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his paper develops a framework and proposes heuristic dynamic policies for scheduling patient appoint-

ments, taking into account the fact that patients may cancel or not show up for their appointments. In a
simulation study that considers a model clinic, which is created using data obtained from an actual clinic, we
find that the heuristics proposed outperform all the other benchmark policies, particularly when the patient
load is high compared with the regular capacity. Supporting earlier findings in the literature, we find that the
open access policy, a recently proposed popular scheduling paradigm that calls for “meeting today’s demand
today,” can be a reasonable choice when the patient load is relatively low.
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1. Introduction
Many firms strive to match demand and supply in
the presence of uncertainty. Production systems deal
with randomness in demand by keeping inventories.
However, that is not an option for service systems
because service capacity cannot be stored. Instead,
service systems like patient clinics, repair shops, and
hair salons regulate demand through appointments.
Appointment systems have two objectives: (i) to pro-
vide a better service to customers by assigning them a
very short time window during which they are guar-
anteed to get a service, and (ii) to protect the system
from daily fluctuations in demand that can lead to an
inefficient system with low utilization levels on some
days and overloads on others. However, appointment
schedules do not resolve all the uncertainties in daily
demand. Some service systems such as those in health
care suffer from high no-show and cancellation rates,
which introduce additional layers of uncertainty and
can cause severe inefficiencies if not dealt with appro-
priately. The objective of this paper is to develop a
framework and introduce a method for the dynamic
scheduling of patient appointments, recognizing the
possibility that patients can cancel their appointments
or simply not show up.

Past research shows that the longer the appointment
delay, defined as the time between the day a patient
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requests an appointment and her actual appointment
date, the higher the chances that she will cancel or not
show up (Gallucci et al. 2005). This suggests an obvi-
ous way of minimizing no-shows and cancellations:
ask patients to come right away or make appointment
requests on the day they want to be seen. This is called
an open access (OA) or advanced access policy (see, e.g.,
Murray and Tantau 2000), and of late it has become
a popular paradigm in practice and the subject of
active research. Several authors report on their expe-
riences in implementing OA, both positive and nega-
tive (see Murray et al. 2003, Solberg et al. 2004, Belardi
et al. 2004, and Dixon et al. 2006). Some practitioners
strongly advocate OA (e.g., Murray and Tantau 2000),
and there are some who are strongly against it (e.g.,
Lamb 2002). However, there seems to be an agreement
on the fact that for OA to have at least a chance to
work, demand and supply (capacity) need to be “in
balance.” Simply ensuring that average demand is less
than supply is not sufficient for OA to work. Because
of the stochastic nature of the daily demand, if average
patient demand is not sufficiently low relative to the
capacity, this will result in a high frequency of days in
which daily demand exceeds the regular daily capac-
ity. The clinic has to deal with this excess demand
in some way (e.g., by working overtime, squeezing
in additional appointments during the day, delegating
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some work to nurses) that will cause the clinic to incur
overtime costs and/or reduce the quality of the service
provided to the patients. Therefore, OA is unlikely to
be sustainable for a clinic observing demand levels
that are close to its capacity. Although it is in general
difficult to define exactly what it means for supply and
demand to be in balance, Green and Savin (2008) use a
queueing model to provide some answers by develop-
ing a method to help determine the largest panel size
sustainable for a physician using OA. They also find
that panel sizes typically need to be much smaller than
what is required for the queueing-theoretic stability of
the system, i.e., long-run demand rate to be less than
the long-run supply rate.

Even though the critics of OA have many con-
cerns other than possible demand/supply imbalance,
reported success stories strongly support the case in
favor of OA because most clinics that implement OA
report significant improvements in various measures
of service quality when demand and supply are in
balance. The problem, however, is that it appears that
keeping the demand at a level that is necessary for an
effective OA implementation may not be possible for
many clinics and the number of such clinics may even
increase in the future. Some of the recent articles pub-
lished in academic journals and in the news media
discuss the physician shortage problem that is cur-
rently being felt, especially in some of the rural areas
within the United States (e.g., upstate New York), and
this is expected to grow significantly worse in the next
10-15 years unless action is taken to increase physi-
cian supply (see, e.g., Blumenthal 2004, Cauchon 2005,
York 2007, Arvantes 2007). One of the more prob-
lematic states is Massachusetts, which, interestingly,
is the state with the highest number of doctors per
capita according to U.S. Census Bureau (2008). How-
ever, according to the Massachusetts Medical Soci-
ety (2007), the state has severe or critical shortages
in several specialty areas, including family practice
and internal medicine. The society’s reports from the
last five years have already indicated increasing lev-
els of physician shortage, but since the middle of
2007, patient demand has started to increase at an
even faster rate as a result of the state’s mandate
on its residents to have health insurance, which has
been effective since July 1, 2007. A New York Times
article published in April 2008 reports that since the

law took effect, about 340,000 of the approximately
600,000 uninsured have gained health coverage, and
as a result, clinics around the state have started to
admit more patients by stretching their regular capac-
ities (Sack 2008). One of the family physicians the
article mentions has a panel size of 3,000, which is
well above the number suggested by Green and Savin
(2008) for a potentially successful OA implementa-
tion. It is no surprise that patients of this particular
physician have to wait for more than a year for a
physical at the time of the article’s publication.
These reports and articles do not discredit OA as
an efficient solution for clinics that can keep their
demand and supply in balance. However, they clearly
indicate that a strict implementation of OA cannot be
a universal solution to the appointment scheduling
problem, because some of the clinics will be over-
loaded out of obligation and some by choice. For such
systems, scheduling some of the appointments to a
not-so-distant future can relieve some of the stress of
having to keep up with the demand on a daily basis
while not causing no-show rates to increase in any
significant way. Distributing the demand over sev-
eral days has the obvious benefit of having a more
regular daily load on the system, thereby reducing
the possibility and/or the severity of daily overloads.
However, distributing demand over days will have
the unavoidable consequence of increasing no-shows
and cancellations. This is the basic trade-off we are
dealing with in this paper. There are two policies at
the two ends of the policy spectrum. On the one side
is the OA, which leads to a minimal no-show rate
at the expense of frequent/severe daily overloads; on
the other side is a policy that schedules appointments
so that daily overloads are kept at a minimum, which
causes clinics to suffer from unavoidable no-shows.
A clinic’s choice of a scheduling policy would depend
on a variety of factors that determine its sensitivity
towards no-shows, flexibility in adjusting its physi-
cian capacity, willingness to work overtime, and/or
willingness to overbook and possibly cram in more
patients, depending on the daily load. For example, a
physician working for his or her own private practice
might not be bothered too much by working overtime
and thus the overtime “cost” for such a clinic might
be lower than what other clinics would typically face.
Similarly, some clinics might prefer to see as many
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patients as possible and thus choose to overbook,
whereas some others might refrain from that and
choose to provide their patients with shorter waiting
times and keep them more satisfied. The question is
how to determine the scheduling policy in response
to such diverse preferences. This paper provides some
answers to this question.

More specifically, the objective of this paper is
to develop dynamic methods that help assign an
appointment date to each patient depending on the
clinic’s appointment schedule at the time of the
patient’s call. We first formulate the problem as a
Markov decision process (MDP). We have chosen to
use a model that makes it possible to estimate vari-
ous parameters using data that are typically available
for most clinics. The model takes the following as an
input: the expected “net reward” of serving some x
number of patients on a day with some z scheduled
appointments at the beginning of the day, and the can-
cellation and no-show probability distributions. The
objective of the MDP model is to maximize the long-
run average net “reward” for the clinic.

In theory, one can solve this MDP to optimality
using one of the standard solution methods. However,
as we demonstrate in §3, that is not practical because
the system state space is very large even for rela-
tively small, toy systems. Thus, we propose heuristic
methods instead. The heuristic methods are devel-
oped using a known technique that employs a single
step of the policy improvement algorithm on a static
(state-independent) policy. The static policy is ideally
a “good” policy, if not the optimal, among the class of
state-independent policies so that the dynamic policy
to be obtained after the policy improvement is even
better. Two static policies that we use are the OA pol-
icy and the two-day probabilistic scheduling policy.
For either one of these two static policies, the policy
improvement step gives an index policy that operates
as follows: when an appointment request comes in, an
index value is computed for each day in the schedul-
ing horizon and the appointment is scheduled for the
day with the highest index value. We show in §4 that
the indices can easily be computed.

We evaluate the performances of the heuristic poli-
cies in an extensive simulation study. The model clinic
used in the simulation study is created by using data
provided to us by the Department of Family Medicine

at the University of North Carolina (UNC). These
data help us estimate the no-show and cancellation
probability distributions. The simulation results indi-
cate that the proposed heuristics significantly outper-
form other benchmark heuristics especially when the
system is highly loaded. As expected, the OA pol-
icy performs reasonably well when average demand
is below daily regular capacity, but it performs very
poorly under high demand.

The remainder of this paper is organized as follows.
Section 2 reviews the relevant literature. In §3, we
introduce our MDP model for appointment schedul-
ing, and in §4 we describe the general form of the
proposed heuristics. Section 5 gives detailed descrip-
tions of the heuristic policies that we propose as well
as other benchmark heuristics. In §6, we give more
precise descriptions of the heuristic methods for two
special cases and prove that they are optimal under
certain conditions. In §7, we describe our “model
clinic,” which we use in our simulation study, and dis-
cuss how we estimated various model parameters. We
describe the simulation study and report the results
in §8. Finally, we provide our concluding remarks
in §9.

2. Literature Review

The operations research (OR) literature on outpatient
appointment scheduling is extensive. A recent survey
paper by Gupta and Denton (2008) discusses the main
practical issues related to appointment scheduling,
provides a review of the state of the art in modeling
and optimization, and points to future directions. One
classification that Gupta and Denton make regarding
research on appointment scheduling is with respect to
the type of waiting modeled: direct or indirect.

As Gupta and Denton (2008) indicate, most of the
existing research has concentrated on direct waiting
times—the times that patients spend waiting in the
clinic on the day of their appointments, from their
arrival until their service. This work typically aims
to minimize the expected cost for a day, which is
a function of patients’ direct waiting times, and the
physician’s idle time and overtime. In this body of
work, typical decision variables are the number of
appointment intervals, the length of each interval, and
the number of patients assigned to each interval, etc.
We refer the reader to Cayirli and Veral (2003) for
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a comprehensive review of this literature pre-2003.
More recent work in this line of research includes
Denton and Gupta (2003), Robinson and Chen (2003),
and Klassen and Rohleder (2004). These articles focus
on the determination of appointment times for a
sequence of punctual patients (jobs) with random ser-
vice times, and their objective is to balance server
idling, customer waiting, and tardiness (overtime)
costs. On the other hand, LaGanga and Lawrence
(2007) and Muthuraman and Lawley (2008) study
how to use overbooking to compensate for patient
no-shows in an appointment system so as to improve
the overall performance of the clinic. Our formulation
and that of Muthuraman and Lawley (2008) are simi-
lar in that they both consider sequential scheduling of
the patients as they call for appointments. However,
we are interested in determining the appointment day
for each incoming patient; Muthuraman and Law-
ley are interested in determining in which particular
time slot in a service session the appointment should
be scheduled. Furthermore, Muthuraman and Law-
ley assume that using past data, the clinic has identi-
fied the correlation between various patient attributes
and their no-show probabilities and use these patient
attributes in making scheduling decisions. In our for-
mulation, the clinic does not differentiate among the
patients in terms of their attributes, but unlike the
model of Muthuraman and Lawley, it does take into
account the fact that no-show probabilities depend on
the appointment delays.

Few articles deal with indirect waiting times, which
correspond to appointment delays in this paper, and
which refer to the times between the days patients call
for an appointment and the actual appointment dates.
Gupta and Denton (2008) point to several difficulties
of modeling indirect waiting, which might be part of
the reason why work has been rather limited. Exist-
ing articles typically focus on the question of how
many patients to admit or whether to admit a given
patient for a particular day given the system state (i.e.,
current patient backlog). Patrick et al. (2008) study
a dynamic multipriority patient scheduling problem
and develop cost-effective booking policies that meet
waiting time targets for the patients. Gupta and Wang
(2008) study a clinic capacity management problem
using a model where patients’ physician and time
preferences are explicitly formulated, the decision is

whether an appointment request should be accepted
upon its arrival, and the objective is to maximize
the revenue obtained on a given day. Our paper also
belongs to this stream of research because we also
deal with patients” indirect waiting times. However,
unlike the articles mentioned above, our model takes
into account the possibility that patients might cancel
or not show-up for their appointments. As Gupta and
Denton (2008) discuss, “indirect patient waiting” and
“late cancelations and no-shows” largely remain as
open research challenges, and, in particular, no prior
work has explicitly studied appointment scheduling
decisions in a model that relates overbooking deci-
sions to no-show and cancellation rates. To the best
of our knowledge, our paper is the first such work
that proposes dynamic appointment scheduling poli-
cies using a model that explicitly takes into account
patient no-shows and cancellations.

Several recent articles have investigated the open
access policy. Kopach et al. (2007) use discrete event
simulation to investigate the performance of OA
under various settings. One key finding is that for
clinics that predominantly use open access, offering
provider care groups and overbooking appointments
can help maintain the continuity of care provided to
the patients, which is one of the important perfor-
mance measures. Qu et al. (2007) identify the optimal
percentage of appointment slots that a clinic should
keep open within a session so as to maximize the
throughput using a model where patients may not
show up for their appointments. They also investigate
the sensitivity of this optimal percentage to provider
capacity, patient no-show rates, and demand distri-
butions. Green and Savin (2008) use a single-server
queueing system to carry out capacity analysis for a
clinic that uses the open access policy. In their model,
each patient can be a no-show with a probability that
depends on the patient’s waiting time for the appoint-
ment. The authors provide a method to calculate the
largest panel size that the clinic can handle; in a way,
they “define” what it means for demand and sup-
ply to be in balance for a clinic using open access.
Robinson and Chen (2010) compare the performance
of OA with that of a traditional appointment schedul-
ing system. Assuming deterministic service times and
fixed and homogeneous patient no-show probabili-
ties, the authors identify some of the structural prop-
erties of the optimal traditional scheduling policies
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and develop bounds for the system performance.
Through numerical analysis, they find that in most
cases (i.e., unless patient waiting times have marginal
weights in the objective function and patient no-show
rates are too small), OA is more preferable to tradi-
tional scheduling systems. In short, these four articles
deal with the design of an OA system and the com-
parison of OA with traditional scheduling policies.
In this paper, even though our main objective is not
to investigate OA specifically, we also provide some
support to some of the findings of this earlier work
by identifying conditions under which OA performs
reasonably well compared with the heuristic policies
we propose.

Finally, a number of articles outside the OR lit-
erature investigate patient no-shows empirically. For
example, see Oppenheim et al. (1979), Pesata et al.
(1999), Moore et al. (2001), and Gallucci et al. (2005).
All of these articles point to patient no-shows as being
a significant problem in appointment scheduling and
find that no-show rates depend on a variety of fac-
tors including race, gender, socioeconomic status, etc.
In particular, Gallucci et al. (2005) find that no-show
and cancellation rates increase with the appointment
delay. As we discuss in §7.1, we also find a similar
relationship using data from the UNC clinic.

3. The Model

We consider a clinic where patients call to make
appointments for a visit in the future or some time
during the day of the call. Given the current appoint-
ment schedule, the administrative staff schedules each
incoming request for an appropriate day and updates
the schedule accordingly. We assume that patients do
not have a strong preference for the date they want
to be seen and thus accept the first appointment date
offered by the staff. In §9, we discuss how the heuris-
tics we propose can be used in cases where patients
do have time preferences.

Let A" denote the number of appointment requests
that arrive on day t. We assume that {A!, t=1,2, ...}
is a sequence of independent and identically dis-
tributed (i.i.d.) random variables. As defined earlier,
the appointment delay for a patient is the time between
the day the patient requests an appointment and her
actual appointment date. The appointment delay for a
patient is zero if the appointment is scheduled on the

same day the patient calls. The clinic uses a schedul-
ing horizon of length T so that no patient has an
appointment delay that is larger than T. Hence, a
patient requesting an appointment on day ¢ will be
scheduled on one of the days f,t+1,...,t+T. For
modeling convenience, we assume that all appoint-
ment requests are received at the beginning of the day
so that all scheduling decisions on a given day t are
made given the realization a' of A’. We shall see below
that this assumption is needed to derive the heuris-
tic policy but is not needed when implementing the
heuristic.

For any given day t, we define type (i, j) patients
as those who called on day ¢ — i, were given appoint-
ments for day t + j, and have not canceled their
appointments by the beginning of day ¢. All patients
of type (i,j) have an appointment delay of i + j
days, and thus we must have i + j < T. Note that
a given patient’s type changes with time. For exam-
ple, today’s type (i,j) patient is tomorrow’s type
(i+1, j—1) patient, assuming she does not cancel.

Let X}, denote the number of type (i, j) patients at
the beginning of day t and define X' = {X}: 1 <i+
j<T,i=1,2,...,T} as the vector of the number of
patients of each type in the schedule at the beginning
of day t. In the rest of this paper, we refer to X' as the
backlog or the schedule on day t, based on which, the
clinic schedules the incoming appointment requests.

There are three possible outcomes for each appoint-
ment made. The patient may show up for her appoint-
ment, cancel her appointment on or before the day
of the appointment, or she may not cancel but sim-
ply not show up for her appointment. We assume that
each patient’s behavior is independent of that of the
other patients and the arrival process {A’, t=1,2,...}.
Past research (e.g., Gallucci et al. 2005) and our own
analysis clearly show that the longer the appointment
delay for a patient, the higher the chances that she will
cancel or that she will be a no-show if she does not
cancel. To capture this relationship, we formulate the
cancellation/no-show behavior as follows: we assume
that each patient cancels her appointment at some ran-
dom time in the future, which can possibly be beyond
the patient’s appointment day. We use T, to denote
the generic random variable that represents the time
between the day a patient calls for an appointment
and the day she decides to cancel it. A patient who



Liu, Ziya, and Kulkarni: Dynamic Scheduling of Outpatient Appointments
352 Manufacturing & Service Operations Management 12(2), pp. 347-364, ©2010 INFORMS

has not canceled on or before her appointment day
(which happens if T, for this particular patient is larger
than the patient’s appointment delay) may or may not
show up for her appointment. Let “S” and “NS” repre-
sent the “show” and “no-show” events for a particular
patient, respectively, and define

a;=P(T,=i+j+1,S|T, =), 1
Bij=P(T.=i+j|T.>i). )

Thus, a;; is the probability that a patient who is cur-
rently of type (i, j) will show up for her appointment,
and B; is the probability that a patient who is cur-
rently of type (i, j) will not cancel her appointment
before her appointment day. If there are n type (i, j)
patients today, out of these n patients, the number of
those who will not have canceled by the morning of
their appointment day is a binomial random variable
with parameters n and ;. Similarly, the number of
these patients who will show up for their appoint-
ment is a binomial random variable with parameters
n and a;.

We assume that events occur in the following order
on each day. First, new patients call in and are given
appointments. During the day, some patients cancel
their appointments, and some do not show up for
their appointments. At the end of the day, the clinic
makes an “expected net reward” of r(x, z) if z patients
were scheduled on that day and the clinic ended up
serving x of these patients during the day. For gener-
ality, we do not specify any particular form for (-, -),
and thus each clinic can choose the function that best
captures the circumstances it is in and its own valu-
ations of different situations (i.e., the cost of reduced
quality of service given to the patients if they are
served in overtime slots). One special case of (-, -) is

r(x, z) = n(x) —w(z), ®)

where 1(x) can be seen as the “expected reward” and
is possibly linear or more generally concave in x and
w(z) is the total “expected cost” for a day if there are z
patients scheduled at the beginning of the day. Here,
the idea of making the expected cost a function of z as
opposed to x makes it possible to capture the possibil-
ity that the clinic will plan according to the number of
scheduled appointments (e.g., staffing cost). Any cost
that depends on the number of patients who show

up can be included in the 7(-) function. These reward
and cost functions can be estimated using models that
were developed for scheduling appointments within
a day. For example, Denton and Gupta (2003) devel-
oped a model to schedule patients over a day so as
to minimize the total cost of patient waiting, staff
idling, and overtime. Their work provides a way to
estimate the cost based on the number of scheduled
appointments.

Note that the general form of the function r(, )
allows for more sophisticated choices than the special
case given in (3). For instance, as reported by Moore
et al. (2001), not all no-show slots are wasted because
walk-in patients fill in some of these empty slots.
According to the Moore et al. study, only 12.2% of the
slots are left unfilled by the end of the day, and on
average, walk-in or triage patients help recover 89.5%
of the costs of no-show patients. Thus, in some cases it
might be reasonable to assume that the “reward” not
only depends on x, the number of patients who show
up, but also z — x, the number of no-show patients
on a given day. This can be easily captured with our
reward/cost formulation.

The objective of the clinic is to schedule arriving
appointment requests so that the long-run average
expected net reward is maximized. This problem can
be modeled as an MDP, where the decision epochs are
the times right after the appointment requests arrive
every day and the system state at decision epoch ¢
is given by (A", X’). Let Y represent the number of
patients who make their requests on day t and are
given appointments for day t + j. (For example, Y
is the number of patients who are given same-day
appointments on day t.) Thus Y/ ={Y}: j=0,1, ..., T}
is the scheduling “action” taken on day ¢. Given that
there are A’ appointment requests, the set of actions
available on day t is {Y': Y[ Y/ =A', YieZ,  i=
0,1,..., T}, where Z_ represents the set of all non-
negative integers. Note that it is straightforward to
include “rejection” of the appointment request as
another action. However, to keep the presentation sim-
pler, we assume that rejection is not an option. Later,
we discuss how our heuristic policies would change if
rejection were an option.

Let B(n,p) represent a binomial random variable
with parameters n and p. Given (A',X') and the
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scheduling action Y/, X! can be characterized as
follows:

oy d B(inl,,Bm), i=1,j=0,...,T-1,
XI] - . . . (4)
B(Xz't—l/j+1/Bi—l,l)/ 1>2,0<j<T—1,

where = denotes the equality in distribution. Let

bin k) = ()1 —

denote the probability mass function for a B(n, p) ran-
dom variable. Then, the transition probabilities given
the action Y' =y’ can be expressed as follows:

P[(AH»l,XtJrl) =(at+1,xt+l) | (At’xt) =((/lt,Xt),Yt=yt]
:P(At+1 Zﬂt+l) | l_[ ‘Pij(XtH,Xt,yt),

where
1t ot
P,“(X /X/y)
t t+1
b(Yj1, x5 B,
; : t+1 b
i=1,j=0,...,T-1,0=x;" <y,
t t+1
b(xi_y, 01, X5+ Bic1,1),

; ] ; t+1 t
i22,0<j<T—i,0=<x; <xt, ..

LetU/,i=0,1,..., T denote the number of patients
who call on day t —i and show up for their appoint-
ments on day t. Then we have

pd B(Yotraoo)/
B(X}, @),

i=0,
i i=1,2,...,T.

We define ¢,((A!,X"),Y") to be the net reward
obtained on day t given A’, X!, and Y’. Then,

T T
(4,30, Y0 = 1 (DU, Y+ )
i=0 i=1

Now, consider a scheduling policy f, and let
¢ (a,x) be the long-run expected average net reward
under policy f given the initial state A' =4 and
X'=x; ie,

k t t ¢ 1 n_
b/(a,x)=lim E/ [T 60((4, X ),:)|(A XY= (a,%)]

A scheduling policy f* is said to be optimal if
¢s(a,x)=supps(a,x) Va,x.
f

In theory, one can solve this MDP problem using
one of the standard procedures such as the policy
improvement or value iteration algorithms. How-
ever, the formulation suffers significantly from the
curse of dimensionality. To see that, suppose that
the maximum number of appointment requests that
can possibly be received on a single day is N < o.
Then one can show that the number of states for the
MDP formulation we have given above would be
(N + DI, 2, (kt;l). Note that even when
N =T =5, this number equals 1.34 x 10°, and thus
determining the optimal policy is not practically fea-
sible for any realistically sized problem. Therefore it
is of interest to develop heuristic scheduling methods
that are efficient and perform well. We do this in the
following section.

4. Policy Improvement Heuristics
In this section, we develop a heuristic dynamic
appointment scheduling policy based on the idea of
applying a single step of the policy improvement algo-
rithm starting with a “good” initial policy. The idea
is that because the policy improvement algorithm is
generally believed to converge fast, applying a single
step on an already good policy could give a policy
that might be a reasonable substitute for the optimal
dynamic policy. As we will see in this section, using
a static policy as the initial policy makes it possible to
fully characterize the policy obtained after the applica-
tion of the policy improvement step so that the heuris-
tic policy we propose will be easily implementable. In
particular, it will not require the application of the pol-
icy improvement step for each instance of the appoint-
ment scheduling problem. This heuristic development
technique has previously been used in such diverse
areas as routing for parallel queues (see, e.g., Krish-
nan 1990, Opp et al. 2005, and Argon et al. 2009) and
dynamic kidney allocation (Zenios et al. 2000) but, to
our knowledge, not within the context of appointment
scheduling.

The procedure of developing policy improvement
heuristics is as follows. Consider a state-independent
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policy that schedules each patient according to a sta-
tionary probability distribution p = (py, p1, ..., P1),
where p; is the probability that the patient is given an
appointment for the ith day from today. We call this
policy probabilistic static policy (PSP). Consider a pol-
icy 7, that takes action y = {y;}[_, at the beginning of
today (i.e., schedules y; patients on the jth day from
today for j € {0, 1, ..., T}) but from tomorrow on uses
PSP. Define A((a,x),y, p) to be the difference in total
expected net rewards over an infinitely long period of
time by following policy , rather than using PSP all
along given the initial state (a,x). To conduct a one-
step policy improvement, we maximize A((a, x),y, p)
with respect to y for each state (a, x), and the resulting
optimal y, denoted as y*(a, x), specifies the heuris-
tic scheduling policy for state (a, x). We call this pol-
icy heuristic dynamic policy (HDP). In the following,
we first give an expression for A((a,x),y, p). Then,
we use this expression to determine HDP. For a sim-
ple example of how to develop policy improvement
heuristics, see example 3.6.2 of Tijms (1994).

4.1. Improving the Probabilistic Static Policy
Because patients can be given appointments at most T
days in advance, the action y taken today (say, day 0)
will only affect the schedule on days O0,1,...,T.
Thus 7, and PSP are guaranteed to give stochasti-
cally the same appointment schedule from day T +1
onwards. To compute A((a,x),y,p), we only need
to find the difference between the total expected net
rewards for days 0,1,..., T under these two poli-
cies. Let R ((2,x),y,p) and Rpsp((a,x),p) denote
the total expected net reward accumulated over days
0,1,..., T under policy , and PSP, respectively,
given the initial state (a, x). Then,

A((a/x)/yl P) szy((a/x)ryl P) _RPSP((a/X)/p)' (5)

We first compute Rwy((a,x),y,p). For 1<i<T
and 0 <j<T —i, let V;(x) denote the number of
patients who called for appointments i days before
day 0 and will not cancel by the morning of their
appointment on day j, and let W;(x) denote the num-
ber of these patients who show up for their appoint-
ments. Similarly, for 0 <j < T, let ‘7]»(y) denote the
number of patients who call for appointments on
day 0, are scheduled for day j and will not cancel
by the morning of their appointment, and let Wj(y)

denote the number of these patients who show up
for their appointments. Finally, for 1 <k <T and k <
j < T, we define ij(p) to be the number of patients
who will call for appointments on day k and will
not have canceled their appointment by the morn-
ing of their appointment on day j, and we define
ij(p) to be the number of these patients who will
show up for their appointments. Then, because the
cancellation/no-show behaviors of the patients are
independent of each other, we know that each one of
these random variables has a binomial distribution.
More precisely,

d = d
Vii(x) = B(x;;, Bj), Vi(y) =B(y;, Boj),
- d
ij(P) =B(Aw, pj—kﬁo,j—k)/
and

W, (0 £B(xy, @), Wi(y) ZB(y;, ),

~ d
Wii(P) =B(Ay, ik, k)

where A, denotes the number of appointment
requests that will be made onday k, 1 <k <T.

To see why the distribution of ij(p) and ij(p) are
as given above, note that starting tomorrow, the pol-
icy m, switches to implementing PSP, and therefore a
patient requesting appointment on day k will be given
an appointment on day j (where k < j) with probabil-
ity pj_x. From (1) and (2), this particular patient will
not cancel by the morning of the appointment with
probability B, ;_, and will show up for the appoint-
ment with probability «, ;_.

We can then write

T
R, ((a,%),y,P)=>_f;(y;, x, P),
j=0

where f;(y;, x, p) is the expected net reward accumu-
lated on day j (j=0,1,...,T) and is given by

T _ i
ﬂw&m=%<ZMM+MM+ZM@L
i=1 k=1
T-j _ i
Zwm+wm+2w@ﬂ,@
i=1 k=1

where we let Zi:l ij(p) = Zf;zl ?kj(P) =0 for j=0.
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Now, we need to determine a y that maximizes (5)
while ensuring that Y./ v, = a, but then because
Rpsp((a, x), p) does not depend on y, it can be dropped
from the optimization problem altogether. Thus, HDP
can be determined by solving the following resource
allocation problem for given (a, x) and p:

T
max R ((a,x),y,p)= > fiyi, %, p)
=0

T 7
st. Y yi=a, @)
j=0

y]-eZJr, j=0,1,...,T.

4.2. Description of the Heuristic Dynamic Policy
In its most general form, the heuristic policy we pro-
pose can be described as follows: first, pick a distribu-
tion p, and if the system state is (a, x) at the beginning
of the day, solve problem (7). Clearly, solving (7) is
significantly simpler than solving the original MDP
problem in general, but under certain conditions this
is especially the case. In particular, we make the fol-
lowing assumption:

AssuMPTION 1. The net reward function r(x,z) is
(i) increasing in x for fixed z and decreasing in z for fixed x,
(ii) submodular, and (iii) jointly concave in x and z.

This assumption enforces reasonable conditions on
the net reward function. In particular, if (-, -) is in the
form of (3), Assumption 1 holds if the function 7(-)
is increasing and concave, capturing the (possibly)
diminishing returns for additional patients, and the
function w(-) is increasing and convex, capturing the
(possibly) increasing marginal cost of each additional
appointment.

As the following proposition states, Assumption 1
ensures that the objective function of problem (7) is
well behaved. The proof is given in Appendix A of
the online companion.

ProrosITION 1. Under Assumption 1, for a given x
and p, the function f;(y;, x, p) is concave in y;.

From Proposition 1 it follows that when Assump-
tion 1 holds, problem (7) is a resource allocation
problem with a separable concave objective function,
which has been well studied in the literature. In par-
ticular, its optimal solution can be found by the simple
algorithm given below (see, e.g., §4.2 of Ibaraki and
Katoh 1988). To avoid trivialities, we assume a > 0.

1. Initialization: Set n :=1 and y; :=0, j =
0,1,...,T.

2. Scheduling the nth patient of the day: For each
je{0,1,..., T}, compute

L =IL(y;, x, p) = fi(y;+1,x,p) — fi(y;, x,p)  (8)
and determine

.
J* =argmaxl;.
je0,1,.., T

Set
Y=y +1
3. Termination test:
e If n<a, let n:=n+1 and return to step 2;
¢ Otherwise, terminate the algorithm with y
being the optimal solution.

At each iteration, the algorithm simply assigns a
patient to the day j with the largest index value [;, i.e.,
the day that will bring the largest improvement in the
objective function of (7). Note that because patients
are scheduled one by one and the index values ;s do
not depend on g, i.e., the total number of appoint-
ment requests on that day, we can relax our assump-
tion that the clinic knows the total number of requests
when scheduling patients. As new appointments are
made, the clinic updates the appointment schedule,
and then when a request comes in, the indices are cal-
culated based on the updated information. Thus the
HDP works as follows:

Heuristic Dynamic Policy

When an appointment request comes in, first for each day
j€{0,1,2,..., T} calculate the corresponding index Ij
using (8), where y; is the number of patients who called so
far today and were scheduled for the jth day from today,
and x is the appointment schedule upon the arrival of this
request. Then, determine j* =argmax;, ,  71;, sched-
ule the new appointment for day j*, and set y;. = y; + 1.

If the clinic also had the option of rejecting appoint-
ment requests, the resulting policy would have an
additional index for rejection, say, the index I;. It is
then straightforward to show that this index would
simply be equal to zero regardless of the system state.
Therefore, with the rejection option available, the
description of the Heuristic Dynamic Policy would
need to be updated so that the appointment is rejected
if all indices L where j€{0,1,2,..., T} are negative.
Otherwise, the appointment is scheduled on day j* as
described above.
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5. Picking the Distribution p for

HDPs and Alternative Heuristics

In §4.2, we described the heuristic policy that we pro-
pose for a given distribution p, but we did not specify
how this distribution should be picked. One can come
up with different heuristic policies by choosing differ-
ent distributions, but here we describe and propose
two particular choices that are both easy to deter-
mine and yield easily implementable HDPs. Then, we
describe other benchmark policies that are not based
on the policy described in §4.2.

5.1. Picking the Distribution p

Because the policy improvement heuristic is guaran-
teed to improve upon the initial policy, ideally, one
would like to pick the optimal p (i.e., the one that
maximizes the long-run average reward among all
static policies). Although there is no guarantee that a
better static policy will lead to a better dynamic pol-
icy, as long as there is no reason to believe otherwise,
it appears to be the most reasonable choice. How-
ever, finding the optimal p is a significant challenge
by itself, requiring the solution of a maximization
problem with T + 1 variables and with an objective
function that becomes increasingly more difficult to
calculate as T increases. Therefore, in this paper, we
propose two simple alternatives.

Policy I: Open Access Policy (OAP): OAP is a
static policy where py=1and p; =p,=---=p; =0.
Policy II: Optimal Two-Day Probabilistic Static
Policy (OTPSP): OTPSP has the restriction that p, =
ps=---=pr=0 (p, and p, are picked optimally).
OAP is readily available, but finding OTPSP needs
some explanation. We first derive the long-run aver-
age net reward under a general two-day probabilis-
tic static policy (TPSP) as a function of p, (because
p1 =1 —p,), which is to be maximized with respect
to p, to determine OTPSP. The TPSP is state inde-
pendent. Thus we pick a random day and derive an
expression for the expected net reward for that day.
Now, because p; = 0 for i > 2, patients seen on a
given day made an appointment either on that day
or the day before. Let A, and A, denote the num-
ber of appointment requests that arrived today and
yesterday, respectively. Let 170(;00) and Vl(po) denote
the number of patients who called in today and
yesterday, respectively, to make appointments for

today and have not canceled their appointments by
this morning, and Wo(po) and Wl(po) respectively,
denote the number of these patients who will show
up for their appointments. Then,

Uopo) ZB(Ao, po),  hlpo) ZB(A;, (1= po)Boy),

and

WO(PO) = B(AO/ Po%p), Wl (o) L B(Aw (1 —=po)ag)-

It follows that the long-run average net reward under
TPSP with a same-day scheduling probability p, can
be written as

E[”(WO(PO) +W, (Po), ‘70(?0) +V (o)1, 9)

and the OTPSP is obtained by solving the following
optimization problem:

Repsp(po) =

oax Repsp (o), (10)
where Rpgp(py) is given in (9). This is an optimiza-
tion problem with a single decision variable, and thus
determining the optimal solution is relatively straight-
forward given the probability distribution for the
daily appointment requests, A, and A;. Furthermore,
under certain conditions on this distribution and the
reward/cost parameters, the objective function is well
behaved, making the determination of the optimal
solution to the problem easier. (See Appendix A of
the online companion for the proof.)

PROPOSITION 2. Suppose that the number of appoint-
ment requests that arrive on a single day has a Poisson
distribution and the reward function r(-,-) is as given in
(3). Then, under Assumption 1, the objective function of
problem (10) is concave.

Although there is no strong evidence in support of
the number of daily appointment requests having a
Poisson distribution, it is a common assumption in the
literature. As argued in Robinson and Chen (2010), if
the panel size of a clinic is N and each patient inde-
pendently makes an appointment for any given day
with a small probability p, then the total number of
appointment requests arriving on any given day has a
binomial distribution with parameters N and p, which
converges to a Poisson distribution (with mean Np) as
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N gets large. For the heuristics we propose, although
a Poisson assumption is by no means necessary, it is
nevertheless convenient.

Based on these two static policies (i.e., OAP and
OTPSP), we propose two dynamic policies:

Policy III: Improved Open Access Policy (Imp-
OAP): This policy works as described in §4.2 with
distribution p picked as specified for OAP; i.e., py=1
and p, =p,=---=pr=0.

Policy IV: Improved Optimal Two-Day Proba-
bilistic Static Policy (Imp-OTPSP): This policy works
as described in §4.2 with distribution p picked as in
the description of OTPSP (i.e., p=[py, 1 —p,,0, ..., 0]
where p, is the optimal solution to (10)).

5.2. Alternative Heuristic Policies

In §8, we investigate the performances of the heuristic
policies we described above. Because determining the
optimal policy is not practically feasible because of
the large state space, we compare the performances of
the policies we propose with those of other heuristic
policies that mimic some of the scheduling principles
that are followed in practice and can be intuitively
expected to perform well at least under certain condi-
tions. Here, we describe these policies that will serve
as benchmark policies.

Policy V: Threshold Policy (TP): This policy
schedules each new appointment for the earliest day
with less than M patients already scheduled. If there
are no days within the scheduling horizon that has
less than M already scheduled, the new appointment
is scheduled for the day with the fewest appoint-
ments, and ties are broken in the favor of the earliest
day. Threshold M is a policy parameter. One reason-
able choice for M is the regular daily capacity of the
clinic.

Policy VI: Balanced Scheduling Policy (BSP): This
policy schedules each new appointment for the day
with the fewest appointments, and ties are broken in
favor of the earliest day.

Policy VII: Random Scheduling Policy (RSP):
This policy schedules each new appointment ran-
domly for one of the days in the scheduling horizon.
More precisely, it is a probabilistic static policy with
pi=1/(T+1),i=0,1,...,T.

6. Two Examples and the Optimality
of Imp-OAP

To give the reader a better idea about how the policies
OTPSP, Imp-OTPSP, and Imp-OAP look, we study
two simple examples that lead to indices that can be
expressed explicitly. For both examples, we assume
that the function r(-,-) is in the form of (3) with
n(x) = Tx, where 7 is a positive constant, E[A'] = p,
and E[(A")*]=¢ for t=1,2,.... In the first exam-
ple, the function w(z) is increasing linearly with z,
which would be a reasonable assumption in cases
where the clinic does not have to deal with very
high patient loads. In the second example, the func-
tion w(z) is assumed to be quadratic, which means
the “marginal cost” of a patient increases with each
additional scheduled patient, which is reasonable in
cases where the clinic is relatively understaffed so that
additional patients bring increasingly more burden on
the clinic.

6.1. Linear Rewards and Costs

Suppose that w(z) = v,z, where v; > 0 is the cost per
scheduled appointment at the beginning of a day.
Then, the optimal p, (denoted as pf), which solves
problem (10), is given by

. 0 if T(ag — ap) = vi(1—Bn),
Po= . (11)
1 otherwise.
We can then show that for Imp-OTPSP, the indices (8)
simplify to

[],:I].(yj,x, p):Tan—Vlﬁo]'; (12)

which corresponds to the expected net reward of
scheduling one more patient for day j. Notice that
in this case the index I; does not depend on x
or y;, and thus the HDP becomes a deterministic
static policy that schedules all appointment requests
received today for the j*th day from today, where j* =
argmax;.,, rl;. For this example, Imp-OAP is the
same as Imp-OTPSP, and as we prove in Theorem 1,
they are in fact optimal. (See Appendix A of the online
companion for the proof.)

THEOREM 1. If the functions n(-) and w(-) are both lin-
eat, then the dynamic policy Imp-OAP, described by the
indices given by (12), is optimal among all policies.



Liu, Ziya, and Kulkarni: Dynamic Scheduling of Outpatient Appointments
358 Manufacturing & Service Operations Management 12(2), pp. 347-364, ©2010 INFORMS

6.2. Linear Rewards and Quadratic Costs
Suppose that w(z) = v,z?, where v, > 0. Define k, =
w(Tag — 1By) — va(€ — By, K = mlT(ag — ag) —
v(1 = Bl + »[2(6 — w5 — 2Byl and «, =
1, [2p% By — (€ — w)(1+ BZ)]. Then, we can show that
Repsp(Po) = KaPg + K1y + Ko- (13)
Let p; be the maximizer of (13), and let p* be a
1 x (T +1) vector defined as p*=[p;,1—p;,0,0,...].
Then, index I = Ij(yj,x,p*) for Imp-OTPSP can be
shown to be

T
TQy — V, (1 + 2y, + ZinOam) if j=0,

i=1
-1
T0y — V2B [1 +2Bnyr + 2<Z Xpap + MPS)]
i=1

if j=1,

Tog; — 1, Bo; |:1 +2By,y;

T
+ 2(2 xjo; + (1= pg)Bor + PS)):|
i=1

if j=2,3,...,T.
(14)
Note that I; decreases with y; and x;. Thus under
Imp-OTPSP, the more patients scheduled in one day,
the smaller the chances that an additional patient will
be scheduled on the same day, as we would expect
for an intuitively good policy. This is markedly differ-
ent from the linear-cost example because when costs
are linear the marginal cost of an appointment is fixed
while in the quadratic-cost case, the marginal cost of
an additional appointment for a given day increases
with the total number of appointments already sched-
uled for that day.
Similarly, we can show that the index I; for Imp-
OAP can be shown to be

T
T — V2B <1 +2ByYo +22xi0ai0)

i=1
if =0,
= (15)

] T—j
Ty, —V2ﬁ0j|:]. +ZBijj+2<injaij+,u>]
i=1
if j=1,2,...,T,

which is also decreasing in y; and x;; and thus carries
similar characteristics as the index for Imp-OTPSP.

7. Estimating Model Parameters

In this section, we discuss how we estimated the
parameters for the model clinic—which we use for
our simulation study described in the next section—
using data from an actual clinic. The data were
obtained from the Department of Family Medicine of
the School of Medicine at UNC at Chapel Hill, and in
consultation with Samuel Weir of the same organiza-
tion. More specifically, the data came from the outpa-
tient clinic of the Department of Family Medicine and
consisted of logs from July 1, 2005 to May 31, 2007.

7.1. Cancellation and No-Show Distributions

The implementation of the heuristics we propose
requires the estimation of cancellation and no-show
probabilities (e;; and B;; for integers i and j such that
i+j <T). According to the data, for more than 99% of
the patients, the appointment delay was less than 90
days. Therefore, estimates are determined for ; and
Bj; for which i +j <90. We determined the maximum
likelihood estimators (MLEs) for these probabilities.
The details of this analysis are provided in Appendix
B of the online companion.

Figure 1 compares the empirical results reported in
Gallucci et al. (2005) with those obtained numerically
from our statistical model. Gallucci et al. study a sam-
ple of around 6,000 patients who were appointed to a
psychiatry outpatient program and estimate that the

Figure 1 Probability of No-Show or Cancellation vs. Appointment
Delay
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total rate of no-show and cancellation is 12%, 23%,
42%, and 44% corresponding to 0, 1, 7, and 13 days
of appointment delay, respectively. With our data and
using our model, we found the same rates to be
17.99%, 18.48%, 21.37%, and 24.15%, respectively. Not
surprisingly, the numbers we found are different from
those found by Gallucci et al. Nevertheless, they both
point to the same relationship: the longer the appoint-
ment delay, the higher the chances of a no-show or
cancellation.

7.2. Daily Requests for Appointments

We estimated the average number of daily appoint-
ment requests to be approximately 50. However, there
are no data that would make it possible to estimate its
probability distribution. Therefore, in the simulation
study, we assumed this distribution to be Poisson fol-
lowing other work in the literature, e.g., Patrick et al.
(2008), Gupta and Wang (2008), and Robinson and
Chen (2010).

7.3. Cost and Reward Functions

The reward function r(-,-) for a clinic can be esti-
mated in dollar terms given the relevant data. In most
cases, however, the function will be used to reflect
the preferences of a clinic regarding various trade-
offs that are in play, which will no doubt be highly
influenced by financial concerns. Although profitabil-
ity would be a major concern for many private clinics,
this might be less of an issue at university hospitals
because their missions mainly lie elsewhere: research,
education, and public service. For such hospitals, it
is difficult to quantify the cost of overtime for physi-
cians because it depends on time spent away from
other important activities such as research and teach-
ing. In fact, even if the only concern was maximizing
profits, not everything could be easily quantified. For
example, what is the cost of the reduced quality of
service given to the patients if these patients are seen
on a day when the clinic exceeded its regular capacity
by 15%? On an overloaded day, patients will experi-
ence longer waits and they will be seen by physicians
who are under pressure to clear up the high load.
Therefore, the reward function should mostly be seen
as user inputs that will differ depending on the cir-
cumstances different clinics are operating in as well
as their preferences.

In our simulation study, we used the reward func-
tion that we determined in consultation with Samuel
Weir, professor and co-director of the Family Medicine
Center at UNC. Although values of specific parame-
ters might be different for different clinics, we believe
that the structure of these functions capture the basic
trade-off that will be faced by many clinics. Specifi-
cally, we assumed that the reward function is in the
form of (3) with n(x) = x (implying one nominal
reward for each patient served) and

K+ h,z, z<M,
w(z) = (16)
K+hM+hy(z—M), z>M,

In (16), K > 0 can be seen as the daily fixed cost, M >0
as the regular daily capacity of the clinic, h; > 0 as
the regular time cost of one scheduled patient, and
h, > h; as the overtime cost of one scheduled patient.
This cost formulation makes it possible for the clinic
to make its preference regarding daily patient over-
loads. If h, is set arbitrarily large, the policy will not
schedule more than M patients on a single day unless
all days are full. On the other hand, if , and h, are
set equal to each other, that implies the clinic does not
mind overloading the clinic. Most clinics will prefer
being somewhere in between, which they can deter-
mine by setting h; and h, accordingly.

8. Performance Comparison of the

Heuristics: A Simulation Study

This section summarizes the results of the simulation
study we carried out to investigate the performances
of the scheduling policies proposed. As we have dis-
cussed in the previous section, the model clinic used
in our simulation study was created using data from
the Department of Family Medicine at UNC. We first
derive OTPSP, and indices for Imp-OTPSP, and Imp-
OAP for the “model clinic,” which has a linear reward
function with one nominal reward for each patient
served and a cost function given by (16). Then, we
report and discuss the findings of the simulation
study.

8.1. Derivation of the Heuristics for

the Simulation Study
Suppose that A denotes the mean number of daily
appointment requests. Note that for our model clinic,
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) is estimated to be 50. Let A,(p,) = Apy(ag — ) +
Aoy and A, (py) = Apy(1 — Byi) + ABy;- Then, we can
show that

Repsp(Po) = M (po) — [K + 1y Ay (po) + (hy — hy)

. (% (i M)e—wo)M)], (17)

Recall that OTPSP is obtained by finding p, that
maximizes (17). Let p{ be the maximizer and p* =
[ps,1—p;,0,0,...,0], which is a (T + 1)-dimensional
vector. Then, OTPSP is the policy of scheduling
appointments independently of the system state using
probability vector p*.
Now, let

LT ~ j
LY V,0+7m+ X
i=1

k=max{j—1, 1}

vkj P")

where Zi:max[ i1,1) ij(p*) =0 if j =0. Then, using (6),
(8), and (16) we can show that the indices for Imp-
OTPSP are given by

I; = ay; — Bo{E[w(l; + 1)] — E[w(I)]}
= ay; — Bo;j[hy + P(I; = M) (h, — hy)]. (18)

The indices for Imp-OAP are also given by (18) except
that for Imp-OAP, p=[1,0,0,...], I} £ 1/ V,(x) +
Vi(y) + Vj(p), and Vi, (p) =0.

8.2. Findings of the Simulation Study

The objective of the simulation study was to compare
the performances of the heuristic policies we propose
(OTPSP, Imp-OAP, and Imp-OTPSP) with those of the
benchmark heuristics (OAP, TP, BSP, and RSP) intro-
duced in §5. For TP, we set the threshold to be the
regular daily capacity of the clinic, which is denoted
by M as defined in §5.2.

Recall that we picked n(x) =x and w(-) as in (16).
As for the values of the parameters, we set K =0 with-
out loss of generality and h, = 0.95. We simulated var-
ious scenarios by considering different combinations
of values for M and h;. Specifically, M took values
in {40, 45, 50, 55} and &, took values in {0.0,0.2, 0.5}.
Because daily arrivals were set to 50, picking differ-
ent values for M allowed us to test the performances
of the policies under various conditions of system

load. Clinics in scenarios where M =55 can be seen
as underloaded, whereas those in scenarios where
M =40 or M =45 are overloaded. On the other hand,
assigning different values for i1; helps us capture dif-
ferent preferences that a clinic might have for admit-
ting more patients than the regular daily capacity.
Our preliminary analysis indicated that the policies
we propose very rarely scheduled appointments more
than 15 days in advance, and the times it took the sim-
ulation runs to complete quickly increased with the
value of T, the maximum value for the appointment
delay. Therefore, we set T =15 in all scenarios.

We used the batch-means method (see, e.g., §9.5
in Law and Kelton 2000). For each scenario, we ran
11 batches, each consisting of 200 consecutive work-
days. The first batch was used as the warm-up period.
A total of 12 different scenarios were considered, each
with a different pair of values for M and h;. Each
scenario was simulated under each one of the seven
scheduling policies, i.e., OAP, Imp-OAP, OTPSP, Imp-
OTPSP, TP, BSP, and RSP, and the long-run average
net reward was computed. For all scenarios consid-
ered, OTPSP turns out to be a deterministic static pol-
icy, which always assigns the arriving appointment
request to the next day; ie., py=0 and p, =1. It is
difficult to give a clear description of the dynamic
heuristics Imp-OAP and Imp-OTPSP, but our numer-
ical observations suggest that these policies generally
resemble BSP. Unlike BSP, however, which schedules
patients to the day with the fewest scheduled appoint-
ments, these two heuristics “balance” the load accord-
ing to the indices. To facilitate comparison, we chose
OAP as the benchmark policy and for every other
policy computed the percentage improvement that
would be obtained by using the policy as opposed
to OAP. Finally, we determined the 95% confidence
interval for the mean percentage improvement. The
results are given in Table 1.

In Table 1, the first number for each scenario-policy
pair is the mean percentage improvement, whereas
the second number is the half width of the 95% con-
fidence interval for the mean. Therefore, if the first
number is larger than the second number, that indi-
cates the corresponding policy is superior to OAP
at the 5% significance level. On the other hand, if
the first number is negative and it is larger than the
second number in absolute value, that implies the
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Table 1 Results of the Simulation Study Table 2 “Best” Policies for Each Scenario at the 5% Significance
Level
Imp-OTPSP (%)  OTPSP (%)  Imp-OAP (%)
Scenarios Best policies

M=55 h =0 2111046 0.78 +£0.32 218+0.49
hy =0.2 410+0.95 3.23+0.75 3.08+0.63 M =55 hy =0 Imp-OTPSP Imp-0AP TP
hy =05 12.74+1.05 1214 +1.10 3.72+1.34 h;=0.2 Imp-0TPSP Imp-0AP TP

M=50 h =0 6774076  275+037  542+070 hy=05  Imp-O0TPSP  OTPSP
h =02 8.28 +0.97 5.48 +0.86 6.96 + 0.41 M =50 hy =0 Imp-OTPSP
h, =05 18.56 +1.30 15.29+1.31 9.25+1.26 h,=0.2 Imp-0TPSP TP

M=45 h = 10634052  623+060  9.25+051 hy=05  Imp-OTPSP
hy=0.2 13.35+0.77 9.13+0.76 11.53+0.72 M =45 h, =0 Imp-OTPSP
h, =05 25.01+2.10 20.32+1.41 21.78 +1.57 h,=0.2 Imp-0TPSP

M=40 h = 984067 0124044 1021+039 h=05  Imp-OTPSP
h, =02 13.03 +- 0.66 1248 +068 13.69+0.90 M =40 h=0 Imp-0TPSP Imp-0AP
hy=0.5 27.41+1.87 26.82+149 28.13+1.59 hy=0.2 Imp-0TPSP Imp-0AP

h, =05  Imp-OTPSP Imp-0AP
TP (%) BSP (%) RSP (%)

M=55 h = 2.11+0.46 —-6.30+£053 -3.28+0.41
h=02  3.25+0.61 -548+072 153049 we also determined the best policies for each sce-
hy=05  439+£108  -453+121  268+1.02 nario separately, which are listed in Table 2. More

M=5 h=0 645+073 2224073 —120+051 specifically, for each scenario we conducted paired
=02 821082 —1.094:089 050066 t-tests for every possible pair of policies and deter-
hy=05 1211+£168 072147  531+128 o wheth yhp 1DIe pair li'ff .

M=45 h =0 5244 0.80 4114054 1814070 mlr}e whether there 1s a s.tat'ls.tlca 1fference between
h =02 6.28 +010 491+069  3.28+088 their performances at a significance level of 0.05. For
hy=05  10.40+1.97 810+138  9.16+1.65 every scenario, we listed the policies whose perfor-

M=40 h =0 2.79+0.70 299+055  423+073 mances are better than those of the others. Note that
hy=02  357+097 383+075  6.05+095 for some of the scenarios, there is more than one pol-
hy =05 6.79+2.12 7.324+1.62 13.58 +1.96

Note. The first number indicates the difference between the mean perfor-
mances of the corresponding policy and OAP, and the second number indi-
cates the half width for the 95% confidence interval. Entries in bold indicate
that the performances of the two corresponding policies are different at the
5% significance level.

superiority of OAP. The cases where the numbers
indicate superiority of one policy over the other (in
either direction) at the 5% significance level are shown
in bold. Note that the comparison is inconclusive in
only two cases.

A quick look at Table 1 reveals that Imp-OTPSP,
OTPSP, Imp-OAP, and TP are the “best” policies
under a variety of conditions. Although OAP does
not perform as well as these policies, it does perform
better as the regular capacity M gets larger. This is
not surprising because as we discussed in §1, OAP is
an ideal policy when the system is not overloaded. It
would thus be reasonable to expect that OAP would
be among the best policies if M were larger.

To better compare the four best policies, Imp-
OTPSP, OTPSP, Imp-OAP, and TP, among each other,

icy. That is because in those cases, paired f-tests are
inconclusive, meaning that the performances of the
policies are not statistically different.

Table 2 clearly shows that the policies we propose,
particularly Imp-OTPSP, perform well. The superior-
ity of Imp-OTPSP over OTPSP is actually guaranteed
given that Imp-OTPSP is obtained by applying a pol-
icy improvement step over OTPSP. It is also not sur-
prising (although not guaranteed) that overall Imp-
OTPSP performs better than Imp-OAP because the
static policy that Imp-OTPSP improves upon (OTPSP)
is superior than the static policy Imp-OAP improves
upon (OAP).

TP performs quite well when the regular capacity
M is large, but as shown in Table 1, when M is small
it is no better than BSP or even RSP, which schedules
appointments randomly. On the other hand, all three
policies we propose perform consistently well across
all scenarios, suggesting that they are more robust
than TP. Note that one can in fact show that TP is an
optimal policy if the clinic ignores patient no-shows
and cancellations. Therefore, the poor performance of



Liu, Ziya, and Kulkarni: Dynamic Scheduling of Outpatient Appointments
362 Manufacturing & Service Operations Management 12(2), pp. 347-364, ©2010 INFORMS

TP when regular capacity is small also shows how
damaging such omissions in formulation can be.

The superiority of Imp-OTPSP is more pronounced
for midvalues of the regular capacity (M = 45 or
M =50). This might be a consequence of the fact that
there is no room for Imp-OTPSP to make a difference
when the capacity is large or small. When the reg-
ular capacity is large, most policies manage to keep
scheduled appointments below daily capacity with-
out delaying appointments too long. As a result, most
policies perform reasonably well and there is not
much to gain from more sophisticated policies. On the
other hand, when the regular capacity is small, under
most policies the regular capacity is exceeded, which
again limits the opportunity for sophisticated policies
to make a difference. For midvalues of the regular
capacity, there are more choices that an intelligent
scheduling policy can make because unlike the low- or
high-capacity cases, some days will be overloaded and
some days will be underloaded. An intelligent policy
can work to smooth the daily loads so that overloads
and no-shows are avoided to the extent possible.

So what are the implications of our findings for prac-
tice? One should seek simplicity if complexity does not
bring any significant advantages. Therefore, it appears
that as suggested by Green and Savin (2008), if demand
and supply are in balance, OA is quite reasonable,
especially if this policy is believed to have additional
benefits that were not quantified in our formulation.
However, if demand and supply are not in balance, if
average demand is close to regular capacity or some-
what higher, the policies we propose appear to be
much better than the OA policy or other alternatives.

9. Concluding Remarks

In this paper we developed a model for the dynamic
appointment scheduling decisions for a clinic that
explicitly takes into account the possibility that
patients may cancel or not show up for their appoint-
ments with probabilities that increase with their
appointment delays. The model parameters can eas-
ily be estimated from data typically available for most
clinics; in particular, the model does not assume the
existence of data that are impossible or very difficult to
obtain in practice, and the model allows us to develop
dynamic heuristic policies that are easy to implement.

We tested the performances of the heuristic poli-
cies in a simulation study where we considered a
model clinic generated by data provided to us by the
Department of Family Medicine at UNC. The results
of the study clearly indicate that the heuristic policies
we propose perform quite well, particularly when the
patient load is high. The policies outperform the OA
policy even when the load is low, but the differences
in the performances are not as significant and thus
the OA policy might be a more reasonable choice if
one wishes to keep scheduling simple. However, for
high patient loads, the heuristics we propose appear
to be much better than the OA policy as well as other
benchmark policies.

It is important to note that in this paper we used the
term OA strictly to refer to the policy of scheduling
all the appointments for the day when the requests
are made. In practice, OA is sometimes interpreted
or implemented in a more flexible way. For example,
some clinics that use OA allow a certain portion of
their patients to make appointments for the future.
Some clinics use OA mostly as a guiding principle
rather than a specific prescription for how appoint-
ments should be scheduled. On the other hand, some
others implement OA but maintain more flexibility by
scheduling appointments over a period of 2-5 days
rather than a single day. Such flexible implementa-
tions of OA fit into our framework. The heuristics we
propose can actually be seen as not necessarily alter-
natives to OA in the broader meaning of the term but
also as policies that can be used by clinics that imple-
ment some of the flexible versions of OA.

There are many ways to extend our model. First,
our heuristics specify on which day to schedule an
incoming appointment request but not the time of
the appointment on that day. It will be interesting to
develop a sequential decision model to jointly decide
on which day and at what time to schedule appoint-
ments. One possibility is to merge the existing slot
scheduling algorithms already developed in the liter-
ature with our heuristic methods. More precisely, one
can use the methods we propose to determine the day
of the appointment and use a slot scheduling algo-
rithm (such as the one proposed by Muthuraman and
Lawley 2008) to determine the time of the appoint-
ment. Another interesting extension would be to con-
sider the heterogeneity of no-show behavior among
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the patients. One way of capturing this heterogene-
ity would be—as in the model of Muthuraman and
Lawley (2008)—to group patients into different classes
according to characteristics that correlate with their
no-show behavior and assign them appointments
accordingly.

In this paper, we assumed that patients accept the
first appointment date offered to them, which can be
a reasonable assumption in many cases. However, in
practice not all patients will be satisfied with the day
offered to them and some will ask for another day. In
fact, the heuristics we propose can be used even when
the patients have preferences because they do not
simply tell us on which day the next patient should be
scheduled. They also provide a ranking of alternative
appointment dates because the index that the heuris-
tics calculate for each day can be seen as a heuristic
score of how much the clinic should rather assign that
day instead of the others. Thus, if a patient is not
happy with the day offered, the scheduler can offer
the day with the next highest score. However, the per-
formance of such a policy should be investigated care-
fully because the heuristics are in fact derived under
the assumption that patients accept the first appoint-
ment time offered to them. One interesting avenue for
future work is to explicitly incorporate patient pref-
erences into an appointment scheduling framework;
this appears to be a significant modeling challenge.
One possibility is to use a probabilistic discrete choice
model as in Gupta and Wang (2008).

Finally, it is important to note that although this
paper has been motivated by the scheduling of outpa-
tient appointments for clinics, our framework and the
policies we propose are in fact relevant to any system
that schedules jobs in a similar fashion and experi-
ences customer no-shows and cancellations (e.g., hair
salons, mechanics, computer support services) that
depend on appointment delays.

Electronic Companion

An electronic companion to this paper is available on
the Manufacturing & Service Operations Management website
(http://msom.pubs.informs.org/ecompanion.html).
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