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Abstract. Group testing (i.e., testing multiple subjects simultaneously with a single test) is
essential for classifying a large population of subjects as positive or negative for a binary
characteristic (e.g., presence of a disease). We study optimal group testing designs under
subject-specific risk characteristics and imperfect tests, considering classification accuracy-,
efficiency- and equity-based objectives, and characterize important structural properties of
optimal testing designs. These properties allow us to model the testing design problems as
partitioning problems, develop efficient algorithms, and derive insights on equity versus
accuracy trade-off. One of our models reduces to a constrained shortest path problem, for
a special case of which we develop a polynomial-time algorithm. We also show that
determining an optimal risk-based Dorfman testing scheme that minimizes the expected
number of tests is tractable, resolving an open conjecture. We demonstrate the value of
optimal risk-based testing schemes with a case study of public health screening.
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1. Introduction and Motivation
Screening a population of subjects so as to classify each
subject as positive or negative for a binary characteris-
tic (e.g., presence of a disease or genetic disorder, a
product defect, error in a computer code) is essential in
many settings. Individually testing each subject is often
very costly, and hence may not be a viable strategy for
classification, especially when the prevalence of the
binary characteristic in the population is low and the
population size is large. Therefore, in 1943, Dorfman,
an economist, proposed the concept of group testing,
which involves testing multiple subjects simulta-
neously using a single test, for the purpose of screening
military inductees for syphilis in an economical manner
(Dorfman 1943). This so-called Dorfman testing scheme
has two stages: in the first stage, subjects are tested in
groups; if a group tests negative, then all subjects in the
group are classified as negative; and if a group tests
positive, then each subject in the group is individually
tested and classified according to the outcome of their
individual test. Dorfman testing is one of the most
commonly utilized group testing schemes today; for
example, in donated blood screening, Dorfman testing
has become the standard practice in the United States
and several European countries (American Red Cross
2017, European Blood Alliance 2017). However, many

unrealistic assumptions were imposed in Dorfman’s
original model, as well as in most of the subsequent
research on Dorfman testing. These include the assump-
tions of perfect tests (i.e., no classification errors), homoge-
neous (identical) subjects (i.e., the probability of having
the binary characteristic is the same for all subjects),
and an infinite testing population (in reality, the number
of subjects is finite and known in each testing period).
Specifically, the decision problem is as follows: there

is a finite set of subjects to be classified as positive or
negative for a certain binary characteristic in each
testing period; and there are risk factors that are known
to increase a subject’s probability of positivity (risk) for
the binary characteristic in question (i.e., subjects come
from a heterogeneous population). A screening test, which
may be used on individual subjects or groups of subjects,
is available to detect the binary characteristic, but the
test is imperfect, leading to the possibility of false-
positive or false-negative classifications. The challenge,
then, is to design a risk-based Dorfman testing scheme
(i.e., determining group sizes, and assigning subjects,
with different risk, to the groups) so as to classify the
set of subjects for the binary characteristic accurately
(i.e., with minimum classification error), equitably (i.e.,
with a fair and even distribution of misclassification
probability across subjects), and efficiently (i.e., with
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minimum resources). Equity (fairness) is an important,
and often over-looked, dimension of resource alloca-
tion problems (e.g., Luss 1999, Bertsimas et al. 2011,
2012), and considering the trade-off between accuracy
and equity is especially important in public health
screening (Wagstaff 1991, Brandeau et al. 2004). We
identify important structural properties of optimal
risk-based Dorfman testing schemes with imperfect
tests; use these properties to develop efficient algorithms;
and derive key insights through a case study that dem-
onstrates an application of the proposed schemewithin
a public health screening setting.

Our decision problem applies in a wide variety of
settings. Asmentioned above, an important application
of group testing arises in public health screening. For
example, state health laboratories often have programs
to screen the sexually active population in the state for
sexually transmitted diseases (STDs) (Roche Diagnostics
USA 2017), and blood banks screen all donated blood for
a set of transfusion-transmittable diseases, including, for
example, the human immunodeficiency virus (HIV) and
hepatitis viruses (Weusten et al. 2011, Aprahamian et al.
2016, U.S. Food and Drug Administration 2017). Indi-
vidually testing each subject, within a large population,
for a disease is typically not feasible owing to limited
resources. Another important consideration is that dis-
ease prevalence rates may vary, and sometimes sub-
stantially, with subject characteristics. For example, in
the United States, subjects within the 15–24-year age
group are 12 times more likely to be infected with
chlamydia, one of the most prevalent STDs in the United
States, than subjects from other age groups (Centers for
Disease Control and Prevention 2014); first-time blood
donors are seven times more likely to be infected with
HIV than repeat donors (Zou et al. 2012). Group testing
can also enable the use of more accurate, yet more ex-
pensive, tests that would have been too expensive to
be used for individual testing (e.g., nucleic acid testing
technology). An equitable testing scheme is especially
important in public health screening. For example, in
STD screening, the testing scheme that minimizes the
classification errors may do so by placing the subjects in
Dorfman groups with different sizes in the first stage of
testing, based, in part, on how the demographics (e.g.,
age, race/ethnicity) impact risk. It is important that in
doing so the solution does not unfairly increase the
classification errors for a certain subset of subjects (e.g.,
subjects within a specific age group or belonging to
a certain race/ethnicity). Group testing has also seen
wide applications beyond healthcare systems. Consider,
for example, a common communication channel (e.g.,
a satellite connection) that is shared by a large number
of users; if multiple users attempt to transmit a signal
during the same time slot, a collision occurs and must
be resolved by identifying the “active” users (i.e., users
that are transmitting a signal) during this time slot.

Group testing can be utilized to identify these active
users efficiently, significantly reducing the conflict res-
olution time in multiaccess communication networks
(Berger et al. 1984). In this context the probability of being
active varies depending on user characteristics; for ex-
ample, users with a history of heavy signal transmission
would have a higher probability of being active. Alter-
natively, in industrial quality control, amanufacturer can
test a group of light bulbs for defects by arranging them
in series and applying a voltage across the group; or
test a group of airtight containers for leaks by filling
them with an indicator gas and placing the group in
a low-pressure chamber—the presence of the gas in the
chamber indicates leakage in at least one of the con-
tainers (Sobel and Groll 1959). The probability of being
defective can vary on the basis of, for example, properties
of manufacturing machines, including their age and
maintenance schedules. Other examples of group testing
applications include, among others, software testing
(Blass and Gurevich 2002), data compression (Hong
and Ladner 2002), compressed sensing (Cormode and
Muthukrishnan 2006), and DNA library screening
(Pevzner and Lipshutz 1994).
Dorfman testing has been extensively studied but

mostly under restrictive assumptions, such as perfect
tests (e.g., Dorfman 1943, Sobel and Groll 1959, Hwang
1975, Saraniti 2006, Feng et al. 2010, Li et al. 2014),
which leads to a focus on minimizing the number of
tests (i.e., maximizing efficiency) rather than maxi-
mizing classification accuracy or equity; infinite pop-
ulations; and with subjects having identical risk for
the binary characteristic (i.e., the testing population is
homogeneous) (e.g., Graff and Roeloffs 1972, Wein and
Zenios 1996, Gupta and Malina 1999, Kim et al. 2007).
One of the earliest works to incorporate subject-specific
risk characteristics in group testing design is by Hwang
(1975), who studies the problem of determining a risk-
based Dorfman testing scheme so as to minimize the
expected number of tests for perfect tests. More recent
work (e.g., Bilder and Tebbs 2012, Black et al. 2012,
McMahan et al. 2012, Tebbs et al. 2013, Black et al.
2015) extends the analysis to the realistic case of imperfect
tests; these analyses, however, solely rely on heuristics
that attempt to reduce the expected number of tests rather
thanmaximize the classification accuracy or equity under
a testing budget constraint, as we do in this paper; other
recent work derives analytical expressions for the per-
formance measures under continuous test outcomes
(Wang et al. 2018), but this work does not consider
optimization considering a general objective function
comprising classification accuracy and expected
number of tests. In particular, McMahan et al. (2012)
state that determining an optimal risk-based Dorfman
testing scheme that minimizes the expected number of
tests (i.e., an extension of themodel of Hwang 1975 to the
case of imperfect tests) “appears to be intractable”; hence,
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the paper develops various heuristics, which range
from restricting all group sizes to be equal; to testing
the low-risk subjects (determined via a preset risk
threshold) in groups of equal size, while testing the
high-risk subjects individually; to varying group sizes
but under the assumption that group sizes reduce as
subject risk increases. Although some of these properties
may seem intuitive, we show in this paper that an
optimal solution does not necessarily satisfy any of
these properties; thus, none of the greedy heuristics in
McMahan et al. (2012) necessarily converge to the
optimal solution. Further, we show that the afore-
mentioned extension of Hwang’s model to the case of
imperfect tests (i.e., the problem of determining a
risk-based Dorfman testing scheme so as to minimize
the expected number of tests under imperfect tests) is in
fact tractable, resolving the conjecture in the relevant
literature. Our model is quite general and is able to
incorporate subject-specific risk characteristics into the
testing design and relax the perfect test and infinite
population assumptions, thus enabling us to consider
all important dimensions of testing: classification ac-
curacy, efficiency, and equity.

Specifically, we consider a number of objective func-
tions, because in practice there are different goals
depending on the context of the problem. In particular,
we explore (i) minimizing aweighted sumof the expected
number of false-negative and false-positive classifications
and number of tests (i.e., the system’s problem and the first
best solution), a special case of which reduces to the
minimization of the expected number of tests (i.e., our
model extends the earlier works of Hwang 1975 and
McMahan et al. 2012); and (ii) minimizing a weighted
sum of the expected number of false-negative and false-
positive classifications under a testing budget con-
straint (i.e., the budget-constrained problem). Further, we
explore an equity-based formulation, which aims to
capture the trade-off between classification accuracy
and equity under a testing budget constraint. These
formulations may arise in various settings. For in-
stance, in STD screening, minimizing classification
errors and maximizing equity, especially with respect
to false-negative classifications, are important objec-
tives. In this setting, false-positive classifications may
only lead to further confirmatory testing, whereas
false-negative classifications may lead to medical com-
plications and further spread of the disease; and a testing
design inwhich a subset of the subjects has a higher false-
negative classification probability compared with the
others is not desirable from a societal perspective. In
industrial quality control, both false negatives (which
result in defective products shipped to customers) and
false positives (which result in unnecessary wastage)
are of importance; thus, minimizing a weighted sum of
false negatives, false positives, and testing costs would
be an appropriate objective.

Our contributions in this paper are multifold. We
formulate the aforementioned decision problems as
partitioning problems and develop key structural prop-
erties. These properties allow us to reduce the system’s
problem to a shortest path problem and the budget-
constrained problem to a constrained shortest path
problem. Not surprisingly, the shortest path problem
arises in various other contexts, including pricing and
inventory management, transportation, supply chain
management, and scheduling (e.g., Van Hoesel et al.
2005, Deng and Yano 2006, Verter and Kara 2008,
Solyalı et al. 2015), and our work adds a novel ap-
plication to this set. The constrained shortest problem
is, in general, NP-hard (Garcia 2009), and the algo-
rithms proposed in the literature are not polynomial
for the general problem (e.g., Yen 1971, Handler and
Zang 1980, Beasley and Christofides 1989, Irnich et al.
2010, and Engineer et al. 2011). Depending on the
setting, the problem size can be quite large in our
context; for example, in STD screening it is common
for a state health laboratory to screen specimens taken
from approximately 100 subjects every day (Lewis
et al. 2012), hence the algorithms developed in the
literature become computationally expensive for realistic
instances. Toward this end, we utilize the structural
properties of our decision problem to improve its
tractability; and, for special cases of our decision
problem, we develop a polynomial-time algorithm
that can solve the corresponding constrained shortest
path problem. Further, our study of an equity-based
objective provides valuable insight; for example, in
our budget-constrained problem, when the objective
is to maximize the equity with respect to false-negative
classifications, we show that there is no trade-off be-
tween classification accuracy and equity (i.e., the price of
fairness is zero), and the testing design that minimizes
the number of false-negative classifications is also the
one that maximizes equity. Finally, we demonstrate
the effectiveness of the proposed risk-based Dorfman
testing scheme through a case study on chlamydia
screening in the United States using published data.
The proposed risk-based Dorfman scheme not only
substantially reduces each of the expected number of
false negatives, expected number of false positives,
and expected number of tests but also significantly
increases the equity of the testing scheme, over optimal
non–risk-based schemes and current screening prac-
tices. Such improvements in all performance measures
underscore the value of incorporating subject-specific
risk characteristics into the testing design.
The remainder of this paper is organized as follows.

Section 2 presents the notation, decision problem, and
formulations; and Section 3 provides derivations of the
performance measures. Section 4 studies the optimal
design of risk-based Dorfman testing schemes in different
settings and derives important structural properties of
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optimal solutions. Then, Section 5 discusses findings from
the U.S. chlamydia screening case study. Finally, Section 6
summarizes our findings and provides directions for
future research. To facilitate the presentation, all proofs are
relegated to the online appendix.

2. Notation, Decision Problem, andModels
2.1. Notation and Decision Problem
Throughout, we denote random variables in uppercase
letters, their realization in lowercase letters, and vectors
in bold. We use indices m and i to respectively refer to
a subject and to a group, and we use the subject index
as a superscript and group index as a subscript (i.e.,
Xm versus Xi). Finally, we use the terms positive and
negative to refer both to subjects (i.e., to respectively
denote the presence or absence of the characteristic)
and to binary test outcomes (i.e., to respectively denote
the test outcomes that indicate the presence or absence
of the characteristic).

Consider an ordered set, S ! {1, · · · ,N}, of subjects,
ordered with respect to their risk (probability of pos-
itivity) for a certain binary characteristic, with their
corresponding risk vector given by p ! (p1, p2, · · · , pN),
where p1 ≤ p2 ⋯≤ pN . Each subject in set S needs to be
classified as positive or negative for the binary charac-
teristic through testing. The test is not perfectly reliable,
with test sensitivity (i.e., true-positive probability)
denoted by Se and test specificity (i.e., true-negative
probability) denoted by Sp. Consequently, misclassi-
fication, that is, classifying a truly negative subject as
positive (a false-positive classification) or classifying
a truly positive subject as negative (a false-negative clas-
sification), is possible. We assume, without loss of gen-
erality, that the test’s true-negative probability is higher
than its false-negative probability1 (i.e., Sp/(1 − Se)≥ 1).
As such,we have that Se + Sp − 1∈ [0, 1], with the special
case of Se + Sp − 1 ! 1 corresponding to the perfect
test case (i.e., false positives and false negatives are
not possible), that is, the case studied in the previous
literature (Hwang 1975); see Section 1. Both individual
testing and group testing are possible, and the test’s
sensitivity and specificity remain constant with group
size. Our modeling also implies that testing outcomes
are conditionally independent, given the true-positivity
status of the subjects. This is a common assumption
in the group testing literature and is mainly made for
analytical tractability (e.g., Graff and Roeloffs 1972,
Johnson et al. 1991, Kim et al. 2007). We discuss the im-
plications of this assumption in Section 4.2. For the given
set, S, of subjects to be classified, the decision maker
needs to decide whether each subject is to be tested
individually (i.e., with one test per subject and with
the subject classified according to the individual test
outcome) or in groups, and if the latter, then group sizes
and assignments. Each group is to be tested following
the Dorfman testing scheme: in the first stage the

group is testedwith one test; if the group test outcome is
negative, then all subjects in the group are classified as
negative; and if the group test outcome is positive, then
all subjects in the group are individually tested and
classified according to their individual test outcome.
Thus, the decision problem is to find a feasible par-

tition of set S that is optimal with respect to a certain
objective function (see Section 2.2). We represent a
partition by a combination of mutually disjoint sets,
Ω ! (Ωi)i!1, . . . ,g, each with cardinality ni ≡ |Ωi |, for some
g∈ {1, · · · ,N}, such that ⋃iΩi ! S, Ωi ∩Ωj ! ∅, for all
i, j∈ {1, · · · , g} : i≠ j; and each subject in Ωi :ni ! 1 is in-
dividually tested, and each set of subjects in Ωi :ni > 1
is tested according to a Dorfman testing scheme
with a group size of ni. We define ΩI ≡ ⋃i :ni!1Ωi and
ΩG ≡ ⋃i :ni>1Ωi (i.e., the set of subjects to be tested
individually and to be tested in groups, respectively).
Our work focuses on testing facilities that are capa-

ble of dynamically changing their testing scheme fre-
quently (e.g., each day), according to the risk vector
realization of the testing population in each period.
This type of dynamic testing is feasible, for example,
in settings that utilize automated testing machines.
For instance, in public health screening, many testing
facilities use automated molecular testing machines
(e.g., HOLOGIC 2017 and Roche Diagnostics USA 2017)
to conduct screening tests for various diseases (e.g., chla-
mydia, gonorrhea, HIV). These machines can perform
both individual and group testing and are capable of
performing such dynamic testing schemes.
The objective functions in Section 2.2 are based on the

following random variables: number of false-positive
classifications (FP(Ω)), number of false-negative clas-
sifications (FN(Ω)), and number of tests to be per-
formed (T(Ω)) for a partition Ω of set S. Let Im denote
the indicator random variable corresponding to the
true-positive status of subject m ∈ S; and for a partition
Ω, let FNm(Ω) and FPm(Ω), m ∈ S, denote the indicator
random variables, respectively corresponding to the
false-negative classification and false-positive clas-
sification of subject m, that is, Im,FNm(Ω),FPm(Ω) ! 1,
if subject m is, respectively, truly positive, classified
falsely as negative, or classified falsely as positive; and
0 otherwise. Similarly, let N+

i (Ωi), FNi(Ωi), and FPi(Ωi)
respectively denote the counterparts of these random
variables for group i,∀i (i.e., number of true-positive
subjects, number of false-negative classifications, and
number of false-positive classifications in group i);
that is,

N+
i (Ωi) !

∑

m∈Ωi

Im, FNi(Ωi) !
∑

m∈Ωi

FNm(Ωi), and

FPi(Ωi) !
∑

m∈Ωi

FPm(Ωi), ∀i.

We also let Ti(Ωi) denote the random number of tests
performed for group i,∀i. Then, the performance
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measures, corresponding to a partition Ω of set S, can
be expressed as follows:

FN(Ω) !
∑

i
FNi(Ωi), FP(Ω) !

∑

i
FPi(Ωi), and

T(Ω) !
∑

i
Ti(Ωi).

To simplify the subsequent notation, we drop the ar-
guments in parentheses when clear from context.

2.2. Models
As discussed above, we consider the decision problem,
of finding an optimal partition, Ω∗ ! (Ω∗

i )i, under dif-
ferent objective functions and in different settings; the
latter is characterized by the presence or absence of
a constraint on the testing budget.

2.2.1. System-Optimal Model. In the system-optimal
model (SM), we consider the problem from a system’s
perspective, with an objective of minimizing the system-
wide cost associated with the binary characteristic, that
is, we consider aweight (cost) associatedwith each test,
each false-negative classification (e.g., consequences of
the disease when not detected), and each false-positive
classification (e.g., follow-up testing cost or hassle,
which is unnecessary), that is, the goal is to identify
a partition that minimizes a weighted sum of both types
of classification errors and the testing cost. Such an
objective function has been analyzed before (e.g.,
Malinovsky et al. 2016) but not within a heterogeneous
population framework. Problem SM applies in a wide
variety of settings, for example in the context of a single-
payer healthcare system or a centrally managed pro-
duction system.

The SM is as follows:

minimize
Ω

λ1E [FN(Ω)] + λ2E [FP(Ω)]
+ (1 − λ1 − λ2)E[T(Ω)], (1)

where parameters λ1,λ2 ∈ [0, 1] represent the weight
the decision maker places on each objective, with
special cases corresponding to the minimization of the
expected number of false-negative classifications only
(λ1 ! 1), expected number of false-positive classifi-
cations only (λ2 ! 1), and expected number of test-
ing cost only (λ1 ! λ2 ! 0); as discussed in Section 1,
the last case is the case most studied in the literature
(e.g., Dorfman 1943, Hwang 1975, Saraniti 2006, and
McMahan et al. 2012).

2.2.2. Budget-Constrained Model. As opposed to the
setting above, in the budget-constrained model (BM)
we consider a decisionmaker that must perform testing
under a testing budget constraint, and the objective is
to minimize a weighted sum of both types of classifi-
cation errors. This applies, for example, in the context of

a testing laboratory that is constrained by the available
resources (e.g., a testing budget), which we represent in
terms of parameter B, corresponding to the number of
tests that can be conducted.
The BM is as follows:

minimize
Ω

λE [FN(Ω)] + (1 − λ)E [FP(Ω)]
subject to E[T(Ω)]≤B,

(2)

where parameter λ∈ [0, 1] represents the weight the
decision maker places on each type of classification
error, with special cases corresponding to the mini-
mization of the expected number of false negatives
only (λ ! 1) and expected number of false positives
only (λ ! 0).

Remark 1. In some settings, additional confirmatory
testing is conducted on all subjects that test positive
in the initial screening (see Section 5.2). This can be
easily incorporated into the BM formulation by adjust-
ing the budget constraint to include the additional
(expected) cost of confirmatory testing; and all the
subsequent results continue to hold under this new
formulation.

In general, the partitioning problem, of determining
Ω, under an arbitrary objective function is NP-hard
(Chakravarty et al. 1982), and enumeration-based
methods may lead to highly inefficient solution tech-
niques even for small problem instances (e.g., when
N ! 20, the number of possible partitions is approxi-
mately 52 trillion, whereas realistic problem instances
often have hundreds of subjects; e.g., see Section 5).
Therefore, in the remainder of the paper we develop
important structural properties for each optimiza-
tion problem. These properties allow us to develop
efficient algorithms and analyze their computational
complexity.

3. Derivations of the
Performance Measures

We first derive expressions for the performance mea-
sures, including the expected number of false nega-
tives, false positives, and tests. Equity-based measures
are discussed in Section 4.3. Recall that, for a partition
Ω, ΩI and ΩG respectively correspond to the sets of
subjects to be tested individually and in groups, and ni
denotes the size of group i, ∀i.

3.1. False-Negative Classifications
Recall that in individual testing, a truly positive subject
is falsely classified as negative if the test outcome is
negative, whereas in group testing, a truly positive
subject is falsely classified as negative if (i) the group
test outcome is negative, or (ii) the group test outcome
is positive and the subject’s subsequent individual test
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outcome is negative. Then, given Ω, for any subject
m ∈ S, we have

E [FNm] !E [FNm |Im ! 1]P(Im ! 1)
+ E [FNm |Im ! 0]P(Im ! 0)

! (1 − Se)pm + 0, if m ∈ΩI,
(Se(1 − Se) + (1 − Se))pm + 0, if m ∈ΩG,

{

leading to: E [FNm] ! (1 − Se)pm, if m ∈ΩI,
(1 − Se2)pm, if m ∈ΩG.

{

Then, the expected number of false-negative classifi-
cations for group i is given by

E [FNi(Ωi)] !
(1 − Se)

∑
m∈Ωi

pm, if ni ! 1,
(1 − Se2)

∑
m∈Ωi

pm, otherwise,

{

and the expected number of false-negative classifica-
tions for all subjects in set S is given by

E [FN(Ω)] !
∑

i
E [FNi(Ωi)]

!
∑

i:ni!1
E [FNi(Ωi)] +

∑

i:ni>1
E [FNi(Ωi)]

! (1 − Se)
∑

m∈ΩI

pm + (1 − Se2)
∑

m∈ΩG

pm. (3)

Interestingly, for a grouped subject, m, E [FNm] is in-
dependent of the risk of the remaining subjects in the
group. This behavior follows for two reasons: (i) subjects
are independent of one another (i.e., knowledge of the
true status of one subject does not alter the risk of an-
other), and (ii) conditioned on subjectm, in group i, being
positive, the probability that group i tests positive is Se,
regardless of the status of the remaining subjects in the
group. This follows under our assumption that the test
sensitivity and specificity (i.e., Se and Sp) are inde-
pendent of the group size, which implies that, condi-
tional on the true status of subjectm,m ∈ΩG, the group
and individual test outcomes for subject m are in-
dependent of one another. This is a common assumption
in the group testing literature; to relax this assumption,
one can, for example, explicitly model the dilution
effect of grouping (Wein and Zenios 1996). This is an
interesting research direction but is beyond the scope of
this paper.

These observations lead to an important property,
discussed in Remark 2.

Remark 2. For any partition Ω, the expected number
of false-negative classifications corresponding to the
set of subjects that are grouped (i.e., in set ΩG) de-
pends only on set ΩG and not on how the subjects are
grouped.

Remark 2 will allow us to develop a polynomial-time
algorithm for a special case of the problem; see Section 4.2.

3.2. False-Positive Classifications
Recall that in individual testing, a truly negative subject
is falsely classified as positive if the test outcome is
positive, whereas in group testing, a truly negative subject
is falsely classified as positive if the group test outcome is
positive and the subject’s subsequent individual test
outcome is positive. Then, given a partition Ω, for any
individually tested subject m ∈ΩI, we can write

E [FPm] ! E [FPm |Im ! 1]P(Im ! 1)
+ E [FPm |Im ! 0]P(Im ! 0)

! 0 + (1 − Sp)(1 − pm),

and for any subjectm ∈ΩG grouped in some setΩi :ni > 1,
i∈ {1, · · ·, g} (i.e., m ∈Ωi), we have

E [FPm]
! E [FPm |Im ! 1]P(Im ! 1) + E [FPm |Im ! 0]P(Im ! 0)

! 0 +
[
(1 − Sp)2 ∏

k∈Ωi\{m}
(1 − pk)

+ Se(1 − Sp)
(
1 − ∏

k∈Ωi\{m}
(1 − pk)

)]
(1 − pm)

! (1 − Sp)
[
Se − (Se + Sp − 1) ∏

k∈Ωi\{m}
(1 − pk)

]
(1 − pm)

! (1 − Sp)Se(1 − pm)
− (1 − Sp)(Se + Sp − 1)∏

k∈Ωi

(1 − pk),

leading to

E [FPm] !
(1 − Sp)(1 − pm), if m ∈ΩI,
(1 − Sp)Se(1 − pm) − (1 − Sp)
· (Se + Sp − 1)∏k∈Ωi

(1 − pk), if m ∈ΩG.




Then, the expected number of false-positive classifi-
cations for group i is given by

E [FPi(Ωi)]

!
(1 − Sp)

∑
m∈Ωi

(1 − pm), if ni ! 1,

(1 − Sp)Se
∑

m∈Ωi
(1 − pm) − ni(1 − Sp)

· (Se + Sp − 1)∏m∈Ωi
(1 − pm), otherwise,




and the expected number of false-positive classifica-
tions for all subjects in set S is given by E [FP(Ω)] !
∑

iE[FPi(Ωi)].

3.3. Number of Tests
Recall that in individual testing, the number of tests
per subject is always one, whereas in group testing,
the number of tests depends on the outcome of the
group test: if the group test outcome is negative, then
only one test is performed for the entire group, and if
the group test outcome is positive, then an additional
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individual test is performed for each subject in the
group. Given a partition Ω, the expected number of
tests for group i, i ! {1, · · ·, g}, is 1 if ni ! 1 (i.e., indi-
vidual testing), and if ni > 1, we can write

E[Ti(Ωi)] !
∑ni

k!0
E[Ti(Ωi)|N+

i (Ωi) ! k]P(N+
i (Ωi) ! k)

! E[Ti(Ωi)|N+
i (Ωi) ! 0]P(N+

i (Ωi) ! 0)

+
∑ni

k!1
E[Ti(Ωi)|N+

i (Ωi) ! k]P(N+
i (Ωi) ! k)

! (Sp + (1 − Sp)(1 + ni))P(N+
i (Ωi) ! 0)

+
∑ni

k!1
(1 − Se + Se(1 + ni))P(N+

i (Ωi) ! k)

! 1 + ni
(
Se − (Se + Sp − 1) ∏

m∈Ωi

(1 − pm)
)
.

Thus, E[Ti(Ωi)]

!
1, if ni ! 1,

1 + ni
(
Se − (Se + Sp − 1)∏m∈Ωi

(1 − pm)
)
,

otherwise,




(4)

and the expected number of tests needed for all sub-
jects in set S is given by E[T(Ω)] ! ∑

iE[Ti(Ωi)].

4. Structural Properties and Algorithms
As discussed earlier, the partitioning problem under
an arbitrary objective function isNP-hard (Chakravarty
et al. 1982). Therefore, in what follows, we develop
important structural properties of the two optimi-
zation problems, SM and BM, presented in Section
2.2. These properties allow us to reduce the parti-
tioning problem into network flow problems and
analyze their computational complexity. In many
instances the resulting network flow problems can
be solved with algorithms whose complexity is poly-
nomial in problem size, that is, N, the number of
subjects in set S.

Definition 1. A partition, Ω ! (Ωi)i!1,. . . ,g, is said to be
an ordered partition if it follows the ordered set
S ! {1, 2, · · ·,N}, that is, Ω1 ! {1, · · ·,n1}, Ω2 ! {n1+
1, · · ·,n1 + n2}, · · ·,Ωg ! {∑g−1

i!1 ni + 1, · · ·,N}, for some
g ∈ {1, · · ·,N} and ni ∈Z+, i ! 1, · · ·, g.

By this definition, an ordered partition Ω ! (Ωi)i can
be equivalently expressed in terms of the group size
vector, n ! (ni)i, as groups are constructed following
the ordered set S. In the following, we first present our
main results that hold for both SM and BM and then
derive additional properties for each problem respec-
tively in Sections 4.1 and 4.2. All proofs can be found
in the online appendix.

Theorem 1. For SM and BM, the following properties hold
in an optimal solution:
a. There exists an optimal partition that is an ordered

partition of S.
b. If in the optimal ordered partition, subject m, with risk

pm, is individually tested, then it is optimal to individually
test all subjects having a risk higher than pm.

The first part of Theorem 1 allows us to reformulate
the partitioning problem as a network flow problem
defined on the network in Definition 2, whereas the
second part of Theorem 1 enables us to improve the
computational complexity of the proposed algorithms
for certain special cases.

Definition 2. For a problem instance with N subjects
(N ∈Z+) in set S, letG ! (V,E) denote an acyclic directed
graph with vertex set V ! {1, · · ·,N + 1} and edge set
E ! {(i, j) ∈V : i< j}, with cardinality, |E| ! N(N + 1)/2.
Figure 1 depicts an example of G ! (V,E) forN ! 10,

where the bold end of an edge represents its direction
(i.e., the flow is directed toward the bold end).

Remark 3. For a problem instance with N subjects
(N ∈Z+) in set S, each path from vertex 1 to vertex N + 1
in network G ! (V,E) corresponds to an ordered parti-
tion of set S, and the number of unique paths is given by
2N−1. Further,G ! (V,E) is a dense graph,with the degree
of each vertex given by N (i.e., deg(v) ! N for all v∈V).

To derive the number of paths given in Remark 3, let
Path(N) denote the number of paths from vertex 1 to
vertex N + 1 in G ! (V,E). We have that

Path(N) ! 1 + Path(N − 1) + Path(N − 2) +⋯ + Path(1),
(5)

which follows because from vertex 1, one can directly go
to vertexN + 1, or go to vertex 2 and then go toN + 1 (in
the latter case the number of possible paths from vertex
2 to N + 1 equals Path(N − 1)), and so on. Rearranging
Equation (5) and noting that Path(1) ! 1, we have

Path(N) ! Path(N − 1)
+ (1 + Path(N − 2) +⋯ + Path(1))

! 2Path(N − 1) ! 2N−1.

The fact that G ! (V,E) is a dense graph follows by
definition, that is, a graph is said to be dense if
minv∈V{deg(v)}≥N/2 (Gimbel et al. 1993); this will
play an important role for the construction of an algo-
rithm for a special case of the problem (see Section 4.2).
Theorem 1 leads to the following results.

Property 1.
1. SM can be formulated as a shortest path (SP)

problem defined on G ! (V,E), with edge costs given
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by cij ! λ1E [FNi(Ωi−j)] + λ2E [FPi(Ωi−j)] + (1 − λ1 − λ2)
E[Ti(Ωi−j)], where Ωi−j ! {i, · · ·, j − 1}, that is, cij is the
cost of utilizing group Ωi−j, for all (i, j)∈E.

2. BM can be formulated as a constrained-SP prob-
lem, having a single constraint, defined on G ! (V,E),
with edge costs given by cij ! λE [FNi(Ωi−j)] + (1 − λ)
E [FPi(Ωi−j)], where Ωi−j ! {i, · · ·, j − 1}, that is, cij is the
cost of utilizing group Ωi−j, for all (i, j) ∈E.

Remark 4.
1. The SP problem for an acyclic graph can be solved

in polynomial time (e.g., via a topological sorting algo-
rithm in 2(|V| + |E|); Cormen 2009). As such, a topolog-
ical sorting algorithm solvesSMwithN subjects in2(N2).

2. The constrained-SP problem is, in general, NP-hard
(Garcia 2009).

Thus, SM can be solved in polynomial time, resolv-
ing the intractability conjecture stated in the literature
(McMahan et al. 2012). However, BM is a difficult pro-
blem. In the remainder of the paperwedevelop structural
properties of SM and BM that enable us to improve
their computational efficiency and to develop an algo-
rithm that can solve an important special case of BM
in polynomial time.

4.1. Analysis of SM
We next study structural properties for important
special cases of SM, that is, those that seek to min-
imize a subset of the expected number of false clas-
sifications or to minimize solely the expected number
of tests. Each of these objectives can be important for
the decision maker, depending on the setting. For
example, Bilder and Tebbs (2012), McMahan et al.
(2012), and Black et al. (2015) exclusively focus on
the special case of λ1 ! λ2 ! 0 (i.e., minimization of
the expected number of tests) and develop various
heuristics.

Theorem 2. Consider the following special cases of SM
that respectively minimize the expected number of a
weighted combination of both types of classification
errors, or number of false negatives only, or number of
false positives only.

1. For all λ1,λ2 ∈ [0, 1] : λ1 + λ2 ! 1 (i.e., when mini-
mizing a weighted sum of both types of classification errors),

a. the optimal ordered partition does not contain
a group having more than three subjects, that is, each group
is comprised of one, two, or three subjects (i.e., n∗i ≤ 3, for all
i ! 1, · · ·, g, for some g∈ {1, · · ·,N});

b. if pN ≤ 1/3, then the group sizes of the optimal or-
dered partition are in nonincreasing order, that is, n∗1 ≥
n∗2 ≥ · · · ≥n∗g, for some g∈ {1, · · ·,N};
2. for λ1 ! 1 (i.e., when minimizing E [FN]), the optimal

partition is to individually test each subject, that is, n∗i ! 1,
i ! 1, · · ·,N;
3. for λ2 ! 1 (i.e., when minimizing E [FP]), the optimal

ordered partition can have at most one individual test, which,
by the second part of Theorem 1, has to be for the highest
risk subject (i.e., subject N).

Remark5. Forallλ1,λ2 ∈ [0, 1] :λ1 + λ2 ! 1,byTheorem2,
the number of edges in G ! (V,E), |E|, decreases from
N(N + 1)/2 to 3(N − 1). As such, a topological sorting
algorithm solves SM with N subjects in 2(|V| + |E|) !
2(N), that is, in linear time.

Similarly, the following result characterizes prop-
erties of the optimal SM solution that minimizes the
expected number of tests.

Theorem 3. Consider a special case of SM that minimizes
E[T] (i.e., λ1 ! λ2 ! 0). If

pN≤ 1 − Se − 0.5
Se + Sp − 1

( )
1/2

,

then the optimal ordered partition can have at most one
individual test, which, by the second part of Theorem 1, has
to be for the highest risk subject (i.e., subject N).

We expect the condition imposed in Theorem 3 to be
satisfied when, for example, the prevalence of the bi-
nary characteristic is low and the test specificity is high.
As an example, in our case study (see Section 5), this
condition reduces to pN ≤ 0.308, which is satisfied by all
subjects in the case study.

Remark 6. If λ1 ! λ2 ! 0 and pN ≤ 1 − ((Se − 0.5)/
(Se + Sp − 1))(1/2), then the number of edges inG ! (V,E),
|E|, decreases from N(N + 1)/2 to 1+ N(N − 1)/2, im-
proving the computational complexity of the SP al-
gorithm for SM.

Theorem 2 establishes that for a special case of SM
that minimizes the expected number of misclassifica-
tions (i.e., λ1 + λ2 ! 1), and under a certain condition
(i.e., pN ≤ 1/3), the group sizes for an optimal ordered
partition are nonincreasing. This property may seem
intuitive because it indicates that higher-risk subjects
are placed in smaller groups than lower-risk subjects.
Thus, the next question is whether the optimal group

Figure 1. G ! (V,E) when N ! 10
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sizes continue to be nonincreasing when this condition
is not satisfied or when the objective in SM contains the
expected number of tests (i.e., λ1 + λ2 < 1). The special
case of λ1 ! λ2 ! 0 (i.e., the minimization of the ex-
pected number of tests) is the objective almost exclu-
sively studied in the literature, and various heuristics
are proposed that generate ordered partitions with
nonincreasing group sizes (McMahan et al. 2012). The
following counter-example, which is based on realistic
problem parameters, indicates that this property does
not necessarily hold in general.

Example 1. Consider SM with λ1 ! λ2 ! 0 (i.e., the
objective is to minimize E[T]). Consider a test with Se !
0.90 and Sp ! 0.95, and a set, S, of 100 subjects (i.e.,
N ! 100), with an ordered risk vector, p, given by
pi+1 ! pi + β, i ! 1, · · ·, 99, where β ! 13/3, 300 and
p1 ! 0.01. The optimal partition that minimizes E[T] is
given by n∗ ! (7, 6, 5, 4, 4, 4, 4, 4, 4, 3, 3, 3, 3, 3, 3, 3, 3, 34)
with E[T] ! 74.48, which does not satisfy the property
of nonincreasing group sizes.

Example 1 serves twomain purposes. First, although
placing higher-risk subjects in smaller groups seems
intuitive, Example 1 demonstrates that this is not al-
ways the case in an optimal solution; that is, an optimal
solution does not necessarily follow the nonincreasing
group size property. Second, Example 1 further shows
that the minimization of the expected number of tests,
by itself, is not an adequate objective function for this
problem, because the imperfect test sensitivity and
specificity parameters may lead to optimal solutions
that may be impractical, or simply undesirable from
a classification accuracy maximization perspective. To
see this last point, notice that in the optimal solution of
Example 1, the 34 highest-risk subjects are placed into
a single group, mainly because the test sensitivity is
0.90. Thus, when the objective is to minimize the ex-
pected number of tests only (i.e., without any con-
sideration of classification accuracy), grouping such
high-risk subjects may be preferable owing to the
proportion of time the high-risk group is expected to
test negative (resulting in only one test for the group).
Evenwhen an upper limit is set on themaximum group
size, we still observe this behavior, providing further
evidence for the need to consider classification accu-
racy in the objective function.

4.2. Analysis of BM
Next we study structural properties of BM, in which
the objective is to minimize a weighted sum of both
types of classification errors under a testing budget
constraint; see Equation (2). By Property 1, we for-
mulateBM as a constrained-SP having a single constraint,
which, by Remark 4, is NP-hard. Various methods are
proposed in the literature to solve the constrained-SP

problem, as we briefly discuss below (for a thorough
review, see Garcia 2009).
One method to solve the constrained-SP problem is

the path ranking method, in which the next uncon-
strained shortest path is successively generated until
the first feasible path (i.e., that satisfies the constraints)
is identified. The problem of generating the next
shortest path is related to the k-shortest path problem,
in which the objective is to generate the first k (un-
constrained) shortest paths for a given k ∈Z+. When k
is fixed, there exist polynomial-time algorithms that
generate the k shortest paths (Garcia 2009). However,
when the k-SP problem is used to solve the constrained-
SP problem, k is no longer fixed, and hence there is no
guarantee of a polynomial-time algorithm (Garcia 2009).
This is especially true in our case, because the number
of paths grows exponentially with N (see Remark 3),
rendering this method inefficient and computationally
expensive. Alternatively, one can utilize a Lagrangean
relaxation-based method to solve the constrained-SP
problem (e.g., Handler and Zang 1980); specifically,
when the constraints are relaxed, the problem reduces
to an SP problem, which can be solved in polynomial
time. In particular, Handler and Zang (1980) solve the
Lagrangean relaxation of the problem to determine
upper and lower bounds, and then, using a k-SP al-
gorithm (e.g., Yen 1971) closes the gap until optimality
or δ-optimality is attained. Although suchmethods are,
in general, more efficient than path-ranking methods,
they may still require a large number of iterations to
converge to the optimal solution, especially when the
number of paths is large, as in our case.
In what follows, we first analyze an important

special case ofBM that minimizes the expected number
of false-negative classifications under a testing budget
constraint (i.e., λ ! 1). When λ ! 1, Theorem 1 and
Remark 2 enable us to develop an algorithm that can
solve BM in polynomial time. The algorithm is mo-
tivated by the properties by which, keeping all else the
same, (i) testing any subject individually reduces the
objective function value (Equation (3)), (ii) the objec-
tive function value is independent of how the subjects
in set ΩG are grouped (Remark 2), and (iii) by Theo-
rem 1, the subjects in set ΩI must correspond to the
highest-risk subjects in set S. Therefore, the proposed
algorithm determines the optimal ordered partition
by identifying the largest feasible set of subjects that
can be tested individually (set ΩI) and by minimizing
the expected number of tests for the remaining sub-
jects (set ΩG).

Theorem 4. When λ ! 1, the following algorithm solves
BM for N subjects in 2(N3):
Step 0: If B≥N, stop; the optimal solution is to in-

dividually test each subject, that is, n∗i ! 1, i ! 1, · · ·,N.
Step 1: Let N̂ ! 2, S1 ! {1, 2}, and S2 ! S\S1.
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Step 2: Solve SM with S ! S1 and parameters λ1 !
λ2 ! 0, and let Z∗(S1) denote the optimal objective function
value for set S1, i.e., Z∗(S1,Ω∗(S1)) ! minΩ {E[T(S1;Ω)]}.

Step 3: If Z∗(S1) + |S2 | ≤B, stop; the optimal solution is
to test the subjects in S2 individually and to test the subjects
in S1 according to the optimal ordered partition in Step 2,
that is, Ω∗(S1).

Step 4: If N̂ ! N and Z∗(S1)>B, stop; the problem is
infeasible.

Step 5: Set N̂ ! N̂ + 1, S1 ! S1 ∪ {N̂}, S2 ! S\S1, and
go to Step 2.

The algorithm provided in Theorem 4 depends on
Remark 2, which in turn depends on the assumption
that testing responses are conditionally independent,
given the true positivity status of the subjects. In some
settings this assumption may not hold, because test
outcomes performed on a truly positive subject may be
positively correlated. As an example, consider a test
that measures the concentration of a disease-related
biomarker, which should be high for a truly positive
subject (except for the initial phase of the disease, also
known as the window period); then if the outcome of
the first-stage Dorfman test is positive for a group that
includes a truly positive subject, then it is likely that this
truly positive subject is outside of the window period,
and hence the probability that the outcome of the
subsequent individual test conducted on this truly
positive subject is positive should be higher. This is not
necessarily the case for a truly negative subject, how-
ever. In the absence of the disease, the biomarker
concentration should be negligible, and hence out-
comes of the different tests will only be subject to
a random testing error, which need not be correlated;
thus, given that a subject is truly negative, we can
expect the subsequent test outcomes to be independent.
Recall also that in the Dorfman testing scheme, only the
groups that test positive in the first-stage Dorfman
testing undergo further testing. Then, the aforemen-
tioned conditional independence assumption does
not impact the subjects belonging to negative-testing
groups in the first stage, because a negative-testing
group is tested only once. Consequently, we expect
that this assumption should not impact (i) the expected
number of tests, because the number of tests to be
conducted depends only on the outcome of the first-
stage group tests; and (ii) the expected number of false
positives, because the conditional independence as-
sumption should not impact test outcomes of truly
negative subjects, as discussed above. However, the
expected number of false negatives in our model is
impacted by the conditional independence assump-
tion, and our model provides an upper bound on the
expected number of false negatives compared with the
case in which this assumption is relaxed. This follows
because, by assuming conditional independence, we

are underestimating the probability that the outcome of
the second-stage individual test is positive, given that
the subject is truly positive and that the first-stage test
outcome is positive for the group that includes this
subject.

Remark 7. When λ ! 1, the algorithm presented in
Theorem 4 not only determines an optimal solution
to BM (i.e., that minimizes E [FN]) but also provides a
solution with the minimum expected number of tests
among multiple optimal solutions (if any). This property
is not guaranteed by other algorithms, such as Handler’s
algorithm, which generate any one of the optimal
solutions.

Having developed a polynomial-time algorithm for
BM when λ ! 1, we next explore solving BM when
λ< 1. In particular, we formulate BM as a binary integer
programming problem. Note that the total unimo-
dularity property, present in the integer program-
ming formulation of the unconstrained SP problem,
no longer holds with the addition of the budget con-
straint. Therefore, in the following we exploit the struc-
ture of an optimal solution to BM. In particular, by
Theorem 1(b), one can add a set of constraints to the
integer programming formulation of BM that reduces
the feasible region without cutting off the optimal
solution, as stated in the following lemma.

Lemma 1. By Theorem 1, the following set of constraints
does not cut off the optimal solution to BM:

xj,j+1 ≥ xi,i+1, ∀ (i, j) ∈E : j> i.

In light of Lemma 1, the integer programming for-
mulation of BM follows:

minimize
x

∑N

i!1

∑N+1

j!i+1

(
λE [FNi(Ωi−j)]

+ (1 − λ)E [FPi(Ωi−j)]
)
xij

subject to
∑N+1

j!i+1
xij −

∑i−1

j!1
xji

!
1, if i ! 1
−1, if i ! N + 1
0, otherwise


 ∀i∈V

∑N+1

j!i+1
xij ≤ 1 ∀i∈V

xj,j+1 ≥ xi,i+1 ∀ (i, j) ∈E : j> i
∑N

i!1

∑N+1

j!i+1
E[Ti(Ωi−j)] xij ≤B

xij ∈ {0, 1} ∀(i, j) ∈E,
(6)

where Ωi−j ! {i, · · ·, j − 1}, ∀i. Our numerical study
shows that, in general, the branch and bound ap-
proach used to solve the formulation in Beasley and
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Christofides (1989), which includes the additional
constraints in Lemma 1, outperforms the algorithm
of Handler and Zang (1980) in terms of efficiency,
allowing us to solve considerably larger problem in-
stances to optimality.

4.3. An Equity-Based Objective and Properties
As mentioned in Section 1, an important consider-
ation in resource allocation problems, especially in
public health screening, is the trade-off between clas-
sification accuracy and equity. For example, does the
most accurate solution unfairly increase the misclas-
sification probability for certain subjects? If so, this
solution would be unfair because certain subjects, on
the basis of their demographics, which may impact
risk, would not benefit from the improved solution
but instead would be more likely to be misclassified.
Therefore, we would like to understand whether such
inequity occurs in the proposed solutions, and if so,
to what degree (i.e., what is the trade-off between
accuracy and equity). Toward this end, we capture the
trade-off between accuracy and equity by adopting
the α-fairness measure, commonly used in the litera-
ture (e.g., Atkinson 1970, Barr 1998, Bertsimas et al.
2012). The α-fairness measure is a function of param-
eter α≥ 0, known as the inequality aversion parameter,
that measures the tendency of the model to produce
a more equitable solution (over a more accurate solu-
tion); see, for example, Bertsimas et al. (2012). The
equity-based version of BM, which we refer to as
BM-E(α), is as follows:

maximize
Ω

1
(1 − α)

∑

m∈S

(
1 − λE [FNm(Ω)]

− (1 − λ)E [FPm(Ω)]
)
1−α

subject to E[T(Ω)]≤B. (7)

Remark 8. Consider the objective function in BM-E(α):
1. When α ! 0, the objective function reduces to the

minimization of a weighted sum of both types of clas-
sification errors (i.e., the most accurate solution), that is,
BM-E(α) reduces to BM.

2. As α increases, the objective function assignsmore
weight to equity (Barr 1998, Lan et al 2010).

3. As α→∞, the objective function reduces to
the most equitable function (Kalai and Smorodinsky

1975), that is, of minimizing the worst-case equity
outcome given by,

minimize
Ω

max
m∈S

{λE [FNm(Ω)] + (1 − λ)E [FPm(Ω)]}.

Definition 3. Following Bertismas et al. (2011), we
define the Price of Fairness, denoted by PoF(α), as the
relative increase in the weighted sum of classification
errors under the optimal equitable solution, with fair-
ness level α, compared with the most accurate solution
(i.e., when α ! 0), that is

PoF(α) !

λ
(
E [FN(Ω∗(α))] − E [FN(Ω∗(0))]

)

+ (1 − λ)(E [FP(Ω∗(α))] − E [FP(Ω∗(0))]
)

λE [FN(Ω∗(0))] + (1 − λ)E [FP(Ω∗(0))] .

By Remark 8, BM-E(α ! 0) reduces to BM, and all
results of Section 4.2 follow. Therefore, in what follows
we discuss the case inwhich α> 0. The following example
shows that when α> 0 and λ< 1, that is, the objective is
to maximize an equity-based objective with respect
to either both false negatives and false positives, or
false positives only, the optimal partition to BM-E(α)
need not be an ordered partition, that is, Theorem 1 does
not necessarily hold under the equity-based objective.

Example 2. Consider BM-E(α) with α→∞ and λ ! 0.
Suppose that B ! 5, and consider a test with Se ! 0.90
and Sp ! 0.95, and a set, S, of five subjects with the
following risk vector:

p ! (0.10, 0.28, 0.30, 0.40, 0.45).
The optimal partition is to have two groups, with the first
group containing the lowest- and highest-risk subjects
(i.e., subjects 1 and 5) and the second group containing
the remaining three subjects (i.e., Ω∗ ! {{1, 5}, {2, 3, 4}}).
Clearly, the optimal partition is not ordered. Table 1
reports the performance of the optimal partition with
two ordered partitions that have the same group sizes
as the optimal partition (i.e., n ! (2, 3) and n ! (3, 2)),
with n ! (3, 2) corresponding to the best solution among
all ordered partitions.

Example 2 demonstrates that the optimal partition
need not be an ordered partition. To explain this, first
note the following observation.

Table 1. Performance of Various Partitions in Example 2

E [FPm]

Partition (Ω) Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 maxm∈S{E [FPm]} E [ FP]

{1, 5}, {2, 3, 4} 0.01946 0.01955a 0.01865 0.01415 0.00372 0.01955 0.07552
{1, 2}, {3, 4, 5} 0.01296 0.00486 0.02168a 0.01718 0.01493 0.02168 0.07162
{1, 2, 3}, {4, 5} 0.02122a 0.01312 0.01222 0.01298 0.01073 0.02122 0.07027

aThe subject with the highest probability of being falsely classified as positive.
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Remark 9. Consider BM-E(α) with α→∞ and λ ! 0.
For any given partition Ω, the highest false-positive
probability in each group is determined by the lowest-
risk subject in that group. Therefore, maxm∈S{E [FPm]}
corresponds to the false-positive probability of the
lowest-risk subject of one of the groups.

As such, this example demonstrates how the optimal
partition balances the maximum value of the false-
positive probability by appropriately grouping the
subjects, and the optimal grouping does not need to
follow an ordered partition.

Remark 10. Because BM-E(α) no longer has the prop-
erty that ensures the existence of an optimal partition
that is ordered, it is NP-hard (Chakravarty et al.
1982).

However, for an important case of BM-E(α) with λ !
1 and α≥ 0 (i.e., the equity-based objective applies only
to false-negative classifications), we have the following
important result.

Theorem 5. For BM-E(α) with λ ! 1 and α≥ 0, there
exists an optimal ordered partition that is independent of α.

When λ ! 1, Theorem 5 follows because, for all α≥ 0,
(i) testing any subject individually reduces the objective
function value (Equation (3)), (ii) the objective function
value is independent of how the subjects in set ΩG are
grouped (Remark 2), and (iii) by Theorem 1, the sub-
jects in set ΩI must correspond to the highest-risk
subjects in set S. As such, for all α≥ 0, the objective
is to determine the largest feasible set of subjects that
can be tested individually (set ΩI), and because the
constraint is independent of α, this set will be identical
for all α levels. Theorem 5 has important implications,
as stated in the following result.

Corollary 1. Consider BM-E(α) with λ ! 1 and α≥ 0 (i.e.,
the equity-based objective applies only to false-negative
classifications).

1. PoF(α) ! 0 for all α≥ 0, that is, in terms of the false-
negative classifications, the partition that is the most ac-
curate is also the most equitable.

2. For all α≥ 0, an optimal partition can be obtained by
solving BM, for which a polynomial-time algorithm exists
(see Theorem 4).

In the next section, we perform a case study to il-
lustrate the effectiveness of the proposed risk-based
testing scheme over optimal non–risk-based schemes
and current screening practices.

5. Case Study: Chlamydia Screening in the
United States

In this section we perform a case study on chlamydia
screening. Chlamydia is one of themost prevalent STDs

in the United States (Centers for Disease Control and
Prevention Division of STD Prevention 2014), andmost
chlamydia screening occurs at the state level via public
health laboratories. There are no nationwide guidelines
on screening practices for chlamydia, and as a result,
screening practices differ significantly among states; for
example, North Carolina individually screens high-risk
female subjects only (North Carolina State Laboratory
of Public Health 2016), whereas Idaho uses group
testing on all subjects in group sizes of four, with the
exception of individual testing of subjects who are
exposed to chlamydia or who need to be tested after
treatment (Lewis et al. 2012). A study conducted by the
Centers for Disease Control and Prevention indicates
how the positivity probability (risk) of a subject for
chlamydia can vary substantially by gender, race/
ethnicity, and age (Centers for Disease Control and
Prevention Division of STD Prevention 2014). Conse-
quently, in this case study, we decompose the U.S.
population by gender, three race/ethnicity groups
(black [B], hispanic [H], and other2 [O]), and two age
groups (15–24 years and other), leading to a total of
12 risk subpopulations. Studies also show that a large
percentage of chlamydia cases goes undiagnosed and/
or unreported (e.g., 75% of females and 50% of males
with chlamydia show no symptoms and are likely
to be unreported; Centers for Disease Control and
Prevention 2000); and the actual number of cases is
estimated to be at least three times the number of re-
ported cases (Grimes et al. 2013). In Table 2, we report
the risk (prevalence rate) for chlamydia in the United
States and the proportion, in the general population, of
each risk subpopulation according to data in Centers
for Disease Control and Prevention (2014) for the year
2014 and using an under-reporting factor, denoted by
UP, of three. In addition, we conduct a one-way
sensitivity analysis on the parameter UP and also
investigate the cases with UP ! 4 and UP ! 5. Hence,
the mean overall prevalence rate, µp, which we use in
non–risk-based schemes, is equal to 0.97%, 1.29%,
and 1.62%, respectively corresponding to UP ! 3, 4,
and 5.
We consider an amplified DNA assay for chlamydia

(Viper ProbeTec Chlamydia Qx), a commonly used
chlamydia screening test that can be utilized for both
individual and grouped testing (Kapala et al. 2000).
A number of nucleic acid tests are available, with
varying sensitivity and specificity values, hence in this
case study we explore a set of sensitivity and specificity
values ranging from 0.93 to 0.97. We use testing and cost
data from Van Der Pol et al. (2012) and Owusu-Edusei
et al. (2015). Specifically, we set the cost of a false negative
to the average cost of sequelae (i.e., any complications
resulting from not treating a chlamydia patient), es-
timated as $2,927; the screening cost, per test (either
individual or grouped), to $55; and the cost of a false
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positive to the cost of an additional confirmatory test,
which we assume equals the cost of the initial screen-
ing test.

To illustrate the benefits of the proposed risk-based
Dorfman testing, we perform a Monte Carlo simula-
tion. In particular, we set the number of subjects that
need to be tested in a given period (day) to 100 (i.e.,
N ! 100); this provides a realistic representation of the
problem (Lewis et al. 2012), and for each day, we gen-
erate a realization of the random risk vector following
the discrete distribution presented in Table 2. We per-
form 3,000 simulation replications for each scenario,
characterized by µp, Se, and Sp, and determine the sam-
ple mean and sample variance for 3,000 replications
for each performance measure. All simulation results in
the tables are presented in the form, the point estimate ±
the half width of the 95% confidence interval.

In Sections 5.1 and 5.2, we compare each risk-based
model, SM and BM, with a corresponding base-case
(BC) model in which, following the common treat-
ment of the group testing design in the literature (e.g.,
Dorfman 1943 and Kim et al. 2007), we assume that the
testing population is homogeneous, with mean risk µp,
and the population size is infinite. Thus, the base-case
model generates a static group testing design, which is
used repetitively every period, whereas the proposed
risk-based policies generate dynamic testing designs,
that is, they produce a potentially different testing
design each period based on the observed risk vector
for the N subjects. Following current practices, in the
base-case, if N is not a multiple of the group size, then
the remaining subjects form a (smaller) group for
testing, and subjects are randomly assigned to the
groups. Then in Section 5.3, we compare SM with the
three risk-based heuristic testing designs proposed by
McMahan et al. (2012), in which the objective is to
minimize the expected number of tests. We denote the
three heuristics by MC1, MC2, and MC3, respectively
corresponding to the Optimal Dorfman, Thresholding,

and Pool-Specific Optimal Dorfman Heuristics discussed
in McMahan et al. (2012).

5.1. System-Optimal Model (SM)
We first consider the system’s problem, of generating
a testing design for N subjects so as to minimize the
total cost of false-negative and false-positive classifi-
cations and testing. In our risk-based testing policy, this
corresponds to SM, with the objective of minimizing
λ1E [FN] + λ2E [FP] + (1 − λ1 − λ2)E[T], with weights
λ1 ! 0.96 and λ2 ! 0.02, which are normalized on the
basis of the cost data discussed above. Specifically,
λ1 ! $2, 927/$3, 037 ≈ 0.96 and λ2 ! $55/$3, 037 ≈ 0.02
(hence, 1 − λ1 − λ2 ! 0.02).3 The corresponding base-
case, BC, is obtained by minimizing the same objective
function, but under the homogeneous and infinite pop-
ulation assumptions (i.e., minimizing the objective func-
tion per subject). Table 3 reports the performancemeasures
for BC and SM for a range of parameter values.
The results in Table 3 indicate the substantial reductions

under SM for all performance measures over the non–
risk-based scheme BC. Specifically, SM reduces each of
E [FN], maxm∈S{E [FNm]}, E [FP], and E[T] over BC by
an average of 10%, 41%, 17%, and 19%, respectively.
Moreover, the objective function of SM is reduced by an
average of 18% overBC. The one-way sensitivity analyses
reveal that the reductions in all performancemeasures are
consistent among the different settings, indicating how
risk-based testing can provide substantial benefits for
a range of parameter values. Figure 2 also plots (a) E[T]
and (b) E [FP] as a function of E [FN] for each of BC and
SM; each point in the figure represents one of the 3,000
simulation replications of the random risk vector. In ad-
dition to the reduction of all performancemeasures under
SM, interestingly, Figure 2 also reveals that SM sub-
stantially reduces the variance, that is, the sample variance
corresponding to 3,000 simulation replications, of these
measures as well, specifically, by 51%, 80%, and 66% for
E [FN], E [FP], and E[T], respectively.

Table 2. Risk for Chlamydia and Proportion in Population by Gender, Age, and Race/
Ethnicity (Centers for Disease Control and Prevention 2014)

Gender
Race/

ethnicity
Age group
(years)

Risk (prevalence)
(%)

Proportion in general population
(%)

Female Hispanic 15–24 6.54 1.41
Other 0.65 7.01

Black 15–24 19.19 1.07
Other 1.22 5.67

Other 15–24 4.38 4.29
Other 0.25 31.31

Male Hispanic 15–24 1.78 1.53
Other 0.36 7.16

Black 15–24 7.45 1.09
Other 1.05 5.08

Other 15–24 1.20 4.51
Other 0.17 29.87
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5.2. Budget-Constrained Model (BM)
We next consider the budget-constrained testing prob-
lem, of generating a testing design for N subjects so
as to minimize the number of false-negative classifica-
tions under a testing budget constraint. In our risk-based
testing policy, this corresponds to BM, with λ ! 1.
Following common testing practices, we consider that
all positive-testing subjects in the initial screening un-
dergo additional confirmatory testing. Consequently, we
modify the testing budget constraint in (2) to also include
the cost of false positives in the initial screening, E[T]+
γE [FP]≤B, with γ ! 1 (i.e., the cost of a false positive
is equal to the testing cost). By Remark 1, this modifi-
cation does not impact the analytical results.

In the corresponding base-case, BC, under the ho-
mogeneous and infinite population assumptions, the
per-subject expected number of false negatives be-
comes independent of the group size (Aprahamian
et al. 2017). As such, for the corresponding base-case,
rather thanminimizing the per-subject expected number
of false negatives, we minimize the left-hand side of
the budget constraint (i.e., E[T] + γE [FP]), because
this will determine the least costly scheme. In this setting,
the optimal group size in BC is equal to 11, 10, or 9 cor-
responding to µp ! 0.97%, 1.29%, and 1.62%, respec-
tively. As stated above, if N is not a multiple of the group
size, then the remaining subjects form a (smaller) group for
testing; for example, for µp ! 0.97%, all subjects are tested
in group sizes of 11, except for one subject (randomly
selected)who is tested individually (becauseN ! 100). The
subjects are randomly assigned to groups.

The per-period budgets of BM are set to the corre-
sponding testing costs under the BC policy; that is,
given a risk vector realization in a period, the budget
for the risk-based scheme BM is set to B ! E[T] +E [FP]
of BC. Doing so ensures that the cost of the risk-based
scheme does not exceed that of BC. Table 4 reports the
performance measures of BM and BC for a range of
parameter values and indicates the substantial reductions

in all performance measures under BM. Specifically,
BM respectively reduces E [FN], maxm∈S {E [FNm]},
and E[T] + E [FP] by 28%, 48%, and 1% over BC.
Hence, BM generates testing schemes that are sub-
stantially more accurate and equitable, in terms of
false negatives, than current testing schemes while
being cheaper to implement than non–risk-based testing
schemes. Moreover, the one-way sensitivity analyses
reveal that such reductions are consistent over a range
of parameter values. Figure 3 plots E[T] + E [FP] as
a function of E [FN], with each point representing one
of the 3,000 realizations of the random risk vector. In
addition to the reduction of all performance measures
under BM, interestingly, Figure 3 also reveals that BM
substantially reduces the variance (i.e., the sample vari-
ance corresponding to the 3,000 simulation replica-
tions) of E [FN] and maxm∈S{E [FNm]}, specifically by
72% and 77% over BC, respectively.

5.3. Comparison with Existing Heuristics
In this section we compare the performance of SM with
the following heuristics proposed byMcMahan et al. (2012):
• Optimal Dorfman Heuristic (MC1): Group sizes are

restricted to be equal, and subjects are assigned to groups
following a nonincreasing ordering of their risk. The
“common” group size is determined by enumerating
over a range of possible group sizes and selecting the one
that yields the smallest expected number of tests.
• Thresholding Heuristic (MC2): A risk threshold is

computed, and all subjects having a risk higher than
the risk threshold (“high-risk” subjects) are individ-
ually tested, whereas all other subjects (“low-risk”
subjects) are tested in groups of a common size, which
is determined by the MC1 Heuristic considering only
the low-risk subjects. The risk threshold is determined
by the following procedure: (i) the MC1 Heuristic is
used to determine the common group size for all N
subjects; (ii) using the common group size determined
in step (i), groups are constructed starting with the

Figure 2. Performance Comparison of BC and SM with Respect to E [FN], E [FP], and E[T], when UP ! 3 (µp ! 0.97%),
Se ! 0.95, and Sp ! 0.95
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highest-risk subjects. The first group, for which the
expected number of tests is lower than the case when
the subjects in the group are individually tested, is
determined and denoted by group i; (iii) the risk
threshold is the average of the highest-risk subject in
group i and the lowest-risk subject in group i + 1.

• Pool-Specific Optimal Dorfman Heuristic (MC3):
Starting with the lowest-risk subject, groups are con-
structed in a greedy fashion as follows: the lowest-risk
subject that is not yet assigned to a group (i.e., the
“lowest unassigned” subject) is assigned to the “cur-
rent” group only if this leads to a reduction in the ex-
pected number of tests per subject; otherwise, the lowest
unassigned subject is assigned to a new group, which
becomes the “current” group, and the same procedure is
repeated until all subjects are assigned to groups.

Thus, whereas MC1 uses one common group size
for all subjects, MC2 uses individual testing for all
high-risk subjects and a common group size for all low-
risk subjects (but the common group size can be dif-
ferent from that in MC1), and MC3 can potentially use
a different size for each group. Note that even for perfect

tests (i.e., Se ! 1 and Sp ! 1), the aforementioned heu-
ristics do not necessarily provide the global optimal
solution, as they are based on properties that do not
necessarily hold in an optimal solution. This is not the
case for SM, which provides the global optimal solution
for both perfect and imperfect tests. Note that all three
heuristics, MC1, MC2, and MC3, aim to (heuristically)
minimize the expected number of tests. Therefore, for
comparison purposes, in SM we set λ1 and λ2 (i.e., the
weights of false negatives and false positives in the SM
objective function) to zero, to also minimize the expected
number of tests in SM.
To study how the testing schemes obtained by the

MC1, MC2, and MC3 Heuristics compare with the
optimal solution obtained by SM, we perform a Monte
Carlo simulation with 10,000 replications. In each
replication we generate a risk vector realization and
determine the testing schemes by SM,MC1,MC2, and
MC3. In the following, we demonstrate our results for
the case in which UP ! 3 (µp ! 0.97%), Se ! 0.95, and
Sp ! 0.95. (Our extensive numerical study, with various
parameter values, yields similar findings.) Figure 4 plots

Table 4. Performance Measures (Point Estimate ± Half Width) for BC and BM

Model E [FN] maxm∈S{E [FNm]} E [FP] + E[T]

UP ! 3 (µp ! 0.97%), Se ! 0.95, Sp ! 0.95

BC 0.0943 ± 0.0008 0.0147 ± 0.0002 24.7396 ± 0.0756
BM 0.0683 ± 0.0004 0.0077 ± 0.0001 24.3924 ± 0.0759
%Change –28% –48% –1%

UP ! 4 (µp ! 1.29%), Se ! 0.95, Sp ! 0.95

BC 0.1267 ± 0.0011 0.0196 ± 0.0003 26.7660 ± 0.0935
BM 0.0902 ± 0.0005 0.0102 ± 0.0001 26.4263 ± 0.0933
%Change –29% –48% –1%

UP ! 5 (µp ! 1.62%), Se ! 0.95, Sp ! 0.95

BC 0.1565 ± 0.0013 0.0242 ± 0.0003 29.9104 ± 0.1006
BM 0.1086 ± 0.0006 0.0125 ± 0.0002 29.5492 ± 0.1011
%Change –31% –49% –1%

UP ! 3 (µp ! 0.97%), Se ! 0.93, Sp ! 0.95

BC 0.1307 ± 0.0011 0.0203 ± 0.0003 24.5217 ± 0.0775
BM 0.0952 ± 0.0006 0.0107 ± 0.0001 24.1705 ± 0.0779
%Change –27% –47% –1%

UP ! 3 (µp ! 0.97%), Se ! 0.97, Sp ! 0.95

BC 0.0566 ± 0.0005 0.0086 ± 0.0001 24.8495 ± 0.0789
BM 0.0409 ± 0.0002 0.0045 ± 0.0001 24.4928 ± 0.0792
%Change –28% –48% –1%

UP ! 3 (µp ! 0.97%), Se ! 0.95, Sp ! 0.93

BC 0.0941 ± 0.0008 0.0144 ± 0.0002 26.8905 ± 0.0784
BM 0.0683 ± 0.0004 0.0075 ± 0.0001 26.5379 ± 0.0788
%Change –27% –48% –1%

UP ! 3 (µp ! 0.97%), Se ! 0.95, Sp ! 0.97

BC 0.0942 ± 0.0008 0.0147 ± 0.0002 22.6159 ± 0.0796
BM 0.0681 ± 0.0004 0.0077 ± 0.0001 22.2615 ± 0.0797
%Change –28% –48% –2%
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the histograms of the “error” (in percentage) (i.e., the
percent deviation of the expected number of tests ob-
tained by the heuristic solution from the optimal ex-
pected number of tests obtained by SM) for (a)MC1 and
MC2 and (b) MC3. We note here that MC1 and MC2
Heuristics provided identical solutions for all problem
instances considered in our numerical experiments of
this section. This is because, when implementing the
MC2 Heuristic, all subjects were identified as low-risk
subjects in all problem instances, effectively reducing the
MC2 Heuristic to the MC1 Heuristic. According to
Figure 4, out of the 10,000 Monte Carlo replications,
MC1 and MC2 never attained optimality and deviated
from optimality by up to 14%. On the other hand, MC3
attained optimality only once out of the 10,000 repli-
cations and deviated from optimality by up to 5%. In
terms of classification error,MC1 andMC2 reported, on
average, a 12% increase in the total classification error
over SM, whereas MC3 reported an average reduction
of 4.5% in the total classification error over SM. How-
ever, if classification error is of concern, then one should
not utilize the minimization of the expected number of
tests as an objective in the first place, and therefore, our

models are designed so that they have the capability to
incorporate the classification error into the modeling
framework. Furthermore, our numerical studies with
upper limits on group sizes reveal similar findings to
those discussed here for this case study.
This case study underscores the substantial benefits

of the proposed optimal risk-based policies in both
settings (i.e., SM and BM); risk-based policies sub-
stantially reduce the classification errors and improve
efficiency and equity over non–risk-based policies.
Additionally, we demonstrate that heuristic solutions
are rarely optimal and can deviate, sometimes sub-
stantially, from the optimal solution.

6. Conclusions and Future
Research Directions

We study the problem of designing an optimal risk-
based Dorfman testing scheme to accurately and eq-
uitably classify a set of subjects in an efficient manner,
while taking into account imperfect tests. Our analyt-
ical results enable us to reduce the NP-hard parti-
tioning problems into an SP problem (for SM) or a
constrained-SP problem (for BM). Further, for special
cases of BM, we develop highly efficient algorithms
that exploit the structure of the problem and that are
able to solve the constrained-SP problem in polynomial
time. Our case study demonstrates the effectiveness of
risk-based testing, producing solutions that substantially
reduce all performance measures when compared with
static, non–risk-based models. Our findings (i) demon-
strate the drawbacks of formulations in which the only
goal is to minimize the expected number of tests; (ii)
highlight the importance of considering objective func-
tions that can consider the different dimensions of this
problem, including the classification accuracy, equity,
and budget constraints; and (iii) underscore the impor-
tance of incorporating subject-specific risk characteristics
into the modeling framework, because failing to do so
can lead to higher classification errors and more costly
and less equitable testing schemes.

Figure 3. Performance Comparison of BM and BC with
Respect to E [FN], E [FP], and E[T], when UP ! 3
(µp ! 0.97%), Se ! 0.95, and Sp ! 0.95

Figure 4. The Deviation (in Percentage) from the Optimal Expected Number of Tests Obtained by SM for (a) MC1 and MC2
and (b) MC3 when UP ! 3 (µp ! 0.97%), Se ! 0.95, and Sp ! 0.95
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This research can be expanded in several impor-
tant directions. In reality, subject risk values are not
perfectly observable, hence the decision maker needs
to estimate the risk of each subject given their char-
acteristics. Therefore, an important future research
direction would be to consider robust testing schemes
that perform well under risk estimation errors or to
consider adaptive strategies that study the explora-
tion (e.g., initial testing for risk estimation) versus
exploitation (e.g., testing for classification) trade-off,
especially studying the decision of how to allocate
a given budget between the efforts of exploration
versus exploitation to maximize the classification
accuracy.

Another important aspect in group testing is the
dilution effect of group testing; that is, for some tests
the accuracy of the test for detecting the positive subjects
(i.e., the test’s sensitivity) may decrease as group size
increases. Various studies show, however, that the effect
of dilution can be considered negligible up to certain
group sizes (Shipitsyna et al. 2007,McMahan et al. 2012).
Consequently, one possible way to incorporate the di-
lution effect into our models is to place upper limits on
group sizes, as we have done in parts of our numerical
study. This can be easily attained by eliminating all
edges from the underlying graph of the partitioning
problem that correspond to group sizes larger than the
acceptable limit. Alternatively, a more accurate, yet
a more complex, approach is to explicitly model the
dilution effect (i.e., the test sensitivity becomes a
function of the group size) and incorporate it into the
modeling framework. Our analysis also depends on
the assumption that test outcomes performed on the
same subject are conditionally independent, given the
actual positivity status of the subject. This assumption
does not always hold in practice, especially for in-
fection screening tests that measure infection-related
biomarkers, because if a subject is infected with the
infection in question, then concentrations of various
infection-related biomarkers will be higher than in the
infection-free subjects, and tests that measure the
related biomarkers will have a tendency to produce
positive test outcomes. Relaxing such assumptions on
the test’s sensitivity and specificity will increase model
realism and may produce better testing schemes.

Another important aspect is to consider the opera-
tional challenges of changing the testing scheme in each
testing period, as is done in this paper. In some cases,
modifying the testing scheme on a frequent basis may
not be feasible, or simply not desirable. In this case, the
decision maker may be interested in determining an
optimal static policy that does not change from period
to period (i.e., a policy characterized by static group
sizes, or static risk thresholds withwhich to partition the
subjects into groups once their risk vector is observed);
that is, the problem is one of identifying an optimal static

policy under uncertainty on the subject risk vector.
Finally, our decision problem considers only Dorfman-
type testing schemes. There are other, albeit more com-
plicated, group testing schemes, and it will be interesting
to study the problem of jointly determining an optimal
partitioning and testing scheme. This is a challenging
research direction.
It is our hope that this work builds the foundation for

more complex risk-based testing schemes and drives
future research in any of the aforementioned directions.
As we show here, the benefits of risk-based group
testing schemes can be substantial, and we hope our
work also motivates the practitioners to consider imple-
menting such risk-based testing schemes.
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Endnotes
1This follows because any test not satisfying this assumption can be
transformed into one that satisfies it by interpreting the test outcome
in the opposite way.
2The “other” category includes the following: white, American In-
dian or Alaska native, and Asian or Pacific Islander.
3 $3,037 represents the total cost, that is, the sum of the cost of a false
negative ($2,927), cost of a false positive ($55), and testing cost ($55),
as discussed at the beginning of Section 5.
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