! s,.<1 — q)zkwk

Pls | tareet in il =

[S| e l] l_[ksk! q n—1
(s (1= g\
- [Tese! \n—1

(i)

s (1—g¢g Do Sk N
_ st (T=g\ ™7

SO ILs! \n—1 @

where

-4
(1-q)/(n—1)

Note that only the y* portion of (2) depends on i. This is a
direct consequence of our assumption that each wrong cell
is equally likely to be pointed at. When we substitute (2)
back into (1), most terms cancel, and the location probability
simplifies to

Y (3)

YD

ST “4)
Zj:] YDp;

pi(s) =

Note from Equation (4) that p;(s) is invariant to additive
shifts in 5. If § is such that §;, = s, + L for some integer L,
then p;(S) = p;(s). Specifically, if we set L = —s, = — min(s)
and use §; =s; — s, then we can write §; = Z?;il A;, where
A;=s5;—s5;,, > 0. Therefore, p;(s) is uniquely determined
by the tip-differentials Aj, j=1,....,n—1.

Although s or A are natural state vectors, it is simpler
to use the location probabilities p = (p,, ..., p,) as the
state vector for most of the mathematical analysis in §§4-6.
Specifically, if the next tip points to cell i, then the updated

probability pj(-+l) for cell j is

YD;

— if j=i
(+i) yp1+(1_p1)
p; = D, (5)
- if j#£i.
ypi+ (1 —p)

Recall that according to our assumption g > 1/n and there-
fore y > 1. Consequently, a tip pointing to cell i increases
the posterior location probability of cell i (pi(H) = p;)
and decreases the posterior probability of other cells (p;“) <
p; for j #i).

We next define B(p) as the set of cells with the highest
location probability:

B(p):{i: pi=maxp,, 1<i<n}. (6)
J

The following proposition defines a lower bound on max; p;.
The proof appears in Appendix A.

ProposITION 1. If |B(p)| =1 and the prior distribution for
the target’s location is uniform, then max; p; > q.

Next we consider the pointing probability r;(p) that
the next tip points to cell i, given the current location
probabilities p:

r;(p) = P[informant says i | p]

=Y Plinformant says i | p, target in k]
k=1

-P[target in k | p]

—ap Y p=ap L -p). @)
n—1¢ oy n—1
Inspection of (7) reveals that r,(p) € [(1 —gq)/(n—1), q].
Thus, a tip may point at a cell other than i, even if p; is
close to 1, if ¢ <« 1. Note also that r;(p) only depends
on p;; it does not depend upon how the remaining (1 — p,)
probability mass is spread among the other n — 1 cells.

3.2. Expected Cost

Define C(p) as the expected cost if the searcher acts optimally
in state p. Since an optimal stopping problem is a dynamic
programming problem (Chow et al. 1971), we compute C(p)
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by comparing the expected costs of two decisions: engage
or wait. That is,

C(p) = min (expected cost if the searcher engages a cell,

p
_a+
I+p I+p

expected cost after

receiving the next tip). (8)

If the searcher decides to wait, the target may attack before
the searcher receives the next tip. In that case, which happens
with probability p/(1+ p), the mature attack produces a
cost of a. If the next tip arrives before the target’s attack,
the system transitions, and we assume the searcher behaves
optimally in the future. Next we compute the expected costs
of the two possible options: engage or wait.

If the searcher decides to engage cell j while in state p,
the expected cost is 1 — p;. Obviously, the searcher should
engage a cell in B(p); the searcher can use any tie-breaking
mechanism if B(p) contains multiple cells. To simplify
notation, we henceforth assume without loss of generality
that p, > --- > p,. Therefore, B(p) contains cell 1 and

E[Cost if searcher decides to engage | p]

=1l—maxp,=1-p,. ©)
j

If the searcher decides to wait, and an informant next
points to cell i, then p transitions to p™*? according to
Equation (5). The informant points to cell i with probability
r,(p), and the searcher will incur an expected cost of C(p+?)
if this occurs. Putting these pieces together, we have

E[Cost if waiting for and receiving the next tip | p]

= > P[informant says i | p]C(p*")

i=1

=2 r(p)C(P™). (10)
i=1
Moving to the general case, we combine Equations (8),
(9), and (10) to produce the complete cost function:

—minf(1—p, Pt ¥ (+9) )
C(p) m1n<1 128 1+pa+ Fp s r(pCET™)). (A1)

If the searcher is indifferent between engaging and waiting,
he engages. In Appendix B we present characteristics of
C(p), such as its concavity. Because most of these results
are fairly intuitive (e.g., C(p) decreases if the informant next
points to cell 1), we defer this discussion to the appendix.

4. The Case of Two Cells

Arguably, the simpler the form of the optimal policy, the
more attractive it is operationally. One such simple form
is a threshold policy: the searcher engages if and only if

p; = 7 for some threshold 7 (recall we assume that p, > p,).

The next corollary follows from the convexity of the engage
region (see Proposition EC.2 in Appendix B).

COROLLARY 1. For n =2, the searcher should engage if
and only if p, > T for some threshold T € [0.5, 1).

We prove this corollary in Appendix C. While there is
an explicit expression for the threshold 7, its derivation is
cumbersome and therefore we defer most of its details to
Appendix D. A necessary and sufficient condition to engage
in all states (i.e., 7=0.5) is

L (12)

1 p
>—"—(1-—a)+
( ) T p

27 1+p
If condition (12) does not hold, then 7 > 0.5. See Appendix D
for the general expression for 7 when 7 > 0.5. The impli-
cation is straightforward; if damage from a mature attack
exceeds the false positive cost (a > 1) and the informant
has low reliability (¢ = 0.5), the searcher should always
engage. The benefits from future tips are small, and the risk
of waiting is high.

To derive T we leverage off the rich results related to
the gambler’s ruin problem. Denote p as the prior state
before the arrival of the s,+ s, tips. Using Equation (4) we
transform p to p:

b= pay _ Yp (13)
Yoynbi+ye(1=py) oy ep+(1—py)

(1 —p 1—5
p2: y ( pl) _ pl (14)

yipi+ye(1—=p) vy ep+(1=p)

To update the probabilities we only need to know the tip-
differential s, — s,. We model A =5, — s, as a random
walk. For a given prior p, we can transform the threshold
policy from the real number 7 to two nonnegative integers
A(p, 7) and B(p, ) such that the searcher waits as long as
—B(p, 1) < A < A(p, 7). If A first hits A(p, 7) (—B(p, 7)),
the searcher engages cell 1 (cell 2). This approach facilitates
the use of gambler’s ruin machinery to compute relevant
parameters (see Appendix D for details).

It is difficult to gain much insight about the optimal
threshold 7 using purely analytic approaches. Thus, we
illustrate its behavior using several figures. Figure 1 presents
how the threshold 7 varies with informant reliability g for
fixed cost-ratio o and intensity-ratio p. As we move from
Figures 1(a) to 1(c), we increase & from 0.5 to 2. Each curve
on a figure corresponds to a fixed value of p € {0.01,0.1, 1}.
The threshold 7 is a nondecreasing function of g. A more
reliable informant reduces the engage region and makes the
searcher more likely to wait because future tips are more
valuable. The threshold decreases as we increase either o
(mature attack becomes more costly) or p (mature attack
becomes more imminent) and hence the engage region
expands. In particular, in some situations with large « and/or
large p, the searcher immediately engages regardless of the
current state p or informant reliability q.

An interesting phenomenon relates to the expected number
of tips received by the searcher when acting optimally. One
would expect that this number will decrease as the informant
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Figure 1.  Engage threshold 7 as a function of ¢ for fixed combinations of p € {0.01,0.1, 1} and « € {0.5, 1, 2}.
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becomes more reliable and therefore the searcher can reach
the engage decision faster. Figure 2 demonstrates that this is
not always the case. See Appendix E for the derivation of the
expected number of tips. Assuming the search starts in the
uniform state p = (0.5, 0.5), Figures 2(b) and 2(c) show that
if p is small (the inflow rate of tips is much larger than the
attack rate) it is possible that the expected number of tips
actually increases with g when the latter is small enough.
This nonmonotonicity results from two conflicting factors.
On one hand, as g increases the threshold increases (see
Figure 1), which suggests that the searcher may need more
tips to reach the threshold. On the other hand, a larger g
implies that the informant will point to the correct cell more
frequently, which suggests that the searcher will reach the
threshold following fewer tips. Specifically, for g ~ 1, the
searcher will only need one tip. In general, the first or second
factor may dominate depending upon the values of «a, p, and
g. In most cases, when p is relatively large, the imminent
attack dictates a swift action by the searcher, as shown in the
dashed and —o— curves, which are close to zero.

The jumps in Figure 2 occur when the optimal tip-
differential changes by one. For a fixed optimal tip-
differential, the expected number of tips decreases as g
increases because a more reliable informant will produce

a stream of tips that reaches that tip-differential faster
(probabilistically) than a less reliable informant.

5. The Case of an Infinite Number of Cells

When n is very large and the cells are equally likely to
contain the target, it is unlikely that the informant will
point to the same incorrect cell twice. Thus, a second tip
to the same cell should indicate that it is the correct one.
In Appendix F.1 we make this argument more rigorous. If
n =oo and the informant points twice to the same cell, then
the searcher knows with certainty that this cell contains the
target. We refer to the second tip to the same cell as the
confirming tip. In Appendix F.2 we derive the optimal policy,
which we summarize in the next Proposition.

PROPOSITION 2. The searcher will choose the lowest cost
alternative among the following three options

1. Immediately engage any cell before receiving the first
tip: cost is 1

2. Obtain one tip and engage the corresponding cell: cost
is (p/(L+p))a+(1/(1+p))(1—q);

3. Wait for the confirming tip and then engage: cost is

a(l—(q/(p+9)*).

Figure 2. Expected number of tips, starting from the uniform state p = (0.5, 0.5) until the search ends as a function of ¢
for fixed combinations of p € {0.01,0.1, 1} and a € {0.5, 1, 2}.
(@) a=0.5 b)a=1 c)a=2
20 20 20
ERRE € 15 €15
=)} =) =)
2t 8% g%
8 _(5 10 8 5 10 8 -(C;'_) 10
5 @ o o @
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Note. The search ends either when the searcher engages or when a mature attack occurs.
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Figure 3.

Searcher should engage for (p, @) lying above solid line, wait for the confirming tip if (p, @) lies below the

dashed line, and engage after one tip for situations between the two curves.

(a) g=0.1

0.2 0.4 0.6 0.8 1.0

Thus, the searcher should

choose option 1 iff a > 1+ 2,
p

L2y 2
choose option 3 lﬁ‘a<l+gw
P Pt+29—q

choose option 2 otherwise.

The searcher causes collateral damage if he chooses
option 1 because he engages the wrong cell. The cost for
option 2 follows immediately from (11) because p, = ¢
after the tip. If the searcher chooses option 3, there is no
collateral damage, but the target may execute the attack
before the confirming tip arrives.

Figure 3 illustrates what the searcher should do for
different @, p pairs for ¢ € {0.1, 0.8}. The searcher chooses
option 1 if the parameters lie above the solid curve, option 3
if the parameters lie below the dashed curve, and option
2 otherwise. The searcher is more likely to wait for the
confirming tip for small a/p pairs and engage for large
values. Not surprisingly the region in which option 2 is
optimal increases as we increase g because one tip provides
significant information for larger values of g.

The optimal strategy for the n = co case suggests a
heuristic for n < oo, where the searcher chooses among
the three options listed in Proposition 2. We compute the
finite-n costs for these three options in Appendix F.3.1.
Overall, the heuristic performs very well and provides near
optimal results in many situations, often even for small #.
This heuristic generates a cost within 1% on average over
many scenarios covering a variety of different parameter
combinations. Unfortunately, this heuristic only applies for
the uniform state. Appendices F.3.2 and J.1 contain more
details on the performance of this heuristic.

6. Policy for 2 <n <

Suppose that g = 1. In this case, the searcher either immedi-
ately engages cell 1, or he waits for the first tip and then

a 15} '

(b) g=0.8
3.0 T
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1
1
1
1
1
1
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engages the correct cell. In the former the expected cost
is (1 — p,), and in the latter it is (p/(1 + p))c. Thus, the
searcher should engage now if and only if

p 1
>—(N—a)+——. 15
Pi 1+p( ) 1+p (15)

Condition (15) is sufficient to engage for any value of g. We
derive this formally in §6.1. This observation leads to the
following preliminary analysis for the case where ¢ < 1 and
the searcher has no prior information: p, =---=p, =1/n.
In that case the searcher engages any cell before receiving
atipif 1/n= (p/(14+p))(1 —a)+1/(1+ p). We call
this situation a blind engagement because the searcher
effectively shoots in the dark. If the searcher obtains one tip
and engages the corresponding cell, then the initial state
p=(1/n,1/n,...1/n) transitions to p*" = (¢, (1 —q)/
(n—1),...(1 = q)/(n—1)) (see Equation (5)) and the
expected cost is (p/(1+p))a+ (1/(1+p))(1 — g). Thus, if
1—1/n>(p/(1+p))a+(1/(1+p))(1 — gq), the searcher
should wait. In summary, we have

1 1
if —>- (1) ——
n l+4+p I+p
—> blind engagement, (16)
1 p 1
if —<—({(0—-a)+-——qg—> wait. 17
" lJrP( ) 557 (17)

If 1/n falls between the two bounds, additional analysis
is needed. Note the equivalence between condition (17)
and the two-cell condition in (12). Conditions (16)—(17)
suggest that if n is small, p is large (an imminent attack is
likely), and « is large (damage from a mature attack exceeds
the false positive cost), then the searcher may optimally
choose a cell uniformly at random before receiving any tips.
Figure 4 presents the region in «, p space where the searcher
chooses to wait rather than blindly engage (condition (17))
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Figure 4.

(@) g=0.4

p

for different values of n and ¢. The wait region falls below
the curves. For large n and a reliable informant, the searcher
will wait for even reasonably large values of « and p. The
curves look similar to those in Figure 3 for the n = oo case.
The solid curve in Figure 3 corresponds to the thin dashed
curve in in the northeastern portion of Figure 4, which
represents the limiting case as n — oc.

We now turn to the general nonuniform state. Unlike
the n =2 case, there is no threshold policy for optimally
responding to tips, as shown in the next example.

Example 2: let g =0.3, « =0.8, p=1/9. The searcher
should engage in state p = (0.316, 0.246, 0.246, 0.191)
and should wait in state p = (0.366, 0.366, 0.134,0.134).
However, 0.316 = p, < p; = 0.366.

Example 2 suggests that the key factor driving the decision
lies in the differential between the two cells with the highest
probability. This type of result appears in many algorithms
used for multinomial selection problems (Bechhofer et al.
1959, Ramey and Alam 1979, Kim and Nelson 2006). One
might propose that the optimal policy takes a threshold
form based on p, — p, or p,/p,. Unfortunately, the next
example shows a threshold policy based on either of those
two quantities is not optimal.

Example 3: Let ¢ =0.42, « =0.5, p =1. The searcher
should engage in state p = (0.556, 0.384, 0.060) but should
wait in state p = (0.512,0.244,0.244).

Our state space {p |p, =--2p,, Yo pi=1}isann—1
dimensional closed convex set, and thus we should not be
surprised that the optimal policy cannot be represented by
a one-dimensional subspace. Because the optimal policy
does not take on a simple form, we next present sufficient
conditions to engage or wait. The searcher can use the
conditions in this section as the basis for heuristic policies.
We compare these heuristic policies to the optimal policy in
§7.1 and Appendix J.

We derive the sufficient conditions by computing upper
and lower bounds on the value of the second term of the cost
function C(p) in Equation (11); the second term corresponds

For the uniform state, the searcher should receive at least one tip if (p, @) lies below the curve.

(b) g=0.38
3.0 T T T
—-©-n=3
—+—n=5
257 —*—n=9
201
a 15}
1.0
05}
0 0.2 0.4 0.6 0.8 1.0

p

to the expected cost to wait. If the engage value 1 — p, is less
than or equal to this lower bound, then the searcher should
engage in state p. If 1 — p, exceeds the upper bound, then
the searcher should wait in state p. If 1 — p, lies between
the lower bound and upper bound to wait, then we need
to perform additional analysis or derive tighter bounds to
determine the searcher’s optimal decision.

We defer the construction of the upper and lower bounds
to Appendix G. Rather than focus on the general structure
of the bounds, we instead present several specific sufficient
conditions to engage or wait in §§6.1 and 6.2, respectively.
These conditions converge to a necessary and sufficient
condition to engage (see Proposition EC.7 in Appendix G).
This allows us to theoretically approximate C(p) to any
desired precision and determine whether the searcher should
engage or wait in state p. The computational feasibility
depends upon p (see (EC.100)—(EC.101) in Appendix G).
For p > 0.1, we can solve for C(p) and the optimal decision
in less than a second on most problems on a standard laptop
for n ~ 100. However, for p < 0.01 the calculations can bog
down or become intractable for n < 10.

6.1. Sufficient Conditions to Engage

In Appendix H we present several sufficient conditions to
engage, including a family of conditions that converges to a
necessary and sufficient condition. Here we focus on three
conditions to engage that provide insight on the decision.

For our first bound we set C(p*?) =0 in (11). This
assumes that the searcher knows the location of the target
with certainty after receiving one tip. This best-case scenario
produces a lower bound on the optimal cost C(p) and yields
condition (15), which we derived earlier by assuming g = 1.
Combining Proposition 1 and condition (15) produces the
following sufficient condition to engage:

. p
engage if >—(1—-a)+ ,
gag q 1er( ) Tp

for uniform prior and |B(p)|=1. (18)
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If condition (18) holds for the uniform prior case, then the
searcher would receive at most one tip before engaging
cell 1.

To derive a tighter, less conservative, sufficient condition
to engage, we set C(p™™) =0 after two tips in (11) (rather
than after one as assumed in (15)). In Appendix H.1 we
show that if the following condition holds, then the searcher
should engage cell 1.

p 1 (& (+0)
> 1 - + i i 5
pz2—(>0—-a) Tp ( E r:(p) (max (m/ax p;

I+p i1
ot ii)))

The right-hand side of (19), which depends now, through
r,(p) and pﬁﬂ), on ¢q is always smaller than the right-
hand side of (15). We derive (15) from (11) by assuming
C(p™9) =0, but we derive (19) from (11) by assuming

P _a
14p

C(p™")=min| 1 —ma (“),L >0.
(p'+1) = min(1 = max 7. 2o

We conclude this subsection with a heuristic based on the
threshold policy for the two-cell case, where cells 2,3,...,n
are combined into an uber-cell. Accordingly, define a two-
cell state p such that p, =p, and p,=1—p, =>"_, p,. If
the searcher chooses to engage cell 1 when compared to the
uber-cell, then the searcher should also engage cell 1 in the
n-cell problem. We must modify g when moving from the n-
cell problem to the two-cell problem to maintain the same v,
which captures informant effectiveness independent of n.
Specifically, define ¢ =y /(1 + ), where 7y applies to the
original n-cell problem. If we denote 7(g, @, p) as the optimal
threshold for the two-cell problem, (see Proposition EC.4 of
Appendix D), then we have the following condition:

engage if p, >17(q, a,p). (20)

6.2. Sufficient Conditions to Wait

Appendix I derives conditions to wait based on the common
heuristic called the k-stage look-ahead rule. The searcher can
receive at most k additional tips; after receiving the kth tip,
the searcher must engage. Because the k-stage look-ahead
rule restricts the searcher’s strategy space, the policy will
produce an upper bound on the cost function C(p). Conse-
quently, if the k-stage look-ahead policy recommends to wait,
then the searcher should optimally wait. See Chapter 5.1 of
Ferguson (2004) or 7.4 of Berger (1985) for more details
on the k-stage look-ahead policy. This heuristic transforms
the infinite horizon problem of solving for C(p) in (11) to
a finite horizon problem. For small values of &, backward
induction provides a computationally tractable approach.
The k-stage look-ahead heuristic usually performs well in
practice (Ferguson 2004).

We now focus on a myopic policy where k = 1. In this
case the searcher considers just two options: (1) engage cell

1 or (2) wait for the next tip and then engage. Condition (17)
corresponds to the myopic policy starting from the uniform
state. More generally, if the searcher uses the myopic policy,
he will engage cell 1 if

— fy —— .21
1 S =) @

P
12 1 +p(1 @
See Appendix I.1 for the derivation of (21). If condition
(21) does not hold, the searcher waits until the next tip and
then repeats the comparison between the two options using
the new information obtained from the tip. The myopic
condition simplifies in two special cases that depend upon
the max term in (21):

1
- Q)+ —q ifp<yp Vi
pzilite I+p (22)

-« if ppzyp;, Vi>1.

The first case in (22) occurs when the max expression in
(21) always returns the first term. This situation corresponds
to a “roughly uniform” state p; whatever cell the informant
points to with the next tip will become a best candidate
cell. The first case in (22) is similar to the condition for the
optimal threshold in the two-cell case exceeding 0.5 (see
Equation (12)). The second case in (22) corresponds to the
case when the max in (21) always returns the second term.
This occurs when cell 1 is a “strong” best candidate cell;
even if the informant points to cell i # 1 with the next tip,
cell 1 remains a best candidate cell.

If p>>1 (i.e., the threat is imminent and tips are scarce)
or we have a highly reliable informant (g close to 1), the
myopic conditions to engage in (21)—(22) closely resemble
the sufficient condition to engage in (15). In this case, the
myopic policy produces nearly optimal recommendations.

The first part of condition (22) holds for the uniform
state p=(1/n, ..., 1/n) and corresponds to condition (17).
Following one tip (pointing at cell 1) the system transitions
from p to the new state p, where p, = ¢ and p,=(1—gq)/
(n—1) for i > 1. Therefore the second part of condition (22)
holds for state p. Consequently if (1 — ¢g) < « and the search
starts with a uniform prior, the searcher obtains at most
one tip before engaging if he follows the myopic policy.
Specifically, the searcher engages cell 1 before obtaining
any tips if
1 1

21 + (I—a)+ ik
Otherwise the searcher engages the cell provided in the first
tip since p,=¢g¢>1—a.

7. Analysis

Looking at some representative scenarios, we next analyze
results from §6. Subsection 7.1 examines the three-cell case
and in §7.2 we analyze the effect of number of cells on the
expected cost.
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Note. The engage region lies to the southeast of each curve.

7.1. Three-Cell Case

Figure 5 illustrates the three-cell engage region in the
p; X p, plane for p, > p, =2 p; =1 — p;, — p,. The thin
dashed-line triangle outlines the feasible p,, p, values. Each
subfigure fixes values for @ and p and contains four curves
for ¢ € {0.35,0.55,0.75, 0.95}. The southeast area of the
cone corresponds to the engage region of the state space. As
discussed in the introduction of §6, a threshold policy may
not be optimal. However, in many cases such a policy may
perform well based on the vertical nature of the boundaries
when, for example, « is relatively small or g is not too
small.

Similarly to the two-cell case, the engage region decreases
with the reliability of the informant because the benefit from
additional tips increases. Larger values of « or p increase
the size of the engage region because the cost or likelihood
of an attack increases. For larger value of p (Figures 5(b)
and 5(d)), the boundaries for the various reliability values
are closer together than for smaller p (Figures 5(a) and 5(c)).

Engage region for ¢ € {0.35, 0.55,0.75,0.95} and combinations of « € {0.5, 1.5} and p € {0.1, 1}.
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The informational value of tips for smaller p is greater
than for larger p, and therefore the reliability has a greater
impact. The wait region in Figure 5(d) is empty because this
situation corresponds to a blind engagement scenario (see
condition (16)), which implies the searcher will engage for
any state for any informant reliability. We only consider p < 1
scenarios; larger values of p (imminent attack compared to
the flow of tips) correspond to blind engagement scenarios
for most values of a.

In §6 we derive sufficient conditions to engage or wait that
the searcher can use as heuristic policies. Figure 6, which
has the same structure as Figure 5, illustrates the engage
regions generated by these heuristics. The smooth solid line
represents the optimal engage-wait boundary. The other
three (marked) solid lines correspond to heuristics based
on the sufficient conditions to engage described in §6.1, as
explained in the following:

e The sufficient condition to engage in (15), corresponding
to perfect detection after one tip, is denoted eng(1-tip) and
represented by the —o— curve.
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Figure 6.  Engage region for various heuristic policies for ¢ =0.55 and combinations of « € {0.5, 1.5} and p € {0.1, 1}.
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Note. The engage region lies to the southeast of each curve.

e Condition (19), corresponding to perfect detection after
two tips, is denoted eng(2-tips) and represented by the —x—
curve. As discussed in §6.1, condition (19) is tighter than
(15) and thus lies closer to the optimal curve.

e Condition (20), which we derive by combining cells
2 and 3 into an uber-cell and using the two-cell threshold
policy, is denoted eng(2-cell policy) and corresponds to the
—V- curve.

Figure 6 also contains the myopic policy, which is asso-
ciated with the wait conditions from §6.2. The condition
appears in (21)—(22) and we denote it on the figure as
wait(myopic) and it corresponds to the --o-- curve.

The eng(1-tip) heuristic (—o—) performs poorly. This is
not surprising considering it assumes zero cost after one
tip. The eng(2-cell policy) rule (—V-) performs reasonably
well overall. In situations with large « and p (Figure 6(d)),
nearly all the heuristics produce optimal results.

P4

The wait(myopic) heuristic performs very well except
for small values of « and p (Figure 6(a)). In such “low-
cost-of-attack, low-risk-of-attack” scenarios, the searcher
gains significant benefits from waiting for several additional
tips, and wait(myopic) fails to account for this. “Murky”
states with limited situational awareness lie at the northwest
region of the state space, whereas “clear” states with a strong
best candidate cell lie in the southeast. If wait(myopic)
recommends to engage in a murky state, engaging usually
is the optimal policy. However, this policy may produce
the wrong decision in clear states for small values of p.
For example consider the state p = (0.70, 0.20, 0.10) in
Figure 6(a). Intuitively, engaging seems like the right decision
for this state because cell 1 is a strong candidate for the
target’s location. Indeed, wait(myopic) recommends to
engage in this state. However, because p is small, the
searcher can afford to collect several more tips to strengthen
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situational awarenesses and the optimal policy recognizes it:
the optimal engage region lies significantly to the southeast
of p=(0.70, 0.20, 0.10) in Figure 6(a).

We also examine how much the cost increases using a
heuristic instead of the optimal policy by generating 84,000
scenarios representative of the examples in Figures 5 and 6
for 0.35< ¢ <095 05<a<1.5 0.1<p< 1, over the
entire state space for p. The myopic policy performs very
well; on average it is within 1% of optimal. Figure 6(a)
illustrates when the myopic policy can produce a cost signif-
icantly greater than optimal: small p and a and moderate g
and p,. There is no benefit to one additional tip, but rea-
sonable cost reduction can occur through several additional
tips. The strong performance of the myopic policy also
occurs for n > 3 as long as p is not too small (i.e., p > 0.1).
See Appendix J.1 for a more thorough analysis of several
heuristics for both n =3 and n > 3 scenarios. These results
suggest that not only can the searcher confidently use the
myopic policy operationally in most scenarios, but the policy
may provide a rough estimate of the cost to wait, which is
analytically difficult to compute. In practice, if the cost to
wait is only slightly smaller than the cost to engage, the
searcher may still choose to engage because of uncertainties
associated with the model parameters or other frictions we
do not account for in the model. In Appendix J.2 we explore
this idea further.

7.2. Impact of Number of Cells

Following the discussion in §5, we observe that the situation
seems to improve for the searcher as the number of cells
n increases because it becomes less likely that incorrect
tips will cluster on one particular cell, leading the searcher
astray. Figure 7 displays the relationship between the optimal
cost C(p) and n for various values of ¢ and two scenarios
regarding an attack: (a) low-cost, low-risk (Figure 7(a))
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and (b) high-cost, high-risk (Figure 7(b)). These figures
illustrate that increasing n» may generate only minor benefits,
and the cost may actually increase in certain situations.
The slope of the curve depends upon one of three possible
policies taken by the searcher:

1. Blind engagement scenario: searcher engages a cell
uniformly at random incurring cost of (n— 1)/n.

2. The searcher obtains one tip and engages the cor-
responding cell, which incurs cost (p/(1 + p))a +
1/ +p) (A —q).

3. The searcher obtains at least two tips.

For option 1 the searcher prefers a small n, the option 2
cost is independent of n, and intuitively the cost should
decrease with n for option 3. In the high-cost, high-risk
scenario in Figure 7(b), the searcher chooses either option 1
(when the curves increase) or option 2 (when the curves
flatten out). For small « and p (Figure 7(a)), the searcher
chooses either option 2 or 3. Even though the cost is
nonincreasing with n in Figure 7(a), the cost significantly
decreases for only moderate values of g and the curves
flatten out quickly.

8. Extensions

In our model we make several assumptions that may not
apply in reality. Our objective is to gain insight through
analysis of a relatively simple setting. Several extensions
are possible, and the key to handling them is to properly
modify the cost function (11) such that most of the results
from §§3-6 generalize in a natural way. Because of space
considerations, we only present one extension in this section.
Appendix L considers several others. The main extension
we analyze here focuses on the situation where the search
continues if the searcher chooses the wrong cell. In this case,
the target does not rush his attack if the searcher chooses the

Optimal cost in the uniform state as a function of n for ¢ € {0.21, 0.35,0.55,0.75, 0.95} for two combinations
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wrong cell and only executes a mature attack. In Appendix L
we consider the situation where one source generates a
stream of correlated tips. In that case future tips become
less valuable. We also examine the situation where there is
no target and the searcher has the option to end the search
before an engagement. Other extensions allow for multiple
classes of informants and nonexponential distributions for
the time until the target executes the attack.

8.1. Search Continues Following an Incorrect
Engagement

In some situations, when the target is either oblivious to the
searcher’s failed attempt or determined to wait until the plot
matures, the search may continue following the engagement
of an empty cell. Because the target is static and detection
is perfect, the searcher can discard evidently empty cells
from future consideration. Specifically, p; =0 following an
engagement of an empty cell j. The cost of engaging cell j
incorrectly is c;. Because we allow the false positive cost
to vary by cell, the searcher may opt to engage cells with
a small location probability if c; is also small, in order to
eliminate the cell from further consideration. Rather than
use the cost-ratio «, in this subsection we include separate
parameters for the false positive cost (c;) and the damage
from a mature attack (d).

The system now has two types of state transitions. The
first, as before, occurs when a tip points at cell i, in which
case state p transitions to state p(*?. The second (new)
type occurs when the searcher incorrectly engages cell j,
and the state p transitions to state p~/ in which p;, =0.
The set A(p) = {i: p; > 0} represents the “active” cells
(i.e., cells that have not been incorrectly searched yet). The
informant is aware of the searcher’s failed engagements and

therefore refrains from pointing at these cells in future tips.

The probability mass associated with an evidently empty
cell is proportionally redistributed among the active cells.
That is,

P[informant says i | p, target in k|
q
g+ (AP =D -q)/(n—1)

(I-¢g)/(n—1)
g+ (AP =D -g)/(n=1)

ifi=k

if i #k.

Under this reasonable assumption the ratio y between the
probabilities of correct and incorrect tips remains unchanged,
and therefore p™*" is computed as in Equation (5). If cell i
is searched and found empty, then

0 if j=i
(-

Pi i
Zk;&i Pk

Next, we slightly modify the definition of r;(p) from (7) to
ensure that ", r;(p) = 1. Specifically,

4

q
g+ (AP -D(1—g)/(n—1)"
(1—q)/(n—1) (o)
r(p) = g+ (AP -D(1—g)/(n—1) " D
if ie A(p)
0 ifigA(p).

Although the expected cost to wait remains essentially the
same as in the original model, the expected cost to engage
becomes:

E[Cost of engaging cell j | p] = (1 —p;)(c; + C(p)).

The updated cost function is:

C(p)= min(jgi(r;)((l —p;)(c;+ c(p))),

1
WA

Lodb i X amee)).

icA(p)

Obviously, if only one active cell remains (|A(p) = 1)),
C(p) =0 because the searcher knows the only remaining
cell contains the target.

The analysis of the cost function and engage decision is
similar to the analysis in §3—7. First consider the case of
imminent threat where the searcher does not wait for tips
but continuously engages cells until he finds the target. This
is the classical whereabouts search problem (Kadane 1971,
Stone 1975) for which the optimal policy is to search the
cells in ascending order of the ratios ¢;/p;, j=1,...,n. Let
g(i) denote the index of the ith smallest value of ¢;/p; in
A(p). Thus, g(1) and g(|A(p)|) are the indices of the cells
with the smallest and largest ratios c;/p;, respectively. Let
K (p) denote the cost of this policy. In the Appendix K we
show that

[Ap)] il

K(p)= D Pyii) 2_ ety (24)
=2 i1

The searcher should engage a cell if K(p) < (p/(1+p))d.
If that engaged cell is empty, this condition may not hold in
the next state. It is most reasonable (albeit, not proved) that
the searcher should engage cell g(1).

K (p) also plays a crucial role in the sufficient condition
to wait
wait if min c,(1—p,)> P S (),

JjeA(p) 1+p I+p. 50,

Note that computing K (p‘*”) requires ranking according to
c;/ p;+’), which depends on i.
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9. Summary and Conclusions

In this paper we study a time-critical variant of the where-
about problem in search theory. This variant applies to many
criminal, military, and homeland security situations where
an investigation team must decide when to act on uncertain
intelligence. Examples include counterterror and counterin-
surgency operations, which rely on human intelligence and
intercepted communications. Unlike the original whereabout
model that produces a sequencing rule, we consider here
a stopping rule; rather than advising the searcher how to
optimally sequence the search among the various cells, our
model identifies the time when the information is sufficiently
definitive to act upon. Either action—engage or wait for addi-
tional information—incurs costs. We analytically solve the
two extremes: the two-cell case uses a threshold policy and
the searcher chooses among three options in the infinite-cell
case. We also illustrate how the engage region of the state
space varies with the model parameters for the three-cell
case. For larger problems, we use a k—stage look-ahead
approach to obtain sufficient conditions to engage or wait.
We show that these conditions converge to a necessary and
sufficient condition to engage as k increases. In particular
for k =1, the myopic policy provides nearly optimal results
over a broad range of parameter values. The model clearly
captures the trade-offs among the various components of the
threat: the mean time until the plot matures, the flow rate of
tips, and the damages associated with failed searches and
successful attacks. We present several variants of the model
in §8 and Appendix L to capture alternative scenarios. These
include the search continuing after an incorrect engagement,
multiple types of informants, and nonexponential attack time
distributions. Most of the analysis and methods discussed
apply to these extensions.

Some of our main results are intuitive: the searcher is
more likely to wait with a more reliable informant and is
more likely to engage as the cost or likelihood of a mature
attack increases. Less intuitive insights that emerge from
our analysis include the following: (1) the optimal number
of tips received by the searcher may not be monotone as
a function of the informant reliability (see §4) and (2) in
many cases there is little to no reduction in the optimal cost
as we increase the number of cells (see §7.2).

Future work could model the reliability parameter g as
a random variable (e.g., beta distributed), which updates
as the searcher receives more information. This would be
particularly appropriate in the situation where the target
only executes his attack when it fully matures (see §8.1).
In this case the searcher could search multiple cells and
thus verify the reliability of the informant. Another variant
would capture strategic behavior of the target who trades off
a more effective attack that needs longer planning time with
the increased risk of detection by the searcher. Finally, one
could examine another time-critical situation where the target
may leave instead of executing an attack (e.g., a criminal
or terrorist leader who moves around to avoid detection).
In this case the searcher has three options: receive another

tip, engage a cell, or call off the search because the target
has likely left the system. The modeling of this situation
may include changepoint analysis (Carlstein et al. 1994) to
handle the change in tip dynamics after the target departs.

Supplemental Material

Supplemental material to this paper is available at http://dx.doi
.org/10.1287/opre.2016.1488.
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