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This article presents the first models developed specifically for understanding the infiltration and interdiction of ongoing
terror plots by undercover intelligence agents, and does so via novel application of ideas from queueing theory and Markov
population processes. The resulting “terror queue” models predict the number of undetected terror threats in an area from
agent activity/utilization data, and also estimate the rate with which such threats can be detected and interdicted. The
models treat terror plots as customers and intelligence agents as servers. Agents spend all of their time either detecting
and infiltrating new terror plots (in which case they are “available”), or interdicting already detected terror plots (in which
case they are “busy”). Initially we examine a Markov model assuming that intelligence agents, while unable to detect all
plots, never err by falsely detecting fake plots. While this model can be solved numerically, a simpler Ornstein-Uhlenbeck
diffusion approximation yields some results in closed form while providing nearly identical numerical performance. The
transient behavior of the terror queue model is discussed briefly along with a sample sensitivity analysis to study how
model predictions compare to simulated results when using estimated versus known terror plot arrival rates. The diffusion
model is then extended to allow for the false detection of fake plots. Such false detection is a real feature of counterterror
intelligence given that intelligence agents or informants can make mistakes, as well as the proclivity of terrorists to
deliberately broadcast false information. The false detection model is illustrated using suicide bombing data from Israel.
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bombings.
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1. Introduction
Intelligence operations protect society against the threat of
terrorism. Guiora (2007, p. 218) argues that “Without intel-
ligence, governments cannot protect their citizens. Without
knowing who the terrorist is, governments cannot know
where he is. Without knowing where the suicide bomber
is, governments cannot prevent planned suicide bombing
attacks,” and in a subsequent book states succinctly that
“Intelligence is the heart and soul of operational counter-
terrorism” (Guiora 2008, p. 80).
In Israel, human intelligence operations (HUMINT) have

been credited in large measure with bringing the wave of
suicide bombing attacks on Israeli civilians that accompa-
nied the Second Intifada under control (Kaplan and Kress
2005, Kaplan et al. 2006). Undercover counterterror intel-
ligence operations have a long history in Israel, where
units known in Hebrew as “mistaravim” (agents disguised
as Arabs) have immersed themselves culturally and phys-
ically in Israeli Arab and Palestinian populations for the
purpose of infiltrating and interdicting terror cells before
they can attack (Deflem 2010). Indeed, in a candid response
to a question asking whether Israeli intelligence had infil-
trated the Hamas (which was responsible for the majority
of suicide bombing attacks inside Israel), the former head
of the Palestinian Authority’s General Intelligence Tawfiq
al Tirawi responded that all Palestinian organizations had
been penetrated by the Israelis (Andraeus 2009).

The importance of infiltrating terror plots is also reflected
in the national intelligence strategy of the United States.
The first of six mission objectives stated in this strategy
document is “Combat Violent Extremism,” and within this
mission objective, the intelligence community is urged
to “� � �penetrate and support the disruption of terrorist
organizations � � �” (Blair 2009). A recent United States
example of the importance of such HUMINT infiltrations
can be found in the discovery and interruption of a plot to
bomb two synagogues and shoot down a military aircraft
with a surface-to-air missile; as reported in the New York
Times, “The investigation � � �began with the work of a con-
fidential informant, who portrayed himself as an agent of
a Pakistani terror organization, and who became a critical
member of the men’s plot” (Wilson 2009). Other recent
terror threats in the United States that were penetrated and
disrupted by undercover intelligence operatives include the
interdiction of Najibullah Zazi, charged with plotting bomb
attacks (Johnston and Shane 2009), and the arrest of Hosam
Maher Husein Smadi, charged with attempting to bomb a
Dallas skyscraper (Associated Press 2009).
Beyond the penetration and disruption of individual ter-

ror plots, data gleaned from intelligence operations offer the
potential to infer the magnitude of current terror threats.
For example, in May 2007, Britain’s Security Service (the
MI5, http://www.mi5.gov.uk) reported that it was monitor-
ing about 2,000 people believed to be “� � � actively involved
in supporting Al Qaeda” (Gardner 2007). However, the
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number of suspects under surveillance is presumably limited
by the number of intelligence agents/informants actively
searching for and/or watching such persons! Using whatever
criteria MI5 employs to designate individuals as Al Qaeda
supporters, how many more (or fewer) individuals would be
observed if MI5 doubled (or halved) the number of under-
cover agents/informants dedicated to detecting and monitor-
ing terror suspects? In principle, if the processes by which
intelligence agents detect and interdict terror cells can be
modeled, then one should be able to infer answers to ques-
tions of this sort from data generated by intelligence agents
in the field.
This article provides the first models developed specif-

ically for understanding the infiltration and interdiction of
ongoing terror plots by undercover intelligence agents, and
does so via novel application of ideas from queueing theory
and Markov population processes. The resulting “terror
queue” models predict the number of undetected terror
threats in an area from agent activity/utilization data while
also estimating the rate with which such threats can be
interdicted. The customers in this system are the terror plots
themselves, while the servers are “deep” undercover intel-
ligence agents who, when successful, infiltrate terror plots
and facilitate their disruption. Terror plots that evade detec-
tion and result in successful terror attacks are analogous
to customers who renege from a queue before receiving
service; plots that are detected and infiltrated by intelli-
gence agents are analogous to customers who enter service;
and plots that are interdicted (with the terrorists involved
arrested or otherwise incapacitated) are analogous to cus-
tomers who complete service. Unlike typical queueing sys-
tems, customers (terror plots) arriving to terror queues
are not immediately visible upon arrival; rather, customers
must be discovered by available servers before service can
commence. Consequently, and again unlike typical queues,
waiting customers (undetected terror plots) and available
servers (uncommitted intelligence agents) coexist: it is not
the case in terror queues that waiting customers imply that
all servers are busy. Finally, while it is especially important
for national security that “customers” are “well-serviced”
in such terror queues, this is one queueing system where
customers clearly prefer not to receive service!
The next section provides a steady-state Markov model

for the simplified situation where intelligence agents, while
unable to detect all terror plots, never err by falsely detecting
“fake” plots and hence do not waste any time investigat-
ing suspects who ultimately are not involved in terrorism.
Agents spend all of their time either detecting new terror
plots (in which case they are “available”), or interdict-
ing newly detected terror plots (in which case they are
“busy”). While this model has a clean formulation, it
can only be solved numerically. However, the numerical
results from this model suggest that the numbers of unde-
tected terror plots and busy intelligence agents embedded
in detected plots follow a bivariate normal distribution,
so there is a simple linear relation between the expected

number of undetected plots and the observable number of
busy agents. Such findings are consistent with the literature
on Markov population processes and associated diffusion
approximations.
Taking advantage of known approximation techniques

from this literature, in §3 we construct a much simpler
Ornstein-Uhlenbeck model that ensures such joint nor-
mality and note that the numerical results of this latter
model are nearly identical to the Markov approach (except
near the boundaries of the state space, for which sepa-
rate approximations are provided). We also consider briefly
the transient behavior of the terror queue model using a
combination of analytic approximations and simulation and
provide a sample sensitivity analysis to study how model
predictions compare to simulated results when using esti-
mated versus known terror plot arrival rates.
In §4, we extend the Ornstein-Uhlenbeck model to

the more realistic case of false detection. False detection
is an important reality of counterterror intelligence, not
only because intelligence agents or informants can make
mistakes, but also due to the proclivity of terrorists to
broadcast false information. With false detection, intelli-
gence agents become occupied investigating cases that ulti-
mately prove to be unconnected in a significant way to
actual terror plots. Such cases are costly because they divert
agents from the ability to detect and investigate real plots,
which in turn serves to lower the rate with which real plots
can be interdicted. Section 5 closes with a brief discussion
of the approach, parameter estimation, potential applica-
tions of the model to decision problems in counterterror
intelligence operations, and ideas for future research.

2. Markov Terror Queue
This section develops a Markov model for the joint dis-
tribution of undetected and detected terror plots in steady
state. As a first model for this process, and to maintain
tractability, the assumptions employed are the simplest pos-
sible. The focus is on introducing a new modeling paradigm
for (counter)terrorism via simple examples rather than on
attempting to obtain the highest degree of generality.
Assume that new terrorist plots are hatched in accord

with a Poisson process with rate � per unit time (the case
where � itself changes with time is considered briefly
in §3.2). The time required to plan and carry out a terror
attack follows an exponential distribution with mean 1/�.
Let X denote the number of undetected terror plots-in-
progress; absent interdiction, all terror plots will be suc-
cessful, and X can therefore be thought of as the number
of customers in a self-service (and hence M/M/�) queue.
Alternatively, one can think of the terror plots as customers
with per capita reneging rate � (as is common in call cen-
ter models, e.g., Garnett et al. 2002) who are waiting to
enter service (detection by intelligence agents) that never
comes (since there are as yet no intelligence agents in the
model). The result is the same: in steady state, X will be
distributed as a Poisson random variable with mean �/�.
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However, the government deploys a force of f under-
cover intelligence agents for the purpose of detecting and
infiltrating terror plots and interdicting those responsible.
For our purposes, an agent could refer to a combination
of intelligence personnel and/or informants who function
as a single unit. Let Y denote the steady-state number of
terror plots detected and infiltrated but as yet not inter-
dicted. We assume that agents spend all of their time either
detecting/infiltrating terror plots (these agents are defined
to be “available” ) or as part of those terror plots they have
infiltrated until those plots are interdicted (these agents are
defined to be “busy”). Thus, there is a one-to-one cor-
respondence between the number of detected but not yet
interdicted terror plots and the number of busy undercover
agents. The agents themselves need not be responsible for
the physical capture of terrorists, but we do presume that
agents remain busy until a detected plot is interdicted. If a
terror plot has been detected, we assume that the terrorists
involved are interdicted in time to prevent an attack, and
the additional time from detection to interdiction follows an
exponential distribution with mean 1/�. Finally, we assume
that undetected terror plots are detected at a rate propor-
tional to both the extant number of undetected plots X and
the number of available intelligence agents f − Y , that is,
we assume that terror plots are detected at rate �X�f − Y �
where � is the detection rate per terror plot per available
agent per unit time. Other detection functions are possible,
but beyond expecting the overall detection rate to be an
increasing function of both the number of undetected plots
(X) and available agents (f − Y ), it is difficult to argue
why one functional form for the aggregate detection rate
should be preferable to another. Similarly, it is possible that
the detection rate could depend in some way on the total
number of agents f , though again it is difficult to state if
or how this occurs absent detailed data.
A flow diagram for this “terror queue” model appears in

Figure 1.
The “law of conservation of terror plots” requires that in

steady-state,

� = �E�X� + �E�Y �� (1)

Figure 1. Terror plot flow in the terror queue model.

Undetected terror plots
(X )

Detected terror plots
=

Busy intel agents
(Y )

�(f–Y )X �Y

�X

Successful terror attacks

Interdicted
terror attacks

�

Since every plot hatched results in a successful terror attack
or is interdicted, the probability that a terror plot is inter-
dicted equals

Pr	Interdiction
 = �E�Y �

�
· (2)

Also of great interest is the conditional distribution of the
number of undetected terror plots given the number of busy
intelligence agents (which equals the number of detected
terror plots).
The process just described can be modeled as a bivari-

ate Markov process with state �X�Y � corresponding to the
number of undetected and detected terror plots, respec-
tively. The set of possible states is given by the integers
	x = 0�1�2� � � � � y = 0�1�2� � � � � f 
. Let the steady state
probability of x undetected and y detected terror plots be
given by pxy = Pr	X = x�Y = y
. These probabilities must
satisfy the generic balance equations

�� + �x + �y + �x�f − y��pxy

= �px−1� y + ��x + 1�px+1� y + ��y + 1�px�y+1

+ ��x + 1��f − y + 1�px+1� y−1 (3)

for x = 1�2� � � � � y = 1�2� � � � � f −1 (see Figure 2), in addi-
tion to the boundary conditions

�p00 =�p10+�p01 (4)

��+f��p0f =�p1f +�p1�f −1 (5)

��+�y�p0y =�p1�y +��y+1�p0�y+1+��f −�y−1��p1�y−1

for y=1�2�����f −1 (6)

��+�x+�fx�px0 =�px−1�0+��x+1�px+1�0+�px�1

for x=1�2���� (7)

��+�x+�f �pxf

=�px−1�f +��x+1�px+1�f +��x+1�px+1�f −1

for x=1�2���� (8)

and the probability conservation equation
�∑

x=0

f∑
y=0

pxy = 1� (9)
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Figure 2. State transitions in the Markov terror queue
model.
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The solution to these linear equations must be found numer-
ically and, once obtained, can be used to compute E�X�,
E�Y �, the probability of interdicting an attack, and the
conditional distribution of the number of undetected terror
plots given the observed number of busy agents, that is,
Pr	X = x � Y = y
�
As a numerical example, Figure 3 presents the joint prob-

ability distribution of undetected and detected terror plots
corresponding to the following parameter choices: � = 100
new terror plots per year, � = 1 attack per year (meaning an
average time of one year from conception to completion of
a terror attack), � = 0�1 detections per terror plot per under-
cover agent per year, � = 4 interdicted plots per busy under-
cover agent per year (meaning an average time of three
months from detection to interdiction), and f = 30 under-
cover agents. This distribution is found from the solution of

Figure 3. The steady state joint distribution of
undetected (X) and detected (Y ) terror plots
in the Markov terror queue model when
� = 100, � = 1, � = 0�1, f = 30, and � = 4.
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Equations (3)–(9) using the parameter values just described.
Even though on average only half of the 30 intelligence
agents are busy, the undercover effort reduces the mean
number of undetected plots from 100 to 40, which in this
example corresponds to an interdiction probability of 60%.
The conditional distribution of the number of undetected

terror plots given the observed number of busy intelligence
agents is given by

Pr	X = x � Y = y
 = Pr	X = x�Y = y


Pr	Y = y

= pxy∑�

i=0 piy

x = 0�1� � � � � y = 0�1� � � � � f (10)

from which the conditional mean number of undetected
plots E�X � Y = y� can be evaluated along with the
moments or distribution of any other desired conditional
function. The marginal distribution of the number of busy
agents corresponding to the joint distribution shown in Fig-
ure 3 is graphed in Figure 4; also plotted is the conditional
expected number of undetected plots given the number
of busy agents (E�X � Y = y�). Note that the marginal
distribution of Y resembles a normal distribution, while
the conditional expected number of undetected terror plots
E�X � Y = y� is linear in y. These results should not prove
surprising given that the joint distribution of X and Y
shown in Figure 3 resembles a bivariate normal distribution
(with normally distributed marginals as a consequence).
Further, that the conditional mean of one random variable
is linear in the given value of a second random variable is
well known when the random variables in question are gov-
erned by a bivariate normal distribution (e.g., Freund 1971,
§13.2). In the example under consideration, the slope of the
conditional expectation (or regression) line approximately
equals 1/2, suggesting that, on average, there is one addi-
tional undetected terror plot for every two busy undercover
agents.

Figure 4. Comparing the Markov terror queue model
and its diffusion approximation: the steady
state marginal distribution of the number of
detected terror plots (busy agents) Y , and the
conditional expected number of undetected
terror plots X given that Y = y, E�X � y�, for
both models.
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3. Ornstein-Uhlenbeck Terror Queue
While Equations (3)–(9) can be solved numerically to
obtain results for any particular set of parameter values,
the approximate normality shown in Figures 3 and 4 (and
the linear regression curve for E�X � Y = y�) suggest
that a more direct approach is possible. The terror queue
model of Equations (3)–(9) is an example of a Markov
population process, which is the multivariate generaliza-
tion of a birth-death process (Kingman 1969, McNeil and
Schach 1973). A considerable literature exists regarding the
approximation of Markov population processes by diffu-
sion models centered on the deterministic differential equa-
tions associated with the process (e.g., Barbour 1976; Kurtz
1970, 1981; McNeil and Schach 1973). This section pro-
poses such an approximation that proves much simpler to
implement than the original Markov model while provid-
ing nearly identical numerical results. The result will be
a bivariate Ornstein-Uhlenbeck diffusion approximation to
the original Markov terror queue model (note that uni-
variate Ornstein-Uhlenbeck processes have long played an
important role in providing diffusion approximations to
queueing models, e.g., Browne and Whitt 1995, Halfin
and Whitt 1981, Garnett et al. 2002). The specific meth-
ods employed below follow Barbour (1976), and have also
been applied to the study of stochastic epidemic models by
N

�
asell (2002).
To begin, consider a deterministic model for Figure 1:

letting x�t� and y�t� denote undetected and detected ter-
ror plots at time t, we can model these quantities using
differential equations as

dx�t�

dt
= � − �x�t� − �x�t��f − y�t�� (11)

and

dy�t�

dt
= �x�t��f − y�t�� − �y�t� (12)

subject to initial conditions x�0� and y�0�. Our interest is
in the steady state, so letting x∗ and y∗ denote the limit-
ing values of x�t� and y�t� as t → � (and dx�t�/dt and
dy�t�/dt approach zero), we obtain

� = �x∗ + �x∗�f − y∗� (13)

and

�x∗�f − y∗� = �y∗ (14)

as identifying equations for the equilibrium solution. These
equations solve to yield

x∗ = ��−�f −��/��+√��+�f +��/��2−4��f

2�
(15)

and

y∗ = ��+�f +��/��−√��+�f +��/��2−4��f

2�
· (16)

Table 1. Conditional joint probability distribution of
the jumps in undetected �
X�t�� and detected
�
Y �t�� terror plots in the terror queue model.


Y �t� = −1 
Y �t� = 0 
Y �t� = +1


X�t� = −1 0 �x
t �x�f − y�
t


X�t� = 0 �y
t 1− �� + �x + �y + �x�f − y��
t 0

X�t� = +1 0 �
t 0

Now we will construct a stochastic diffusion model.
Let X�t� and Y �t� denote the (random) number of unde-
tected and detected terror plots, and define 
X�t� (
Y �t�)
as X�t + 
t� − X�t� (Y �t + 
t� − Y �t�). Following Fig-
ure 2, the conditional joint probability distribution of 
X�t�
and 
Y �t� given that X�t� = x and Y �t� = y is shown in
Table 1.
Working with this joint conditional distribution, the local

drift terms satisfy

E�
X�t� � x� y� = �� − �x − �x�f − y��
t (17)

and

E�
Y �t� � x� y� = ��x�f − y� − �y�
t� (18)

Rather than work directly with these terms, which would
require solving a nonlinear diffusion, following Barbour
(1976) we presume that in steady-state, both X�t� and Y �t�
assume values close to the deterministic equilibria derived
in Equations (15)–(16) above and linearize the drift terms
via a first order Taylor expansion. Defining the Jacobian
matrix A as

A =

⎛
⎜⎜⎜⎝

d2x

dtdx

d2x

dtdy

d2y

dtdx

d2y

dtdy

⎞
⎟⎟⎟⎠

x=x∗� y=y∗

=
(−� − ��f − y∗� �x∗

��f − y∗� −�x∗ − �

)
� (19)

we approximate the local drift terms by(
E�
X�t� � x� y�

E�
Y �t� � x� y�

)
≈ A

(
x − x∗

y − y∗

)

t� (20)

which are linear in x and y.
We next construct the local covariance matrix S
t of


X�t� and 
Y �t�. Again following the conditional joint
distribution of Table 1 (and retaining terms only up to
order 
t), we obtain

S
t

=
(

Var�
X�t� �x�y� Cov�
X�t��
Y �t� �x�y�

Cov�
X�t��
Y �t� �x�y� Var�
Y �t� �x�y�

)

=
(

�+�x+�x�f −y� −�x�f −y�

−�x�f −y� �x�f −y�+�y

)

t� (21)
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However, our interest is in the steady state; following
Barbour (1976) we approximate S by S∗, which fol-
lows (21) evaluated at x∗ and y∗ of Equations (15)–(16).
Together, Equations (20) and (21) lead to a bivari-

ate Ornstein-Uhlenbeck diffusion process (Barbour 1976,
Gardiner 2004, McNeil and Schach 1973), which results in
a bivariate normal distribution for the steady-state numbers
of undetected (X) and detected (Y ) terror plots. The means
E�X� and E�Y � are given by the deterministic equilibrium
values x∗ and y∗, while the stable covariance matrix

� =
(

Var�X� Cov�X�Y �

Cov�X�Y � Var�Y �

)
(22)

is the solution to the algebraic equation (Barbour 1976,
Gardiner 2004)

A� + �AT = −S∗� (23)

As a consequence of the multivariate normality of
X and Y , the conditional distribution of the number of
undetected plots X given y busy undercover agents is also
normal, with mean following the well-known regression
equation (e.g., Freund 1971, §13.2)

E�X � Y = y� = E�X� + Cov�X�Y �

Var�Y �
�y − E�Y �� (24)

and corresponding variance

Var�X � Y = y� =Var�X��1−Corr2�X�Y �� (25)

where Corr�X�Y � is the correlation of X and Y . Of par-
ticular interest is the slope in Equation (24), which can be
shown to equal

Cov�X�Y �

Var�Y �
=
(

f

y∗ + �

�x∗2 − �y∗

�

)−1

� (26)

As an example, consider the same parameters used ear-
lier to illustrate the Markov terror queue: � = 100� � = 1�
� = 0�1; � = 4� and f = 30. The probability density result-
ing from the diffusion process is virtually indistinguish-
able from the joint distribution obtained from solving the
Markov balance Equations (3)–(9). In particular, consider
Figure 4 which shows the marginal distributions for the
number of detected terror plots (busy intelligence agents)
and the conditional expected number of undetected terror
plots as a function of the number of busy agents for both the
Markov and diffusion terror queue models. The results are
essentially identical, as further indicated by Table 2, which
reports the values of several key quantities for both models.

3.1. Boundary Approximations

Note that in deriving the diffusion approximation we have
ignored the boundary conditions at X = 0, Y = 0, and
Y = f . For example, one would not expect the distribution

Table 2. Comparing the Markov and diffusion terror
queue models.

Measure Markov Diffusion

E�X� 40�12 40
E�Y � 14�97 15
Var�X� 46�70 46�53
Var�Y � 8�23 8�27
Cov�X�Y � 4�07 4�08
Corr�X�Y � 0�2077 0�2081
Cov�X�Y �

Var�Y �
0�4946 0�4938

of the number of detected terror plots (busy agents) Y to
be approximately normal if y∗ is close to 0 or f , nor would
Equation (24) hold. However, if y∗ is close to an extreme,
a simple approximation for the distribution of the number
of undetected terror plots X can be found by setting Y = 0
or f depending upon whether the undercover agents are
almost always idle or busy, which produces a univariate
probability model for X. Working directly from the flows
in Figure 1, if Y ≈ 0 then X can be approximated by an
infinite server queue with arrival rate � and service rate
� + �f , which would result in X having a Poisson distri-
bution with mean (and variance) equal to

E�X� = �

� + �f
· (27)

Alternatively, if Y ≈ f , then X can be modeled by a sat-
urated M/M/1 queue with arrival rate �, an always busy
server with service rate �f , and reneging rate � per cus-
tomer (in this case per undetected terror plot). This would
result in

E�X� ≈ � − �f

�
(28)

and

Var�X� ≈ �

�
(29)

with probability distribution following that of a birth-death
process (Kaplan 1987). Better approximations for the dis-
tribution of Y (and associated conditional distribution of X)
could be derived when the distribution of Y is concen-
trated near 0 or f (Gardiner 2004, Browne and Whitt 1995),
though such refinements are beyond the purpose of this
paper.

3.2. Transient Behavior and Sensitivity Analysis

For the steady state terror queue model to prove use-
ful, the time required to converge to steady state con-
ditions should not be too large. While a comprehensive
analysis of the transient behavior of this model is beyond
the scope of this paper, some insights about the transient
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behavior can be illustrated by a combination of analysis
and simulation. Consider first the deterministic model given
by the differential Equations (11)–(12). By inspection of
Equation (11), it is clear that lower and upper bounds for
the instantaneous “departure” rate for undetected plots are
given by �x and �� + �f �x, respectively. Thus, in the
deterministic model, the number of undetected plots x will
converge to its steady state value exponentially fast at a
rate bounded between � and � + �f , which implies that
the relaxation time constant for this model falls between
1/�� + �f � and 1/�. More precision can be gained from
studying the linearized version of this model, which can be
written as⎛
⎜⎜⎝

dx�t�

dt

dy�t�

dt

⎞
⎟⎟⎠= A

(
x�t� − x∗

y�t� − y∗

)
(30)

where the Jacobian matrix A is given in Equation (19). As
is well known, the rate at which such systems converge is
governed by the eigenvalues of A (e.g., see Strang 1980,
Chapter 5). While there is little to learn from perusing the
symbolic formulas for these eigenvalues, their numerical
values can be computed easily for any set of parameter val-
ues, and the reciprocal of the smallest absolute eigenvalue
defines the relaxation time for the deterministic system pro-
viding both eigenvalues are negative (which is always the
case for the Jacobian matrix of Equation (19)). To illus-
trate, for the parameters used in our example of Figures 3
and 4, we have

A =
(−2�5 4

1�5 −8

)
(31)

with eigenvalues −1�57 and −8�93; thus, the relaxation time
is given by 1/1�57= 0�64 years. Note that this estimate falls
between the bounds stated earlier of 1/�� + �f � = 1/4 and
1/� = 1. As the gap between current and steady state values
is reduced by the factor 1/e over each relaxation time, the
deterministic model suggests that about 1− 1/e or 63% of
the distance between the starting and steady state values will
have been erased by 0.64 years, while 1−exp�−3�, or about
95% of the initial distance from steady state, will have been
erased by three relaxation times or 1.92 years.
To see how well this approximate analysis applies to

the original Markov terror queue, simulation was used to
generate realizations of the number of undetected (X�t�)
and detected (Y �t�) terror plots over time. Figure 5 dis-
plays a typical realization for the parameters of our work-
ing example with X�0� = �/� = 100 and Y �0� = 0; these
initial conditions correspond to the deployment of intelli-
gence agents at time 0 in an environment where the num-
ber of unchecked terror plots had reached its equilibrium
level of 100. Also displayed are the results of the deter-
ministic differential Equations (11)–(12). Not only does the

Figure 5. One realization of simulated undetected and
detected terror plots from the Markov terror
queue model, and associated fluid model
(Equations (11)–(12)) predictions: undetected
(black) and detected (gray) terror plots.
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observed time required to reach steady state accord well
with the predictions based on the approximate analysis of
the deterministic equations, the simulated values track the
deterministic model remarkably well. These results, namely
excellent prediction of the relaxation time and excellent
tracking of the deterministic equations by stochastic real-
izations, have been obtained for many different sets of
parameter values for this model.
The analysis reported above focused on transient behav-

ior given the model parameters, yet at least some of these
parameters must be estimated from data. In particular, the
terror plot arrival rate � must be estimated, while this same
parameter might change over time, perhaps in response
to political conditions. To examine the sensitivity of the
model’s results to such issues, the following simulation
experiment was performed. In each of 1,000 replications
of the experiment, the model was first simulated for three
years with � = 100 as in Figure 5 above. At the start
of year 4, � was then shifted instantaneously to a new
value �′. At the end of year 4, an estimate �̂ for the terror
plot arrival rate � was formed by counting all successful
attacks and detected terror plots observed during year 4.
The idea is that unbeknownst to the intelligence agency,
� has changed. The intelligence agency’s estimate �̂ pre-
sumes that steady state conditions prevail, for as shown in
Equation (1), � does equal the sum of the expected annual
number of successful and detected terror plots in steady
state. The intelligence agency then estimates the expected
number of undetected terror plots at the end of year 4 via
Equation (15) for x∗ using �̂. The resulting value of x∗ was
then compared to the simulated number of terror plots at
the end of year 4, X�4�, to see the magnitude of the error
as measured by both the mean absolute error �X�4� − x∗�
and the root mean squared error

√
�X�4� − x∗�2 (where

the overbar denotes the average over the 1,000 simulation
runs). The results are shown in Table 3.
Consider first the case of �′ = 100, which corresponds to

the continuation of steady state conditions. However, instead
of utilizing the true terror plot arrival rate of � = 100,
this experiment shows what happens when the intelligence
agency must estimate this rate from observed data. When
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Table 3. Simulation experiment results: The sensitivity
of undetected terror plot prediction error to
unobserved changes in the terror plot arrival
rate.

Mean absolute Root mean
�′ 	̂� 	X�4� x̄∗ error squared error

50 72�0 19�0 25�5 7�1 8�5
60 77�9 23�0 28�4 6�6 8�1
70 83�4 27�1 31�1 6�1 7�6
80 89�2 31�3 34�2 6�4 8�0
90 95�3 35�7 37�5 6�4 7�9
100 100�8 40�1 40�6 6�5 8�1
110 105�4 45�0 43�3 7�1 8�8
120 110�1 50�0 46�6 7�6 9�6
130 116�1 54�6 49�8 8�3 10�4
140 121�1 59�1 53�0 9�3 11�6
150 125�4 64�5 55�8 10�9 13�5

� = 100, the steady state number of successful plus detected
terror plots will have a Poisson distribution with a mean
of 100 and a standard deviation of 10; thus, roughly 32%
of the 1,000 replications correspond to samples where �̂
overestimates or underestimates � by at least 10%. Table 3
shows that, as expected in this case, �̂ is an unbiased esti-
mator of � (with ¯̂� = 100�8), steady state has been reached
( 	X�4� = 40�1, recall that in steady state E�X� = 40 for this
example), and x∗ is also unbiased (with x̄∗ = 40�6). How-
ever, the Root Mean Squared Error of 8.1 is larger than
the standard deviation �X ≈ √

46�53= 6�8, while the Mean
Absolute Error of 6.5 is larger than the Mean Absolute
Deviation associated with a normally distributed random
variable of �X

√
2/� ≈ 5�4. These figures show that, when

the steady state assumptions underlying the terror queue
model hold in this example, using �̂ instead of � slightly
increases the error in estimating the unknown number of
terror plots X by x∗.
Now consider what happens as �′ moves away from 100.

The value of �̂ clearly lags �′, overestimating the terror
plot arrival rate when �′ < 100 and underestimating it when
�′ > 100. This is not surprising, considering the discussion
of relaxation times above. However, the absolute error asso-
ciated with estimating X�4� is surprisingly insensitive to
�′ providing �′ < 120 (though the relative error of course
increases as �′ declines). This result can be understood as
follows: while the estimated arrival rate �̂ lags the true
arrival rate �′, the steady state value x∗ associated with �̂
overshoots the value of X�4� that would be associated with
�̂ (as X�4� is recorded only one year after the arrival rate
has shifted while x∗ is the limiting value). These two effects
move in opposite directions and keep the absolute error in
estimating the number of undetected terror plots in check.

4. Ornstein-Uhlenbeck Terror Queue with
False Detection

In the model of the previous section, while undercover
intelligence agents can fail to detect extant terror plots

(the detection rate � is finite after all), all detected plots
are presumed real. However, intelligence agents can make
mistakes and become occupied with the surveillance of
individuals or groups who in fact are not attached to exist-
ing terror plots. Indeed, given that terrorists are almost
certainly aware of intelligence efforts to detect planned
attacks, generating disinformation with the goal of divert-
ing intelligence efforts from real to fake plots is good
strategy for terrorists to employ (see Steele 1989 for a
model of disinformation to guard secrets). To incorporate
this important feature of the intelligence operations envi-
ronment, we now presume that intelligence agents become
busy via both the true detection of real and the false detec-
tion of fake terror plots. In this new model, X will con-
tinue to denote the number of undetected true terror plots in
progress, while Y and Z will denote the number of intelli-
gence agents busy investigating cases triggered by true and
false detections, respectively. Unfortunately for the intelli-
gence agency, while an agent is occupied it is not possible
to know whether (s)he is observing a real plot or a fake
one. However, it remains possible to observe the number of
busy agents Y +Z, which in turn allows inference regarding
the extant number of undetected terror plots.
We will retain the assumption that available intelligence

agents detect terror plots in proportion to their number;
thus, the aggregate number of actual plots detected per unit
time equals �X�f − Y − Z). To this we add the assump-
tion that available intelligence agents are sidetracked by
fake plots at per agent rate �, so that the number of avail-
able agents removed from active surveillance by fake plots
(whether due to deception or detection error) is equal to
��f − Y − Z� per unit time. As before, we presume that
the time to interdict a real terror plot is exponentially dis-
tributed with rate �; in addition, we assume that the time
required for agents following a fake plot to recognize their
error and abandon surveillance is exponentially distributed
with rate �. We retain all other assumptions from the model
of the previous section and will now proceed to develop
the associated trivariate Ornstein-Uhlenbeck terror queue
model.
We begin by writing the differential equations for the

deterministic trivariate model. Letting x�t�� y�t�, and z�t�
denote the number of undetected plots, busy agents occu-
pied with real plots, and busy agents occupied with fake
plots, respectively, we have
dx�t�

dt
= � − �x�t� − �x�t��f − y�t� − z�t�� (32)

dy�t�

dt
= �x�t��f − y�t� − z�t�� − �y�t� (33)

dz�t�

dt
= ��f − y�t� − z�t�� − �z�t� (34)

and the associated steady-state equations

� = �x∗ + �x∗�f − y∗ − z∗� (35)

�x∗�f − y∗ − z∗� = �y∗ (36)

��f − y∗ − z∗� = �z∗� (37)



Kaplan: Terror Queues
Operations Research 58(4, Part 1 of 2), pp. 773–784, © 2010 INFORMS 781

Solving Equation (37) for z∗ yields

z∗ = �

� + �
�f − y∗�� (38)

which implies that the steady state number of available
intelligence agents is given by

f − y∗ − z∗ = �

� + �
�f − y∗�� (39)

Defining

�′ = �
�

� + �
� (40)

Equations (35)–(36) reduce to Equations (13)–(14) after
substituting �′ for �, and consequently x∗ and y∗ are given
by Equations (15 )–(16) following the same substitution.
The impact of introducing false detections on the steady
state numbers of undetected and detected (true) terror plots
is thus equivalent to reducing the detection rate � by the
factor �/�� + �� < 1.
Next we determine the Jacobian matrix A used to lin-

earize the diffusion model. Differentiating the right-hand
sides of Equations (32)–(34) yields

A=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

d2x

dtdx

d2x

dtdy

d2x

dtdz

d2y

dtdx

d2y

dtdy

d2y

dtdz

d2z

dtdx

d2z

dtdy

d2z

dtdz

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

x=x∗�y=y∗�z=z∗

=

⎛
⎜⎜⎝

−�−��f −y∗−z∗� �x∗ �x∗

��f −y∗−z∗� −�x∗−� −�x∗

0 −� −�−�

⎞
⎟⎟⎠� (41)

Defining 
X�t��
Y �t�, and 
Z�t� as in the bivariate dif-
fusion model, the linear approximation for the local drift
terms is given by⎛
⎜⎜⎝

E�
X�t��

E�
Y �t��

E�
Z�t��

⎞
⎟⎟⎠= A

⎛
⎜⎜⎝

x − x∗

y − y∗

z − z∗

⎞
⎟⎟⎠
t� (42)

The joint probability distribution of 
X�t��
Y �t�, and

Z�t� is displayed in Table 4.
From this distribution we obtain the local covariance

matrix S
t (up to terms of order 
t) as

S
t

=
⎛
⎜⎜⎝

�+�x+�x�f −y−z� −�x�f −y−z� 0

−�x�f −y−z� �x�f −y−z�+�y 0

0 0 ��f −y−z�+�z

⎞
⎟⎟⎠
t

(43)

Table 4. Conditional joint probability distribution of
the jumps in undetected �
X�t��, detected
real �
Y �t��, and detected fake �
Z�t�� terror
plots in the terror queue model.

Event Probability


X�t� = +1� 
Y �t� = 0� 
Z�t� = 0 �
t


X�t� = −1� 
Y �t� = 0� 
Z�t� = 0 �x
t


X�t� = 0� 
Y �t� = −1� 
Z�t� = 0 �y
t


X�t� = −1� 
Y �t� = +1� 
Z�t� = 0 �x�f − y − z�
t


X�t� = 0� 
Y �t� = 0� 
Z�t� = +1 ��f − y − z�
t


X�t� = 0� 
Y �t� = 0� 
Z�t� = −1 �z
t


X�t� = 0� 
Y �t� = 0� 
Z�t� = 0 1− �� + �x + �y + ��x + ��

· �f − y − z� + �z�
t

which we approximate with S∗, which is S evaluated at the
deterministic equilibria x∗, y∗, and z∗.
Together, Equations (42)–(43) provide a trivariate

Ornstein-Uhlenbeck diffusion model for the steady state
number of undetected, true, and fake terror plots
X, Y , and Z. The associated multivariate normal distribution
has means x∗, y∗, and z∗ and covariance matrix � satisfy-
ing Equation (23) using A and S∗ as defined in Equations
(41)–(43). Inference regarding the number of extant unde-
tected terror plots in this model must rely on the observed
number of busy intelligence agents y + z, for it is not possi-
ble to determine y and z individually. However, since Y and
Z are both normally distributed, their sum is also normally
distributed, which means that the conditional distribution of
X given that Y + Z = b busy agents is normally distributed
with mean

E�X � Y + Z = b�

= E�X� + Cov�X�Y + Z�

Var�Y + Z�
�b − E�Y � − E�Z�� (44)

and variance

Var�X � Y + Z = b� =Var�X��1−Corr2�X�Y + Z��� (45)

Use of Equations (44)–(45) requires recognizing that

Cov�X�Y + Z� =Cov�X�Y � +Cov�X�Z� (46)

and

Var�Y + Z� =Var�Y � +Var�Z� + 2Cov�Y �Z� (47)

where the variance and covariance terms appearing on the
right-hand sides of Equations (46)–(47) are the appropriate
elements of the covariance matrix �.
One can go further—since Y is not observable, it is of

interest to estimate the total number of true terror plots
X+Y conditional upon the observed number of busy agents
Y +Z. Again, due to the trivariate normality of X�Y , and Z
in the diffusion model, the conditional distribution of the
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total number of true terror plots will be normally distributed
with mean

E�X+Y �Y +Z=b�

=E�X+Y �+ Cov�X+Y �Y +Z�

Var�Y +Z�
�b−E�Y �−E�Z�� (48)

and variance

Var�X + Y � Y + Z = b�

=Var�X + Y ��1−Corr2�X + Y �Y + Z�� (49)

where

Cov�X + Y �Y + Z�

=Cov�X�Y � +Cov�X�Z� +Cov�Y �Z� +Var�Y � (50)

and

Var�X + Y � =Var�X� +Var�Y � + 2Cov�X + Y �� (51)

4.1. Trivariate Boundary Approximations

Thus far, our analysis of the trivariate terror queue model
has ignored boundary conditions, of which the most impor-
tant are that the total number of occupied intelligence
agents Y + Z must fall between 0 and f inclusive. In the
uninteresting case where all agents are almost always idle,
the same “light traffic” approximation proposed in Equation
(27) can be applied, and the number of undetected terror
plots X would follow a Poisson distribution with mean
�/�� + �f �. The more interesting case is when all agents
are almost always busy, that is, Y + Z ≈ f . If Y + Z = f ,
then one can focus solely on the number of agents Y who
are following real threats. Given that X = x and Y = y,
the number of agents following real threats will increase
only if an agent following a fake threat completes ser-
vice (this occurs with rate ��f − y�) and is then immedi-
ately occupied by a real threat (this occurs with probability
�x/��x + ��), thus the overall rate with which Y → Y + 1
given X = x and Y = y equals ��f −y��x/��x +��. Simi-
larly, the number of agents following real threats will only
decrease if an agent following a real threat completes ser-
vice (this occurs with rate �y) and is then immediately
occupied by a fake threat (with probability �/��x + ��),
implying that the overall rate with which Y → Y − 1 given
X = x and Y = y equals �y�/��x+��. Finally, again given
that X = x and Y = y, the number of undetected terror
plots X increases whenever a new plot arrives (with rate �),
and declines with successful attacks (rate �x) or when-
ever a busy intelligence agent completes service (with rate
�y + ��f − y�) and immediately detects a real plot (with
probability �x/��x + ��).

These arguments enable the construction of an approxi-
mating bivariate Ornstein-Uhlenbeck diffusion. The deter-
ministic differential equations for this approximation follow

dx�t�

dt
=�−�x�t�− �x�t�

�x�t�+�
��y�t�+��f −y�t��� (52)

and

dy�t�

dt
= ��f − y�t��

�x�t�

�x�t� + �
− �y�t�

�

�x�t� + �
· (53)

After defining

�′′ = �
�

�
(54)

and setting the left-hand sides of Equations (52)–(53) to
zero, the resulting equilibrium values x∗ and y∗ are again
given by Equations (15)–(16) upon substituting �′′ for
�. Following the same derivations used previously, the
Jacobian matrix A and local covariance matrix S∗ are
given by

A =

⎛
⎜⎜⎜⎝

−�−��y∗ +��f −y∗��
��

��x∗ +��2
��−��

�x∗

�x∗ +�

��y∗ +��f −y∗��
��

��x∗ +��2
− ���+��x∗�

�x∗ +�

⎞
⎟⎟⎟⎠ (55)

and

S∗ =
⎛
⎜⎜⎝

�+�x∗ +�y∗ −��f −y�
�x∗

�x∗ +�

−��f −y�
�x∗

�x∗ +�
��f −y∗�

�x∗

�x∗ +�
+�y∗ �

�x∗ +�

⎞
⎟⎟⎠� (56)

Applying Equation (23) to A and S∗ above yields the
steady-state covariance matrix � for this approximation. To
summarize, if the total number of busy intelligence agents
Y +Z ≈ f , then the joint distribution of X and Y is approx-
imately bivariate normal with means x∗ and y∗ and covari-
ance matrix as derived above.

4.2. Example: Suicide Bombings in Israel

Purely as an illustrative example, consider suicide bomb-
ing attacks targeting Israelis during the Second Intifada.
The Israel Security Agency (also known as the Shin Bet or
the Shabak, http://www.shabak.gov.il/english) reports that
between 2000 and 2007 inclusive there were an average
of �x∗ = 19 successful suicide bombings annually (Israel
Security Agency 2008), while unpublished data from the
same agency suggest the interdiction of �y∗ = 66 suicide
bombings annually, implying an average total attack rate of
� = 85 per year and an interdiction rate �y∗/� = 77�6%.
The number of undercover intelligence cells f deployed to
detect and interdict terrorist attacks is, of course, classified
information. Cordesman (2006) reports that special units
operating within the 8,000-strong Border Guard (Mishmar
Ha’gvul or MAGAV, itself a unit of the Israel Police)
are responsible for counterterror operations, including the
100+ member YAMAM counterterror and hostage release
unit, and the YAMAS undercover unit that specializes in
covert operations in the West Bank (Deflem 2010). As these
latter units act on the basis of intelligence information,
within our model they can be thought of as the means by
which intelligence agents interdict terror plots rather than
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the intelligence agents themselves (who would correspond
to Shabak officers and their local informants).
Since our purpose here is to illustrate the terror queue

model rather than claim accurate representation of Israel’s
counterterror intelligence efforts, we will simply assume
that there are f = 50 undercover “teams” of agents and
informants who specialize in the discovery and interdic-
tion of suicide bombing attacks. Given the apparent ease of
constructing suicide bombs and other improvised explosive
devices (National Research Council 2007) and the ready
availability of would-be “martyrs” willing to carry out sui-
cide terror attacks (Al Hajaar 2004), the bottleneck in attack
planning relates more to operational issues such as target
selection and transporting the bomb and the bomber while
evading detection and capture by Israeli security forces. We
thus assume that absent interdiction, the mean time required
to plan and implement an attack 1/� = 3 months (thus
� = 4 per year, which implies an average of x∗ = �x∗/� =
19/4 = 4�75 undetected terror plots). Presumably the time
required to interdict a suspected terrorist is much shorter,
though such interdiction is not necessarily instantaneous
given the opportunity to collect further incriminating evi-
dence once a planned attack has been discovered covertly.
Absent any data suggesting different times to interdict real
versus fake plots, we set � = � = 16 per year (making the
mean time to interdict a suspected terror plot 25% of the
mean time required to plan and execute such plots), imply-
ing that y∗ = �y∗/� = 66/16 = 4�125 intelligence teams
occupied with real threats.
Finally, given the severity of suicide bombing attacks

(and hence the high cost of missed true detections)
combined with terrorists’ incentives to occupy countert-
error agents with fake threats, we expect many false
positive detections. To reflect this, we assume that only
10% of all terror plots interdicted are real, that is, we
assume that �y∗/��y∗ + �z∗� = 0�1� This assumption
sets 66/�66+ 16z∗� = 0�1 which identifies z∗ = 37�125�
while Equations (36)–(37) then determine � = 1�588 and
� = 67�886.
With these parameters, application of Equations (41),

(43), and (23) imply that X, Y , and Z have a trivariate
normal distribution with means 4�75, 4�125, and 37�125,
respectively, and covariance matrix

� =

⎛
⎜⎜⎝
4�974 0�153 0�380

0�153 3�878 −3�073

0�380 −3�073 9�568

⎞
⎟⎟⎠ � (57)

Given the observation that Y + Z = b busy intelligence
cells, the number of true terror plots X + Y is normally
distributed with mean

E�X + Y � Y + Z = b� = 1�32+ 0�183b (58)

and variance

Var�X + Y � Y + Z = b� = 8�913� (59)

Since Var�Y +Z� = 7�3 in this example, swings of ±2�Y +Z

correspond to swings of ±1 real terror plot in expectation.
For the example above, ignoring the boundary condi-

tions should not cause alarm: the mean number of unde-
tected attacks is more than two standard deviations away
from its boundary at zero, while the mean number of
busy intelligence teams is more than three standard devi-
ations away from its boundary at f = 50. To illustrate
the approximation provided by Equations (52)–(56), sup-
pose that � = 2�500 while all other parameters (�, �, �,
�, �, and f ) remain as above. The trivariate model in
this case yields mean values x∗� y∗, and z∗ of roughly
446, 45, and 4 respectively, while Var�Y + Z� ≈ 1, which
means that the mean number of busy agents y∗ + z∗ is
only one standard deviation away from the total number
of agents f = 50. Applying the “heavy traffic” approxima-
tion of Equations (52)–(56) to this example yields x∗ =
442�6� y∗ = 45�6, and Var�Y � = 4�0, making y∗ more than
two standard deviations away from the boundary at f = 50.
Note that since all agents are busy all of the time in this
approximation, all that can be inferred is that the number
of undetected terror plots X is normally distributed with
mean 442�6 and variance 603.1, while the total number of
real terror plots X + Y is normally distributed with mean
488.2 and variance 609.5. Were � to continue increasing
in this example, y∗ would tend towards f = 50 and the
approximation of Equations (28)–(29) would apply.

5. Discussion
Estimating the extant number of terror plots in a given area
is of fundamental importance as public officials consider
the allocation of counterterror resources. This article has
proposed a new approach to this problem that relies on the
relationship between the number of terror plots and the uti-
lization of intelligence agents. The resulting terror queue
model enables both unconditional estimation of the mean
number of terror plots underway, and conditional estimation
of the same given the observed number of busy undercover
agents at a point in time, while also allowing one to esti-
mate the rate with which true plots can be detected and
interdicted.
Since data pertaining to covert counterterror surveillance

and interdiction operations are classified (and for good
reason), the examples presented in this paper were nec-
essarily hypothetical. However, within agencies running
undercover counterterror intelligence operations such as
police departments, the FBI, MI5 or the Shabak, perhaps
the necessary parameters can be estimated from undercover
agent/informant activity logs and case resolution statistics.
For example, activity logs reporting when agents initially
detect and attach themselves to terror suspects as well as
when such cases are broken can be aggregated to deter-
mine the number of agents actively tracking suspects over
time, while subsequent legal processing ultimately resolves
whether those suspects tracked were real or fake. Such data
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enable estimating y∗ and z∗ as the observed average num-
ber of busy agents following (retrospectively determined)
real or fake plots, and of � and � from the observed mean
times from detection to interdiction of (again retrospec-
tively determined) real and fake plots. The security agency
involved knows the number of agents f that are fielded,
which, together with data on agent utilization and case reso-
lution, further determines � from Equation (37). Over time,
summing the rate of successful terror attacks with those
interdicted produces an estimate of the total attack rate �
(this is just Equation 1). Depending upon the nature of the
terror attacks in question, the security agency is likely to
have a good estimate of the time necessary to mount a suc-
cessful attack, which specifies � and in turn suggests the
value of x∗ (since x∗ = ��−�y∗�/�). Finally, once one has
an estimate of x∗, the detection rate � can equivalently be
computed from Equation (35) or (36).
Beyond estimating the number of terror plots, terror

queue models suggest a new approach to addressing some
decision-making problems in counterterrorism. For exam-
ple, given the social costs of successful terror attacks and
the operational costs of fielding undercover agents, what
is the optimal number of covert agents to deploy in coun-
terterror surveillance efforts when the goal is to maximize
the interdiction of real terror threats? As another exam-
ple, suppose that new surveillance technology allows for
improving the true detection rate � at some cost. Should
the new technology be adopted? Or, are there actions the
security agency can take to change the terrorists’ operating
environment such as increasing the duration of time neces-
sary to plan and carry out an attack (i.e., reduce � which
raises the interdiction rate �y∗ as is clear from Figure 1;
see Weisburd et al. 2009 for a discussion of Israel’s use of
checkpoints in the West Bank in this regard). If so, what is
the optimal investment in such actions?
Finally, the model as presented assumes steady-state con-

ditions and is thus more suited to situations where the level
of terrorism has remained reasonably constant. Modifying
the model to allow for more transient situations, whether
due to exogenous changes in the level of terrorism, or per-
haps endogenous changes in terror tactics in response to
successful interdictions (e.g., increasing the false detection
rate � by disseminating false information as suggested by
Steele 1989), remains a future research challenge.
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