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Abstract: Upon arrival at emergency departments (EDs), patients are classified into differ-
ent triage levels indicating their urgency. Using data from a large hospital in Canada, we
find that, within the same triage level, the average waiting time (time from triage to initial
assessment by a physician) of patients who are discharged is shorter than that of patients
who are admitted for middle- and low-acuity patients, suggesting that the order in which
patients are served deviates from first-come, first-served, and to a certain extent, discharged
patients are prioritized over admitted patients. This observation is intriguing as, among pa-
tients of the same triage level, admitted patients—who need further care in the hospital—
should be deemed no less urgent than discharged patients who only need treatment at the
ED. To understand how ED decision makers choose the next patient for treatment, we esti-
mate a discrete-choice model and find that ED decision makers apply urgency-specific
delay-dependent prioritization. Moreover, we find that, when the ED blocking level is
sufficiently low, admitted patients are prioritized over discharged patients for high-acuity
patients, whereas disposition does not affect the prioritization of middle- and low-acuity
patients.When the ED blocking level becomes sufficiently high, decisionmakers start to pri-
oritize discharged patients in an effort to avoid further blocking the ED. We then analyze a
stylized model to explain the rationale behind the change in decision makers’ prioritization
behavior as the ED blocking level increases. Using a simulation study, we demonstrate how
policies inspired by our findings improve ED operations by reducing the average patient
waiting time and length of stay, resulting in significant cost savings for hospitals. We also
show how to leverage our findings to improve the accuracy of EDwaiting time predictions.
By testing and highlighting the central role of decision makers’ patient prioritization behav-
ior, this paper advances our understanding of ED operations and patient flow.
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1. Introduction
Emergency department (ED) waiting times—the total
time from triage to initial assessment by a physician—
is a well-established metric of the timeliness of emer-
gency care. Unfortunately, long waiting times are ex-
tremely common in many countries around the world.
In the United States, one out of four patients waits
more than two hours to see a physician in 2006 (U.S.
Government Accountability Office 2009). In 2015 and
2016, one out of three Canadian patients reported
waiting four or more hours the last time they sought
care at an ED (Canadian Institute for Health Informa-
tion 2016). Prolonged waiting times are associated

with increased morbidity and mortality (Sun et al.
2013), patients leaving without being seen (Batt and
Terwiesch 2015), and increased rates of readmission
(Richardson and Bryant 2004) among other conse-
quences. Hence, it is critical to understand the deter-
minants of ED waiting times. One key determinant is
the order in which patients are seen by ED healthcare
professionals. Upon arrival at an ED, patients are first
triaged by a nurse, and a score is assigned based on
the patients’ acuity (some triage protocols also consid-
er patient resource needs). In Canada, the most preva-
lent triage protocol is the Canadian Triage and Acuity
Scale (CTAS), a five-point scoring scale with smaller

1

OPERATIONS RESEARCH
Articles in Advance, pp. 1–22

ISSN 0030-364X (print), ISSN 1526-5463 (online)http://pubsonline.informs.org/journal/opre

December 8, 2021

mailto:wenhaoli6-c@my.cityu.edu.hk
https://orcid.org/0000-0003-1352-2775
mailto:zhankun.sun@cityu.edu.hk
https://orcid.org/0000-0002-1576-3372
mailto:hong_liu@fudan.edu.cn
https://orcid.org/0000-0001-7011-4001
https://doi.org/10.1287/opre.2021.2187
https://orcid.org/0000-0003-1352-2775
https://orcid.org/0000-0002-1576-3372
https://orcid.org/0000-0001-7011-4001
http://pubsonline.informs.org/journal/opre


numbers indicating a higher level of urgency. Similar
to other triage protocols, CTAS focuses on classifying
patients rather than providing explicit guidelines as to
which patients to prioritize (Murray et al. 2004). CTAS
proposes a fractile response objective for each triage
level (e.g., 90% of CTAS 3 patients should be seen with-
in 30 minutes of arrival); however, as stated clearly in
the implementation guidelines, these time responses
are not established care standards (Beveridge et al.
1998). Without explicit guidelines, decision makers use
their discretion to select the next patient to receive care,
and the order of patients being seen can deviate signifi-
cantly from the one that sorts patients by their triage
levels and arrival times. This is the case in our study
hospital and is also found by Ding et al. (2019) using
data from EDs in metro Vancouver. In other words,
how exactly ED decision makers (nurses and physi-
cians) select the next patient from all patients waiting
to be seen, given their triage scores, waiting times, and
resource availability, does not follow an explicit rule.

Despite the importance of understanding how pa-
tients are prioritized in EDs, the literature on this
topic is limited. A recent study (Ding et al. 2019) finds
that, when EDs are critically loaded, decision makers
(i) apply delay-dependent prioritization in selecting
patients across different triage levels and (ii) follow
the first-come, first-served (FCFS) rule in general for
patients of the same triage level. However, the adher-
ence decreases if patients wait longer than a certain
threshold. What we observe additionally in our study
hospital is that, even within the same triage level, de-
cision makers may deliberately deviate from the order
of FCFS. We elaborate as follows.

After treatment in an ED, patients who need further
care at inpatient units are admitted. Hereafter, we call
them admit patients and call those who do not need
further care at the hospital discharge patients. The desti-
nation of patients after their treatment in the ED is
called their disposition. Using patient-level data from
an urban tertiary hospital in the Calgary zone of Al-
berta, Canada, we observe that the average waiting
time of admit patients is less than that of discharge pa-
tients for CTAS 1 and 2; however, for CTAS 3–5, ad-
mit patients wait longer than discharge patients on
average (significant at the 5% level), suggesting that
discharge patients are, to a certain extent, prioritized
over admit patients (see Figure 1).1 This observation is
intriguing because, among patients of the same triage
level, admit patients—who need further care after ED
treatment—should be deemed no less urgent than dis-
charge patients. Thus, one may wonder why ED deci-
sion makers prioritize discharge patients over admit
patients within the same triage level. This question
motivates our investigation.2

The discrepancy in waiting times for patients within
the same triage level is a reflection of the patient-

prioritization behavior of ED healthcare professionals.
To the best of our knowledge, this behavior has not
been studied in the literature. Our objective is to shed
light on ED patient prioritization. Specifically, we fo-
cus on three research questions: How does disposition
affect the prioritization of patients from the same tri-
age level? What is the rationale behind ED healthcare
professionals’ prioritization behavior? Importantly,
how can we leverage our knowledge on patient priori-
tization to improve ED operations?

1.1. Contributions to the Literature
To answer the research questions, we conduct (i) an
empirical study to understand decision makers’ pa-
tient prioritization behavior, (ii) an analysis of a styl-
ized decision model to explain the rationale behind
this behavior, and (iii) a simulation study and a fore-
casting study to show the value of our findings.

Our study makes the following contributions to the
operations management, queueing, and forecasting
literature. First, we empirically examine patient prioriti-
zation decisions by applying a discrete-choice model to
patient-level visit records. We assume that, when
selecting the next patient, decision makers can estimate
the disposition of a patient and are aware of the ED
blocking level, which measures the extent to which the
ED’s ability to treat new patients is compromised by
too many ED beds being occupied by boarding
patients—admitted patients waiting in ED beds to be
transferred. Using a conditional logit model, we find
that ED decision makers generally apply urgency-
specific, delay-dependent prioritization. That is, higher
urgency and longer waiting time both lead to higher
priority. In addition, we find that (i) when the ED
blocking level is sufficiently low, admit patients are

Figure 1. (Color online) Comparisons Between the Average
Waiting Times (in Minutes) of Admit Patients and Discharge
Patients by Triage Levels in an Urban Tertiary Hospital in
Alberta, Canada

Note. The error bars represent 95% confidence intervals.
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prioritized over discharge patients for high-acuity pa-
tients (triage level 2), and disposition does not affect the
prioritization of middle- and low-acuity patients (triage
levels 3–5) within the same triage level, and (ii) as the
blocking level increases, decision makers start to priori-
tize discharge patients. To our knowledge, this is the
first work that empirically studies how ED decision
makers prioritize patients in response to ED blocking.

Second, we develop a Markov decision process
(MDP) model to study how patients are selected from
the same triage level under ED blocking. We show
that it is optimal for decision makers to dynamically
prioritize patients, in particular, to prioritize discharge
patients when the ED blocking level is high. The struc-
ture of the optimal policy provides insights into the ra-
tionale behind decision makers’ patient-prioritization
behavior. Our model also captures the interaction be-
tween the dual resources that decide the ED’s capacity
of treating patients, that is, physicians and beds, so as
to study patient prioritization in a multiclass, two-
station queueing network. Hence, we also make contri-
butions to the queueing literature.

Third, by means of a data-calibrated simulation, we
provide managerial insights into how to leverage our
findings to improve ED operations. Specifically, we
devise patient-prioritization policies based on our em-
pirical findings and the optimal policy from our MDP
model. Our simulation results show that policies that
prioritize admit (discharge) patients when ED block-
ing level is low (high) can reduce the average waiting
time and length of stay (LOS) for both types of pa-
tients. As a result, hospitals can save millions of dollars
annually. This suggests that we can improve ED oper-
ations and achieve cost saving by altering the order in
which patients are treated. We believe this has impor-
tant implications for hospital management. We also
demonstrate with real data that our findings can im-
prove the accuracy of leading-edge algorithms used to
predict ED waiting time. Hence, we make contribu-
tions to ED practice and the forecasting literature.

1.2. Organization
The rest of this paper is organized as follows. We
discuss the relevant literature in Section 2 and intro-
duce the study setting in Section 3. We empirically
study how decision makers choose the next patient
in Section 4. In Section 5, we develop an MDP for-
mulation and connect its optimal policy to our em-
pirical findings. In Sections 6 and 7, we show how to
leverage our findings to improve ED operations and
waiting time prediction, respectively. In Section 8,
we discuss how our results relate to the shortest
processing time rule. In Section 9, we conclude this
work, discuss the managerial insights, and point to
future research directions. All proofs and additional
results are given in the e-companion.

2. Literature Review
In recent years, operations research/management tools
have been widely applied to improve patients’ access
to emergency care (see Saghafian et al. 2015, Dai and
Tayur 2020 for overviews). Studies of healthcare pro-
fessionals’ behavior are particularly relevant to our
study. Healthcare professionals are found to respond
to system workload by adjusting their service speed
and capacity rationing decisions; see, for example, KC
and Terwiesch (2009, 2012), Powell et al. (2012), Kuntz
and Sülz (2013), Kim et al. (2014), Batt and Terwiesch
(2016), Freeman et al. (2016), Berry Jaeker and Tucker
(2017), Ding et al. (2019), Kim et al. (2020). These stud-
ies suggest that the decisions of healthcare practitioners
are not driven purely by clinical factors, and they iden-
tify various mechanisms to explain these behaviors.
Our work studies the patient-prioritization behavior of
ED nurses and physicians and, thus, is relevant.

Among these works, Ding et al. (2019) is the most
relevant one. Using data from EDs in metro Vancou-
ver, Ding et al. (2019) empirically show that, when
EDs are highly loaded, delay-dependent prioritization
is applied in selecting new patients. They also find
that FCFS is generally followed in the same triage lev-
el, but the deviation increases when patients wait past
certain thresholds. Our work aligns with Ding et al.
(2019) in that we also empirically study patient-
prioritization decisions in Canadian EDs. Ding et al.
(2019) note that “physicians are the bottleneck resour-
ces in the treatment process” in their study hospitals,
whereas both beds and physicians can be bottlenecks
in our ED. Hence, in addition to factors such as triage
levels and waiting times, bed capacity may impact
patient-prioritization decisions. This impact is the fo-
cus of our study, which differentiates our work from
Ding et al. (2019).

Another stream of relevant papers concerns the phe-
nomenon of ED blocking or bed block, referring to situa-
tions when too many beds occupied by admit patients
(to be transferred to inpatient units) leads to insuffi-
cient ED beds for new patients. Despite being the most
significant factor causing ED overcrowding in many
countries around the world (Olshaker and Rathlev
2006, Pines et al. 2011, Affleck et al. 2013), research on
this topic is relatively limited (Saghafian et al. 2015).
Two recent papers (Shi et al. 2015, Chan et al. 2016)
study this problem by controlling the discharge (in-
spection) timing in inpatient wards. They model the
inpatient flow dynamics through time-varying queues
and propose policies that potentially alleviate ED
blocking. Our work fills a gap in the literature as we
focus on how ED decision makers can control the de-
mand for inpatient beds so as to relieve ED blocking.

A number of papers investigate various aspects of
EDs and, thus, are relevant to our study. The research
topics that are studied include, among others, waiting
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time prediction (Ibrahim and Whitt 2011, Ang et al.
2015), the impact of delay announcement (Dong et al.
2019), and ambulance diversion decisions (Deo and
Gurvich 2011, Allon et al. 2013). Furthermore, there is a
large body of empirical studies on EDs and other service
systems; see, for example, Batt and Terwiesch (2015),
Song et al. (2015), Ibanez et al. (2018), Tan and Staats
(2020), KC et al. (2020). Among them, Ibanez et al. (2018)
is particularly relevant as they study the task-ordering
decisions of radiologists and their impact on productivi-
ty. They find that radiologists prioritize tasks by similar-
ity and the shortest processing time (SPT) rule, yet both
erode productivity. Similarly, KC et al. (2020) find that
ED physicians prioritize easier tasks when faced with in-
creasing workloads, which is detrimental to throughput
and learning. Our work is similar in that we also study
how decision makers prioritize tasks (patients). We
identify a related but different mechanism than the SPT
rule underlying the prioritization decisions (see Section
8). We note that two recent works use ED visit data to
estimate the impact of low-acuity patients on the wait-
ing time of high-acuity patients (Luo et al. 2017) and
physician task switching costs (Duan et al. 2020) and,
thus, are relevant. However, the objectives of these stud-
ies are different from ours.

Finally, our study is relevant to the queueing litera-
ture. Our modeling of the dynamics between physi-
cian assessment and testing is similar to the studies
of de Véricourt and Jennings (2011), Dobson et al.
(2013), Yom-Tov and Mandelbaum (2014), Huang et al.
(2015), Campello et al. (2016), Carmen et al. (2018), and
Çağlayan et al. (2019), which model the repetitive serv-
ices provided to patients by either nurses or physicians
with the aim of improving staffing or for performance
evaluation. The model in van Leeuwaarden et al.
(2016) also captures the dual resource constraints in
healthcare systems with repeated services. Our work
differs in that we focus on patient-prioritization deci-
sions, whereas van Leeuwaarden et al. (2016) focus on
staffing. Models in Saghafian et al. (2012, 2014) are

closely related to ours. Saghafian et al. (2012) study pa-
tient streaming decisions depending on predicted dis-
positions in a clearing model. Saghafian et al. (2014)
study how physicians choose the next patient by an
MDP model and patient sequencing at triage by a pri-
ority queue. They develop a complexity-augmented
triage rule and demonstrate the validity and magni-
tude of its performance improvement by simulation.
The constraints on physician capacity and the effect of
ED blocking are discussed in their paper but not ex-
plicitly modeled (unlike our work).

3. ED Patient Flow and Data
In this section, we describe the ED patient flow pro-
cess and the data used in our empirical investigation.
We note that different EDs may operate differently.
Although our description is based on a Canadian
model, we believe that the key characteristics are simi-
lar in most EDs. The general patient flow in the main
ED area (the fast-track area is not included) is de-
picted in Figure 2.

3.1. Patient Flow
Patients arrive to the ED either by emergency medical
services (such as ambulance) or by their own transpor-
tation. Upon arrival, patients are triaged into one of
five categories. Following triage, patients wait in the
waiting room to be seen by medical staff. When a phy-
sician is able to see a new patient, a patient waiting to
be seen is selected for initial assessment. We note that
the selection is possibly a multistep process involving
more than one decision maker. In most EDs, the chief
nurse decides which patient to move to a treatment
room, and a physician selects a patient for assessment
from the roomed patients. Physicians occasionally se-
lect patients from the waiting room directly (Ding et al.
2019). For simplicity, we aggregate the selection pro-
cess into a single step through which a decision maker
chooses the next patient for assessment. We believe

Figure 2. (Color online) General Patient Flow in theMain Area of an Emergency Department

Notes. The numbers in circles, that is, 1 toN, represent theN physicians whowork in parallel and perform assessments. The dashed line encircles
the flow of patients receiving treatment from physician 1. The patient treatment process is similar for other physicians and, thus, not signified in
this figure.
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that this aggregated selection process can still reflect
the patient prioritization decisions in EDs. It would be
interesting to investigate the decisions of nurses and
physicians separately if there was a sufficient level of
detail in the data.

After the initial assessment, some patients may
leave the ED, and others may undergo medical pro-
cedures, such as diagnostic tests (laboratory tests,
imaging, etc.) or treatment by nurses. For simplicity,
we refer to all procedures done by nonphysician
staff as tests. These patients join the test queue (see
Figure 2), they go through testing, and wait for the
results. The patient returns to the same physician for
another round of assessment when the test results
are ready. This assess–test process may be repeated;
that is, a patient may see the same physician several
times before a diagnostic decision is made. ED
physicians are multitasking (KC 2013), that is, at any
time, a physician is responsible for the care of sever-
al patients, some undergoing testing in the test queue
and others waiting to see the physician in the assess
queue (see Figure 2). According to our collaborating
physicians, a physician knows the physician’s ser-
vice capacity, that is, the maximum number of pa-
tients for whom the physician can care. This aligns
with the descriptions in Saghafian et al. (2012) and
Campello et al. (2016) and has important implica-
tions for our stochastic modeling in Section 5.

3.2. ED Blocking
An ED bed is assigned to a patient once the patient is
selected for assessment. The bed can be an exam room
or simply a moving stretcher. The assigned bed is held
for the patient until the patient leaves the ED, even
when the patient is sent to the test center for testing.
This is a common practice in many EDs (Saghafian
et al. 2012, Armony et al. 2015). If a patient is admitted,
an inpatient bed is requested, and the patient remains
in the ED bed until the patient is transferred. The total
time from bed request to the time of transfer is called
boarding time and patients awaiting transfer are called
boarding patients or boarders. Boarding time is re-
garded as nonvalue adding because ED diagnosis and
treatment are complete. Moreover, boarding time can
be extremely long (Armony et al. 2015, Shi et al. 2015).
When boarding patients occupy ED beds for pro-
longed periods of time, they block access to these
spaces for newly arriving patients in the waiting room.
We refer to this phenomenon as ED blocking, which is
identified as the main cause of ED overcrowding in
many countries (Olshaker and Rathlev 2006, Pines et al.
2011, Affleck et al. 2013). Note that all patients staying
in ED beds need nursing care. Hence, it is impossible
to solve the ED blocking problem by adding more
beds without increasing the nurse staffing level.

3.3. Data Description and Cleaning
This study uses data from the ED electronic health re-
cord system of an urban hospital in Alberta, Canada.
The data set covers all patient visits from August 2013
to July 2015. The daily arrivals to this ED over the
study period range from 131 to 257, and the median
(mean) is 206 (207.4). Each observation includes a pa-
tient’s triage information (age, gender, arrival mode,
triage level, chief complaint), arrival time (time at
which the patient is triaged), initial assessment time
(time at which the patient is first selected by a physi-
cian for assessment), bed request time for admit pa-
tients (start time of boarding), last contact time (time
at which the patient leaves the ED), and disposition.
There are 145,162 observations after removing records
with incomplete or wrong entries, such as a negative
age or negative waiting time. All visit records are dei-
dentified to protect the privacy of the patients and
medical personnel.

In our study ED, a fast-track line is open daily for 14
hours from 10 a.m. to midnight, which coincides with
the high-load period of the ED during which there are,
on average, at least 45 patients in the ED and at least
10 patients waiting to be seen. We note that the high-
load period in our study ED overlaps that in Armony
et al. (2015), which starts between 9 a.m. and 12 p.m.
and ends between 11 p.m. and 3 a.m. (next day). We
are interested in the patient-prioritization behavior of
ED decision makers during high-load hours in the
main ED (the non–fast-track area) as that is the most
congested area. Hence, fast-track patients (25,160 ob-
servations, 17.3% of the data) and patient visits outside
of the high-load hours (30,927 observations, 21.3% of
the data) are eliminated. Another motivation of re-
moving the latter is that triage nurses occasionally de-
fer the treatment of some patients waiting in the main
ED so as to route them into fast-track later when they
know the fast-track line will be open soon, which com-
plicates the prioritization process. We are interested
in studying how a patient’s priority is determined
by decision makers; hence, we drop patients of triage
level 1 because most of them have life-threatening con-
ditions and receive preemptive priority over all other
patients (3,280 observations, 2.3% of the data). We also
drop patients whose dispositions are not “admit” or
“discharge” (including “left without being seen,” “left
against medical advice,” etc.) as they are not our focus
(2,581 observations, 1.8% of the data). We combine pa-
tients of triage levels 4 and 5 into one single low-acuity
patient group to make its sample size more compara-
ble to that of high- and middle-acuity patient groups,
that is, triage levels 2 and 3, respectively. Table 1 shows
the summary statistics of the data after cleaning. See
also Online Tables 5, 8, and 9 in the e-companion
for the correlation coefficients between variables of
interest.
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We apply a discrete-choice model to the data set to
investigate how decision makers choose new patients.
The decision epochs correspond to the times when a de-
cision maker decides to see a new patient. We describe
the outcome and explanatory variables as follows.

3.3.1. Outcome Variable. At time t, if a decision maker
is available and decides to see a new patient, the deci-
sion maker chooses one among all patients waiting to
be seen at the ED, which composes the choice set at t,
denoted by J(t). Thus, the outcome variable in our
study is whether patient j is chosen at decision epoch
t, j ∈ J(t). At any decision epoch, only one decision
maker makes a choice, and one and only one patient
is selected. Note that J(t) is dynamic and time depen-
dent. Consider two consecutive decision epochs t1
and t2 (t1 < t2), then J(t2) contains all patients in J(t1)
and patients who arrive between t1 and t2, less the pa-
tient selected at t1 and patients who become absent
from the ED between t1 and t2 (because of leaving
without being seen, being transferred, etc.).

3.3.2. Explanatory Variables. Over the study period,
the medical personnel’s compensation is in the form

of shift-based salary. To our knowledge, there is no fi-
nancial incentive for decision makers to select patients
based on the complexity or medical expense. This con-
curs with observations by Ding et al. (2019) from
Canadian EDs and Song et al. (2015) based on U.S.
EDs. When deciding which patient to select, we be-
lieve that the ED decision makers’ objective is to pro-
vide timely care to the patients who need it most
urgently. Hence, we focus on clinical and operational
factors that are potentially related to that objective.
Motivated by the intriguing observation in Figure 1,
one key variable of interest is a patient’s disposition.
Because the actual dispositions of patients in J(t) are
unknown at decision epoch t and are only revealed
after the completion of ED treatment, we use the pre-
dicted disposition as a proxy (see more details in
Section 4.2). We study how disposition affects patient
prioritization by controlling the ED blocking level,
which measures the extent to which the ED’s ability to
treat new patients is compromised by the ED beds be-
ing occupied by boarding patients at t. We control for
ED crowding by including the number of patients
waiting to be seen in our model. We use triage levels
to control the discrepancy in patient prioritization

Table 1. Summary Statistics for Variables of Interesta

CTAS2 CTAS3 CTAS4,5
Variables (high-acuity) (middle-acuity) (low-acuity)

Waiting time (mean and standard deviation in hours)
Admit patients 1.39 (1.50) 2.11 (1.67) 2.20 (1.65)
Discharge patients 1.65 (1.55) 1.92 (1.57) 1.76 (1.45)

Time in ED beds (mean and standard deviation in hours)
Admit patients 10.02 (7.29) 10.24 (7.07) 9.79 (7.00)
Discharge patients 3.65 (3.13) 2.94 (2.78) 2.01 (2.22)

Arrival mode (ambulance arrival%) 38.7 28.1 17.5
Gender (female%) 50.6 57.8 57.5
Disposition (admit%) 34.6 23.6 11.1
Age groups (occurrences)

0 to 18 years 518 493 319
18 to 40 years 10,530 12,316 6,729
40 to 55 years 7,652 6,835 3,082
55 to 70 years 7,724 6,561 2,447
Over 70 years 7,689 7,801 2,621

Addressb

Region A 17,020 19,078 8,990
Region B 5,202 4,663 1,890
Region C 5,907 5,454 2,330
Region D 3,092 2,474 960
Others 2,892 2,337 1,028

Chief complaint codes
(Five codes with most occurrences)

Shortness of breath 1,665 1,811 659
Chest pain (cardiac features) 4,590 0 0
Headache 1,542 1,244 441
Depression/suicidal 1,278 689 144
Vomiting and/or nausea 457 1,112 580

Observations 34,113 34,006 15,198
aThe correlation coefficients between variables can be found in Online Tables 5, 8, and 9 in the e-companion.
bWe have district-level information for addresses. Region A (D) is the nearest (farthest).
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across different triage levels. We also control the hetero-
geneity of patients within the same triage level by the
chief complaint codes, such as “chest pain (cardiac
features),” “abdominal pain,” “headache,” etc. Other
control variables include age group, gender, arrival
mode, and patient waiting time thus far, all of which
are categorical variables except the last one. A physician
cannot observe when the last patient was selected if
the patient was selected by other physicians. Hence, we
believe that the time duration between decision epochs
is not considered in patient-prioritization decisions.

4. Empirical Investigation of Patient
Prioritization

In this section, we empirically examine ED decision
makers’ prioritization behavior in our study ED. We
first state the following assumption before presenting
our empirical model.

Assumption 1. When selecting the next patient for initial
assessment, a decision maker (i) can predict the disposition
of a patient and (ii) is aware of the ED blocking level.

The choice of which patient to see next is made in
the hospital’s information system. Through a terminal,
decision makers can access real-time information of all
patients waiting to be seen, including their compre-
hensive triage data (which contains more details than
our data, such as vital signs or whether they are revisit
patients), waiting time thus far, etc. Previous studies
show that ED physicians and nurses can predict a pa-
tient’s disposition fairly accurately using triage infor-
mation (see, e.g., Holdgate et al. 2007, Vaghasiya et al.
2014). The number of boarding patients is available to
nurses and physicians in real time.

4.1. Econometric Models
We investigate the relationship between a decision
maker’s choice of the next patient and the characteris-
tics of the alternatives (patients) under resource con-
straints (e.g., ED blocking) by a discrete-choice model.
We believe that variations in patient characteristics
and system resource constraints are the main drivers
of decision makers’ selection behavior. Hence, we
choose a conditional logit model for our investigation.

Conditional logit models belong to the family of
random utility models, in which a decision maker
chooses the alternative that maximizes the decision
maker’s perceived utility. More specifically, at deci-
sion epoch t, let Yt represent a choice (patient) in the
choice set J(t) and Uit be the utility of choosing patient
i from J(t). We treat Uit as independent random varia-
bles with a systematic component Vit and a random
component εit, that is, Uit � Vit + εit: At any decision
epoch t, the decision maker evaluates the utility of
each patient in J(t) and selects the one that maximizes

the decision maker’s utility. Hence, the probability of
choosing patient i from J(t) is

Pr Yt � i{ } � Pr Uit �max
j∈J(t)

Ujt

{ }
� exp (Vit)∑

j∈J(t) exp (Vjt) , (1)

where the last equality holds if the error terms εit are
independently and identically distributed with the
standard type I extreme value distributions (Train
2009). We then estimate the systematic term of the
decision maker’s utility in choosing patient i at deci-
sion epoch t, Vit, by maximizing the likelihood of
choosing the observed choice of patient. The model
is specified as follows:

Vit � β0 + βT1Ci + βT2CTASi + βT31CTASi ×WaitTimeit

+ βT32CTASi ×WaitTime2it + βT4CTASi

×WaitRoomCensust + βT5CTASi × BlockLevelt

+ βT6CTASi ×Dispositioni + βT7CTASi ×Dispositioni

× BlockLevelt: (2)

The vector Ci contains the time-invariant characteris-
tics of patient i, including age group, gender, arrival
mode, and chief complaint, which are the clinical fac-
tors that decision makers can access and take into ac-
count during patient prioritization. Note that, in our
model, we use categorized age groups, instead of the
numerical values, to account for the possible nonlin-
ear effect of age on decision makers’ utility. The three-
by-one vector CTASi is an indicator of the triage level
of patient i. Specifically, CTASi � (1, 0, 0)T if patient i
is of triage level 2, CTASi � (0, 1, 0)T if patient i is of
triage level 3, and CTASi � (0, 0, 1)T if patient i is of tri-
age level 4 or 5. The scalar WaitTimeit represents the
current waiting time of patient i, that is, the time from
patient i’s arrival to the decision epoch t, and may
have a nonlinear impact on patient priority (Ferrand
et al. 2018, Ding et al. 2019). Moreover, the impact
may vary across triage levels. Hence, we include the
interaction terms of CTAS and WaitTime (both linear
and quadratic terms) in Equation (2). Similarly, we
control the number of patients waiting to be seen in
the ED at decision epoch t (normalized to be between
zero and one), denoted by WaitRoomCensust, which is
associated with ED decision making (Gorski et al.
2017). The ED blocking level at decision epoch t, de-
noted by BlockLevelt, measures the extent to which the
ED’s ability to provide timely care is impaired.

One challenge in our study is the estimation of
BlockLevelt, which depends on the number of board-
ing patients and ED bed capacity at decision epoch
t. Our data provide the number of boarding patients
at any time. However, the ED bed capacity depends
on both the numbers of physical beds and the
time-varying nurse staffing levels as ED beds can
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only be used to care for patients if enough nursing
staff are on duty to ensure that care is safe and
meets patients’ needs. In our data set, we do not ob-
serve nurse staffing levels. Hence, we use the 90th
percentile of the distribution of the observed num-
bers of patients in ED beds at any given hour of the
day over the two-year horizon—rounded up to the
nearest integer—as a proxy for ED bed capacity at
any particular hour of the day.3 We develop two
measures for ED blocking level. The first measure is
the ratio of the number of boarding patients over
the number of “extra” beds (total bed capacity net of
total physician capacity) at time t (referred to as
measure 1 hereafter). Here, the total physician capac-
ity is the product of the number of physicians on
duty and an individual physician’s capacity. The
former is available in our data set, and the latter is
set to seven following Saghafian et al. (2012). The
second measure of the ED blocking level is the actu-
al number of boarding patients at t normalized to be
between zero and one (referred to as measure 2 here-
after). Measure 1 seems to be a better measure be-
cause it captures the time-varying nature of both
bed and physician capacity. However, measure 2 is
simpler and readily available on the ED dashboard.
It is unclear how exactly ED decision makers infer
the blocking level. Hence, we test both measures
and their variations in our empirical investigation.

The anticipated disposition of patient i by ED deci-
sion makers, denoted by Dispositioni, can be viewed
as an exogenous treatment on patient i, which takes
the value one if the anticipated disposition is admit;
otherwise, it equals zero. Note that the anticipated
disposition is unobservable in our data. Hence, we
need to construct proxies (see Section 4.2 for details).
To investigate how the treatment affects a patient’s
priority of being selected across triage levels, we add
the interaction of CTAS and Disposition; we further
add the three-way interaction of CTAS, Disposition,
and BlockLevel to show how the effect varies with the
ED blocking level.

One may note that the model specification in Equa-
tion (2) includes three-way interaction terms, but the
corresponding main effects and two-way interactions
are not always included. The reason is that the main ef-
fects of WaitRoomCensust and BlockLevelt do not vary
over choice alternatives and, hence, cannot be directly
included in the model; otherwise, the model becomes
unidentifiable. From a mathematical viewpoint, the def-
inition of the choice probability in Equation (1) implies
that adding a common term to Vit for any patient
i ∈ J(t) does not change the choice probability. Hence,
to control the effects ofWaitRoomCensust and BlockLevelt,
we need to specify them in ways that create differences
in utility over alternatives. We choose to add their inter-
actions with triage levels. The terms WaitTimeit and

Dispositioni are alternative-specific constants, and thus,
only their differences are relevant. Hence, their interac-
tions with triage levels are included rather than their
main effects. Interested readers are referred to section 2.5
of Train (2009) for an excellent discussion that colloquial-
ly summarizes this phenomena as “a rising tide raises
all boats.”

4.2. Measure of Anticipated Disposition and
Endogeneity Issues

One challenge in our investigation is that the anticipat-
ed disposition of patient i by a decision maker at any
decision epoch, that is, Dispositioni, is not observable in
our data. One could use the actual disposition as a
proxy. However, the actual disposition is assigned af-
ter the patient is selected for assessment. Hence, using
the actual disposition as a proxy raises the issue of re-
verse causality and, thus, estimation bias. We choose
to use the predicted disposition of patient i—predicted
with the information collected at triage only—as a
proxy for Dispositioni. We estimate a logit model to
predict a patient’s disposition. With only six basic pa-
tient characteristics as predictors (age group, gender,
address, arrival mode, triage level, and chief com-
plaint), a standard logistic regression model performs
reasonably well with an out-of-sample c-statistic of
0.783 (see other measures, including recall, precision,
etc., in Online Table 6 in the e-companion). The estima-
tion results are presented in the first column of Table 2.
We also estimate a probit model for the purpose
of robustness check (see details in Section 4.4) and
present the estimation results in the second column of
Table 2.

The effectiveness of regressing the ex post disposi-
tion outcomes against ex ante triage information to
solve the endogeneity issue is contingent on the as-
sumption that disposition decisions made by physi-
cians are independent of the ED blocking level at the
decision epoch. Otherwise, the ED blocking level be-
comes a confounding variable impacting both the pre-
dicted disposition and the choice outcome, which
would undermine the causal relation this paper tries
to draw.

To validate this assumption, we add the ED block-
ing level to the disposition prediction model. The esti-
mation results for measures 1 and 2 of BlockLevel are
shown in columns (3) and (4) of Table 2, respectively.
The impact of BlockLevel on patient disposition is sta-
tistically insignificant under both measures at the 5%
level. Our result aligns with Chen et al. (2019), which
also concludes that boarder census has no impact on
patient disposition using data from a U.S. hospital.
Gorski et al. (2017) finds a positive correlation be-
tween waiting room census and admission probabili-
ty. Hence, we include waiting room census in the dis-
position prediction model as a robustness check. The
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estimation results (shown in the last column of Table
2) confirm that the effect of BlockLevel is not statistical-
ly significant, but WaitRoomCensus is negatively corre-
lated with admission probability.

We also use half of the observations, that is, when
the blocking level is below (or above) its median, to
train the disposition prediction model and then apply
it to predict the disposition for all patients. The pre-
dicted disposition enters the discrete-choice model in
Equation (2) as a proxy for the anticipated disposition
by physicians. The estimation results for both cases
are highly consistent, which provides further evidence
that the ED blocking level does not correlate with a
patient’s disposition. Hence, the predicted disposition
is a valid proxy. See details of the estimation results
and a further discussion in Online Appendix A.

4.3. Results and Discussions
To study decision makers’ patient-prioritization be-
havior, we estimate Equation (2) by maximizing the
likelihood of choosing the observed choice of patient.
We account for the potential heteroscedasticity of εit
by using the Huber–White sandwich estimator. The
variable Dispositioni is the predicted probability of

patient i being admitted. Hence, we adjust the stan-
dard errors in the estimation of the discrete-choice
model. Next, we discuss the estimation results of
Model 1 shown in Table 3, which serves as the
baseline model for our robustness checks. The mod-
el goodness-of-fit is measured by the McFadden R2.
The empirically equivalent linear model R2 are esti-
mated from figure 5.5 in Domencich and McFadden
(1975).

Observation 1. Across different triage levels, decision
makers (i) apply an urgency-specific delay-dependent
prioritization rule when selecting the next patient for
initial assessment and (ii) further prioritize high-
acuity patients over middle- and low-acuity patients
when more patients are waiting to be seen.

The estimation results show that all patient charac-
teristics, including age group, gender, arrival mode,
and chief complaint code, are factors in decision mak-
ers’ prioritization decisions. They are not included in
Table 3 to save space. Interested readers are referred
to Online Table 11 for the complete estimation results.
The coefficients of CTAS for different triage levels in
Model 1 imply that, among patients with the same

Table 2. Estimation Results for Disposition Prediction Models

Prediction model Logit Probit Logit Logit Logit
Measure of BlockLevel Measure 1 Measure 2 Measure 1

Intercept −1.203*** −0.713*** −1.210*** −1.211*** −1.119***
BlockLevel 0.028 0.028 0.007
WaitRoomCensus −0.262***
Triage level (base � Level 2)

Level 3 −0.658*** −0.385*** −0.658*** −0.658*** −0.658***
Level 4,5 −1.380*** −0.789*** −1.379*** −1.379*** −1.379***

Age group (base � 18–40 years)
0–18 years 0.250** 0.136** 0.250** 0.250** 0.253***
40–55 years 0.518*** 0.289*** 0.518*** 0.518*** 0.518***
55–70 years 0.988*** 0.564*** 0.988*** 0.988*** 0.989***
>70 years 1.424*** 0.828*** 1.424*** 1.424*** 1.425***

Gender (male � 1) 0.269*** 0.157*** 0.269*** 0.269*** 0.269***
Arrival mode (ambulance � 1) 0.842*** 0.498*** 0.842*** 0.842*** 0.839***
Address (base � others)

Region A −0.264*** −0.154*** −0.264*** −0.264*** −0.261***
Region B 0.017 0.011 0.017 0.017 0.020
Region C −0.056 −0.031 −0.056 −0.056 −0.052
Region D 0.091* 0.054* 0.090* 0.090* 0.094*

Chief complainta

Shortness of breath 0.386*** 0.237*** 0.386*** 0.386*** 0.388***
Chest pain (cardiac features) −1.039*** −0.614*** −1.038*** −1.038*** −1.034***
Headache −1.148*** −0.642*** −1.148*** −1.148*** −1.145***
Depression/suicidal 0.049 0.034 0.049 0.049 0.049
Vomiting and/or nausea 0.200*** 0.112*** 0.201*** 0.201*** 0.202***

McFadden pseudo R2 0.180 0.181 0.180 0.180 0.181
(Equivalent linear model R2) (0.402) (0.404) (0.402) (0.402) (0.404)

Notes. The first two columns are the estimation results of the two models (a logit and a probit model) used in the choice model to predict
Disposition. The last three columns are the estimation results of models that study the impact of the ED blocking level on patient disposition
decisions.

aBase� abdominal pain. The remaining 164 chief complaint codes are not shown for the sake of space.
***p < 0.001, **p < 0.01, *p < 0.05.
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characteristics, serving a patient of higher urgency
(smaller triage level) generates higher utility for deci-
sion makers. More precisely, selecting a level 2 patient
results in 0.302 higher utility than selecting a level 3
patient and 0.603 higher utility than selecting a level 4
or 5 patient, when patient characteristics are the same
and the effects of other factors are negligible. This ob-
servation is consistent with the principle of triage, that
is, classify and prioritize patients based on their ur-
gency. By the CTAS protocol adopted in our study
ED, patients classified as triage level 2 are more ur-
gent than patients of level 3, who, in turn, are more
urgent than patients of levels 4 and 5 (Beveridge et al.
1998). Hence, selecting a level 2 patient incurs higher
utility than selecting patients of triage levels 3–5.

The interaction terms CTAS ×WaitTime and CTAS ×
WaitTime2 are significant for all triage levels. Their co-
efficients suggest that the utility is concave down in
WaitTime. Interestingly, the utility for all triage levels
reaches its maximum when WaitTime ≈ 6:5 hours,
which is the 99th percentile of the waiting times in
our data set. Hence, the utility is increasing and con-
cave in WaitTime, that is, selecting a patient with lon-
ger waiting time always generates higher utility.
However, the increment per unit of time slows down
as patients wait longer. This observation explains
why a less urgent patient could be selected by deci-
sion makers for treatment when there are urgent pa-
tients waiting. In other words, EDs do not operate
like a multiclass queueing system in which triage

Table 3. Key Determinants of Patient-Prioritization Decisions

Model 1 Model 2 Model 3 Model 4 Model 5

Triage Level � 2
CTAS×WaitTime 0.661*** 0.663*** 0.661*** 0.66*** 0.372***

(0.009) (0.009) (0.009) (0.009) (0.013)
CTAS×WaitTime2 −0.049*** −0.049*** −0.049*** −0.048*** −0.023***

(0.001) (0.001) (0.001) (0.001) (0.002)
CTAS×Disposition 0.435*** 0.507*** 0.43*** 0.436*** 0.762***

(0.098) (0.100) (0.124) (0.098) (0.128)
CTAS×Disposition×BlockLevel −1.583*** −1.601*** −1.63*** −1.584*** −1.497***

(0.224) (0.200) (0.236) (0.224) (0.306)
Triage Level � 3

CTAS −0.302*** −0.278*** −0.299*** −0.251*** −0.443***
(0.040) (0.041) (0.041) (0.053) (0.053)

CTAS×WaitTime 1.035*** 1.036*** 1.036*** 1.036*** 0.942***
(0.010) (0.010) (0.010) (0.010) (0.016)

CTAS×WaitTime2 −0.077*** −0.077*** −0.077*** −0.077*** −0.079***
(0.001) (0.001) (0.001) (0.001) (0.003)

CTAS×WaitRoomCensus −1.034*** −1.041*** −1.034*** −1.354*** −1.002***
(0.060) (0.060) (0.060) (0.229) (0.083)

CTAS×Disposition −0.141 −0.018 −0.163 −0.14 −0.236
(0.115) (0.116) (0.143) (0.115) (0.153)

CTAS×Disposition×BlockLevel −2.791*** −2.802*** −2.827*** −2.792*** −2.235***
(0.266) (0.237) (0.267) (0.266) (0.363)

Triage Level � 4, 5
CTAS −0.603*** −0.579*** −0.6*** −0.543*** −0.786***

(0.047) (0.048) (0.049) (0.064) (0.059)
CTAS×WaitTime 1.088*** 1.087*** 1.089*** 1.09*** 1.042***

(0.015) (0.015) (0.015) (0.015) (0.021)
CTAS×WaitTime2 −0.085*** −0.084*** −0.085*** −0.085*** −0.089***

(0.002) (0.002) (0.002) (0.002) (0.003)
CTAS×WaitRoomCensus −0.577*** −0.585*** −0.577*** −0.952*** −0.65***

(0.077) (0.077) (0.077) (0.285) (0.098)
CTAS×Disposition −0.235 −0.012 −0.27 −0.236 −0.585*

(0.214) (0.218) (0.234) (0.214) (0.287)
CTAS×Disposition×BlockLevel −3.419*** −3.725*** −3.24*** −3.414*** −2.014*

(0.653) (0.583) (0.622) (0.653) (0.831)

Observations 83,189 83,189 83,189 83,189 50,885
McFadden pseudo R2 0.069 0.069 0.069 0.069 0.067
(Equivalent linear model R2) (0.151) (0.151) (0.151) (0.151) (0.147)

Notes. This table reports the estimation results from the discrete-choice model. Robust standard errors are shown in the parentheses. Model 1
serves as the baseline model. Models 2–5 deviate fromModel 1 by using measure 2 of ED blocking level, by using the disposition predicted by a
probit model, by controlling the quadratic term ofWaitRoomCensus, and by removing patients with triage orders, respectively.

***p < 0.001, **p < 0.01, *p < 0.05.
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levels indicate strict priority. Rather, the accumulat-
ing priority queues studied in Li et al. (2017) are po-
tentially more appropriate models. From a clinical
perspective, patients who have waited longer face a
higher risk of adverse outcomes (Sun et al. 2013).
Hence, it is a rational decision to prioritize them. We
also note that the increase in utility per unit of waiting
time varies across triage levels: less urgent patients
have greater marginal utility increase in waiting time.
In summary, our results imply that decision makers
apply an urgency-specific delay-dependent prioritiza-
tion rule, which is consistent with the literature
(Ferrand et al. 2018, Ding et al. 2019).

The coefficients of CTAS ×WaitRoomCensus are sig-
nificant and negative for middle- and low-acuity pa-
tients, that is, triage levels 3–5, which implies that,
when all other factors are the same, high-acuity pa-
tients (triage level 2) are more likely to be selected
when there are more patients in the waiting room.
The intuition is that when the waiting room becomes
more crowded, it is critical to attend to high-acuity pa-
tients first as their conditions are urgent and more
likely to deteriorate, whereas middle- and low-acuity
patients can wait longer with relatively lower risk. This
aligns with the insight in Sun et al. (2018) that prioriti-
zation creates greater value when more patients are
waiting to be served.

Observation 2. Within the same triage level, decision
makers (i) prioritize admit patients over discharge
patients for high-acuity patients and do not consider
disposition in the prioritization of middle- and low-
acuity patients when the ED blocking level is suffi-
ciently low and (ii) prioritize discharge patients when
the ED blocking level is sufficiently high.

Observation 1 explains how patients are prioritized
across triage levels. However, it remains unclear why
patients of the same urgency (i.e., the same triage lev-
el) are not seen in an FCFS manner. In particular, why
and how does a patient’s disposition affect the pa-
tient’s priority? The two interaction terms, CTAS ×
Disposition and CTAS ×Disposition × BlockLevel, help
answer this question. From the estimates of Model 1
in Table 3, we make the following observations. When
the ED blocking level is sufficiently low, only CTAS ×
Disposition is relevant. The coefficient of CTAS ×
Disposition for triage level 2 is significant, suggesting
that selecting an admit patient generates 0.435 higher
utility than selecting a discharge patient of the same
triage level when all other factors are the same. Hence,
admit patients are prioritized within triage level 2.
The coefficients are not statistically significant for tri-
age levels 3–5, suggesting that their disposition does
not affect their order of being seen.

The coefficients of CTAS ×Disposition × BlockLevel
are negative for all triage levels, implying that, as the

ED blocking level increases, the utility of choosing ad-
mit patients decreases for all triage levels relative to
the utility of choosing discharge patients. This sug-
gests that, within the same triage level, a discharge pa-
tient may be seen earlier than an admit patient with
similar characteristics and waiting times when the
blocking level is sufficiently high. We note that the co-
efficient of CTAS ×Disposition × BlockLevel for triage
levels 4 and 5 (–3.419) is larger in magnitude than that
for triage level 3 (–2.791), which is significantly larger
than that of triage level 2 (–1.583), suggesting that the
ED blocking level has a greater impact on middle-
and low-acuity patients.

In summary, our empirical investigation shows that
choosing the next patient for treatment is a complex
decision that depends on both clinical and operational
factors. When the ED blocking level is sufficiently
low, clinical factors, such as patients’ triage levels and
waiting times dominate. When the ED blocking level
increases, the operational factor kicks in, and the
chance that discharge patients get prioritized in-
creases. Our empirical results provide evidence that
ED decision makers factor resource constraints into
their patient-prioritization decisions, contrary to the
common perception that patient priority assignment
is a clinical decision made during triage. In addition,
physicians’ behavior may vary because of the lack of
operational guidelines. See Online Appendix B in the
e-companion for more results and discussions.

4.4. Robustness Checks
To show the robustness of our findings, we examine
several model specifications that deviate from the
baseline model. In Model 1, the baseline model, the
disposition of a patient is predicted by a logit model
using six basic patient characteristics. As a robustness
check, we replace the logit model with a probit model
to ensure that our findings do not depend on any spe-
cific classifier.

The measure of ED blocking is critical to our study.
We have constructed two different measures in Sec-
tion 3.3.2, namely, measures 1 and 2. We propose a
third measure, referred to as measure 3, which deviates
from measure 1 by using the 95th percentile of the ob-
served number of patients in ED beds as a proxy for
the maximal ED bed capacity. We also deviate from
measure 1 by setting the capacity of an individual
physician to 6.5; we refer to this as measure 4. Inspired
by Berry Jaeker and Tucker (2017), we propose a fifth
measure, which deviates from measure 2 by using the
monthly maximal boarder census for the normaliza-
tion rather than using the maximum over the two-
year study period. This is referred to as measure 5. The
summary statistics of the five measures are shown in
Online Table 5 of the e-companion. We use all five
measures to test the robustness of our results.
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ED nurses may request tests for patients whose con-
ditions satisfy preset protocols at triage. This practice
is called triage nurse ordering, and its impact is studied
in the literature (e.g., Batt and Terwiesch 2016). In our
study ED, nurses are allowed to order laboratory tests
but not imaging tests. This may affect decision mak-
ers’ behavior in choosing the next patient because a
decision maker might prioritize a patient whose test
results are ready or defer the assessment of a patient
awaiting test results. In our data set, we cannot ob-
serve whether a patient’s test results are available
when the patient is selected for assessment. Hence,
we remove all visit records with triage orders and re-
peat our study to check the robustness of our results.

We also deviate from Model 1 and control the non-
linear effects of WaitRoomCensus by adding its qua-
dratic term to the model. As a result, we estimated
a total of 10 models, and their complete estimation
results are provided in Online Tables 11 and 12 in
the e-companion. Models 2–5 in Table 3 deviate
from Model 1 by using measure 2 for the ED block-
ing level, by using the disposition predicted by a
probit model, by controlling the quadratic term of
WaitRoomCensus, and by removing patients with tri-
age orders, respectively.

We find that the results of all the 10 models are
qualitatively similar except for Model 5. Specifically,
the coefficient of CTAS ×Disposition for low-acuity
patients (triage levels 4 and 5) in Model 5 becomes
significant at the 5% level, which might stem from
the bias created by removing patients with triage or-
ders because triage orders only apply to patients
whose conditions fit certain criteria. Moreover, the
early testing may reduce patients’ acuity levels and
allow them to wait longer. Physicians may also prior-
itize or hold up a patient depending on the availabili-
ty of the test results. In addition, the term CTAS ×
Disposition × BlockLevel for low-acuity patients be-
comes less significant than in the other models,
which may be attributed to the smaller sample size
(about 39% of the observations are removed).

5. Rationale Behind Prioritization
Behavior

In Section 4, using patient visit record data, we
examine ED decision makers’ behavior on patient
prioritization and find that discharge patients are
prioritized when the ED blocking level is high. In
this section, we build a stylized MDP model to fur-
ther understand the rationale behind such behavior.
The aim is to understand how disposition affects a
patient’s priority under ED blocking, especially for
patients of the same triage level, rather than explicit-
ly modeling the complex ED operations in detail.

Hence, we believe that this stylized model can cap-
ture the key characteristics of interest.

5.1. Model for ED Patient Flow and ED Blocking
We model the ED patient flow process during a high-
load period using a two-station tandem queue with
feedback at station 1. A schematic depiction of patient
flow is given in Figure 3. After triage, patients wait in
the waiting room until chosen for service at station 1,
where multiple physicians work to provide emergen-
cy care. After physician assessment, patients join the
test queue before returning to the assess queue with a
constant probability (Yom-Tov and Mandelbaum
2014); if the patients do not join the test queue, the
treatment process is completed, and then patients are
either discharged home with probability 1− p or ad-
mitted with probability p (0 < p < 1), in which case
they join the boarding queue waiting for transfer to in-
patient beds. The service time at station 2 corresponds
to the boarding time of a patient. For the sake of trac-
tability, we assume that the boarding time follows an
exponential distribution with a constant rate µ2 while
being aware that the boarding process is highly time-
dependent in reality (Shi et al. 2015). This is relaxed in
our simulation study in the next section. We assume
that there are always patients waiting to be seen in the
waiting room because we focus on decisions during a
high-load period. We also assume that patients are
only different in their dispositions and are identical in
other characteristics, including demographics, waiting
time, etc., as this model focuses on how dispositions
affect the order of patients being seen.

It is well known that ED physicians are multitask-
ing. However, they generally do not take on more pa-
tients than their total service capacity (Campello et al.
2016) as this not only raises safety concerns but also
can be counterproductive (KC 2013). Saghafian et al.
(2012) observe that an individual physician’s capacity
is generally no more than seven in their study ED. KC
(2013) further suggests that the optimal capacity is

Figure 3. (Color online) Patient Flow in Emergency
Departments

Notes. The ED patient flow process is modeled as a two-station tan-
dem queue with feedback at station 1 (marked 1 and circled), which
represents the physician assessment in the ED treatment phase.
Station 2 (marked 2 and circled) represents the boarding process.
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five patients for an average physician to maximize
throughput. Let C be the total physician capacity of all
of the physicians on duty, B be the ED bed capacity,
and x be the number of boarding patients. Because
boarding patients need to stay in ED beds, we have
0 ≤ x ≤ B. Because physicians are responsible for the
care of all unfinished patients in the ED, patients in
both the assess and test queues count as physicians’
workload. Let K denote the total number of patients in
the assess and test queues. We have K ≤min {C,B− x},
which implies that both physicians and beds can be
the bottleneck resource in an ED. ED blocking occurs
when K � B− x < C, that is, lack of ED beds starves the
physician resource.

We further assume that there is no unforced idling
for physicians at station 1. Then, whenever a patient’s
treatment in the ED is complete, the patient leaves,
and a new patient is picked from the waiting room.
Hence, we have K �min {C,B− x}. We model the pa-
tient flow dynamics in the treatment phase, that is, the
interaction between the assess and test queues, as a
closed network with population K—the total number
of patients in the treatment phase. There are multiple
parallel servers providing services at both queues. We
assume that servers in the assess queue are pooled
such that any of the physicians can serve any patient.
This deviates from normal practice in our study ED as
patients usually return to the same physician for as-
sessment after testing, so as to reduce handoff errors
(Batt et al. 2019). We made this assumption to simplify
our model and analysis. Let µ1(·) denote the through-
put rate from this closed network, and it represents
the rate at which patients complete their diagnosis
and treatment in the ED. (Note that µ1(·) is not the rate
at which physicians assess patients.) We have the fol-
lowing result.

Proposition 1. Assume that (i) there are multiple paral-
lel servers in both the assess and test queues and (ii) the
assess and testing times are, respectively, independent
and identically distributed exponential random variables
and are independent of each other. Then, the throughput
rate µ1(K) is increasing and concave in K. Specifically, we
have µ1(0) � 0:

Proposition 1 implies that the rate at which a
patient completes ED treatment and exits the ED
increases with the number of patients whose diag-
noses and treatments are in progress. This is the
outcome of server pooling, that is, the more patients
in the cyclic network (the treatment phase), the less
likely it is that the servers are idle. However, the
marginal increment decreases as the internal delays
become longer as physicians and test centers have
more patients to serve, and the reduction in server
idleness decreases with more patients in the treat-
ment phase.

5.2. The MDP Formulation and Results
Next, we model the decision problem on prioritizing
admit or discharge patients by an MDP formulation.
For the sake of tractability, we aggregate the treat-
ment phase, that is, the assess/test interactions in
Figure 3, into a single station whose service repre-
sents the diagnosis and treatment process at the ED.
We assume the service times at this station are expo-
nentially distributed with rate µ1(K): This approxi-
mation through state aggregation shares similarity
with the T approximation in Campello et al. (2016).
Because K �min {C,B− x}, it is straightforward to
show that µ1(K) is decreasing and concave in x. To
emphasize the dependence on x, we rewrite µ1(K) as
µ1(x) in the rest of the paper. By Proposition 1, we
have µ1(B) � 0, that is, if all beds are occupied by
boarding patients, then the rate of treating non-
boarding patients drops to zero.

The decision epochs correspond to the times that
physicians become available to serve a new patient.
Denote the system state at time t by x, representing
the number of boarding patients in the ED at t. Hence,
the state space is S � {0, 1, 2, : : : ,B}: Whenever a physi-
cian becomes available to see a new patient, the physi-
cian can choose one from the waiting room based on
the patient disposition or can choose a patient ran-
domly, for example, simply choose the first one in
line. Hence, the action space is A � {ChooseDischarge,
ChooseAdmit, ChooseFirst inLine}.

Assume that serving a discharge (admit) patient
generates a utility of R1 (R2) for the decision maker.
The utility of decision makers can be interpreted as
the social benefit gained by serving a patient. The
social benefit is greater when taking care of a more ur-
gent patient. We assume that an admit patient’s condi-
tion is no less urgent than a discharge patient, that is,
R2 ≥ R1 > 0: We also assume that there is a negative
utility associated with the action of selecting a patient:
−c1 (−c2) for discharge (admit) patients and ci ≥ 0,
i � 1, 2. The negative utility can be interpreted as the
extra effort it takes to search for a specific type of pa-
tient from the dashboard of the hospital’s electronic
patient track system. The negative utility also corre-
sponds to a cost for social injustice. Note that there is
no searching/fairness cost for serving the first
patient in line. To avoid triviality, we also assume that
Ri − ci > 0, i � 1, 2: The decision maker’s objective is to
find a control policy to maximize the expected long-
run average net social benefits over an infinite time
horizon.

We next let g(π,x) ≡ liminft→∞Vt(π,x)=t, ∀x ∈ S,
be the expected long-run average net social benefits,
and Vt(π,x) is the total expected net social benefits up
to time t starting from state x under policy π. Then, the
optimal long-run average net social benefit is g∗(x) ≡
supπg(π,x), ∀x ∈ S: We apply uniformization with the
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uniformization constant Λ ≡ µ1(0) +µ2 (Lippman 1975).
Without loss of generality, we can redefine the time
unit so that Λ � 1, and then µ1(x) and µ2 become, re-
spectively, the probability that the next uniformized
transition is a service completion at stations 1 and 2.
Let v(x) be the bias function defined as the difference
between the total expected net social benefits starting
from state x and a reference state. The long-run aver-
age net social benefit optimality equations can be writ-
ten as v(x) + g � Tv(x), ∀x ∈ S, where g is the optimal
average net social benefit per period of time after uni-
formization, and the format of the operator T is the
same as the one defined in Online Appendix C. Next,
we present Proposition 2, which establishes the exis-
tence and structural properties of the optimal policy.

Proposition 2. Let x be the number of boarding patients.
There exists an optimal stationary deterministic policy that
takes the following form: choose admit patients if x < xa and
choose discharge patients if x > xd; otherwise, choose the
first patient in line, and xa ≡max {x : x ∈ S, v(x) − v(x+
1) ≤ R2 −R1 − (1− p)−1c2} and xd ≡min {x : x ∈ S, v(x)
−v(x+ 1) ≥ R2 −R1 + p−1c1}:

Proposition 2 states that the optimal policy is of
threshold-type, characterized by xa and xd: Note that
x/B is the percentage of ED beds occupied by board-
ing patients, which is an indicator of the ED blocking
level. Our result can be interpreted as follows: when
the ED blocking level is relatively low (x < xa), it is op-
timal to prioritize admit patients, that is, the clinical
factor dominates when treatment capacity is not of
concern; when the blocking level is high (x > xd), it is
optimal to prioritize discharge patients, that is, the op-
erational factor dominates when the pressure on bed
resource is high; when the blocking level is intermedi-
ate, it is optimal to follow FCFS. The proof is provided
in Online Appendix C.

5.3. Connection to Empirical Findings
Next, we discuss the connection between Proposition
2 and our empirical findings for each triage level and
explain the mechanism behind ED decision makers’
prioritization behavior.

The medical conditions for patients of triage level 2
are generally urgent. For example, the five most fre-
quent complaint codes for triage level 2 patients are
chest pain (cardiac features), abdominal pain, major
trauma (blunt), cardiac type pain, and shortness of
breath. These conditions can deteriorate quickly.
Among them, we believe that admit patients are more
urgent than discharge patients (R2 > R1). Hence, serv-
ing admit patients generates higher social benefits
than serving discharge patients, and admit patients
are prioritized when ED beds are not the bottleneck
resource (x < xa). Patients of triage levels 3–5 are less
urgent and can wait some time without significantly

compromising their care. In particular, admit and dis-
charge patients are not significantly different with re-
spect to their urgency, that is, R1 ≈ R2, and thus,
xa ≤ 0. Hence, within triage level 3 or levels 4 and 5,
patients’ order of being seen is independent of their
disposition when the ED blocking level is sufficiently
low (x < xd).

When the ED blocking level is sufficiently high, for
example, when more than 100xd=B% of the ED beds
are occupied by boarding patients, it may become dif-
ficult for decision makers to find available beds to
treat new patients. Thus, it is wise to take the bed ca-
pacity into consideration when selecting the next pa-
tient to see. Intuitively, it is better to start prioritizing
discharge patients over admit patients. Otherwise, an-
other bed may be occupied for a prolonged period,
which only further reduces ED treatment capacity and
aggravates ED blocking. We observe this behavior in
the empirical results for all triage levels. The reduction
in treatment capacity is reflected in our model by that
µ1(x) decreases with x. More importantly, our MDP
model and the results derived from it explicitly ex-
plain the trade-off faced by ED decision makers in pa-
tient prioritization, that is, gaining a greater social
benefit in the short term (prioritizing admit patients)
versus preserving a higher rate of gaining social bene-
fits in the long run (prioritizing discharge patients).

6. Improving ED Operations Through
Patient Prioritization

In previous sections, we examine ED decision markers’
prioritization behavior and the rationale behind it.
However, the impact of such behavior on ED opera-
tional performance remains unclear. More importantly,
how can we leverage these insights into patient prioriti-
zation to improve ED operations? To the best of our
knowledge, there are no guidelines for patient prioriti-
zation. As a result, we expect decision makers to exhibit
heterogeneous behavior (see Online Appendix B in
the e-companion), which makes it difficult to examine
the impact through observational data. In this section,
we develop a discrete-event simulation model to com-
pare prioritization policies that consider ED blocking
with a policy that does not and quantify the impact on
average waiting time and LOS. The simulation model
assumes that decision makers follow an explicit prioriti-
zation rule, which deviates from reality. However, we
believe that the results can demonstrate the benefits of
priority rules that take into account the availability of
ED resources, at least qualitatively.

6.1. Simulation Design
We simulate the ED patient flow process as a two-
station tandem queue as described in Section 5.1. We
relax the assumption on the arrival process and
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assume that patients arrive at the ED according to a
nonstationary Poisson process, which is shown to be a
reasonable assumption (Kim and Whitt 2014). Instead
of considering all five triage levels, we aggregate pa-
tients into two classes. Class 1 corresponds to patients
of CTAS 1 (and part of CTAS 2) who have the highest
priority and almost always receive treatment immedi-
ately. Class 2 corresponds to less-urgent patients
(CTAS 2–5) who need to wait for treatment if all
physicians are busy. Two types of resources are re-
quired to treat patients: ED beds and physicians. A
patient cannot be treated unless both resources have
available capacity. After treatment, a patient may
leave the system (be discharged) or be admitted and
join another queue waiting for an inpatient bed
(boarding) while occupying an ED bed. We assume
that decision makers know the dispositions of patients
waiting for treatment and may use such information
for patient prioritization.

The input analysis of the simulation is based on
data collected between August 2014 and July 2015.
Our descriptive statistical analysis finds that the hour-
ly arrival rate depends on both the time of day and
day of the week (see Figure 4). Mondays are especially
busy, a phenomenon that is referred to as the Monday
effect in emergency medicine. We also observe that the
shift schedules of medical staff repeat every 24 hours.
Hence, we choose one week as a cycle and treat the
data of each week from August 2014 to July 2015 as a
realization of the stochastic process that governs the
true arrival process. We assume a nonstationary Pois-
son arrival process and estimate different arrival rates
for different times of day and days of the week. Once
the event of generating a new patient is triggered, we
randomly sample a patient from the set of patients in
the data who arrived at the ED during that hour on
the particular day of the week (bootstrap) and assign

this patient’s profile (triage level, disposition, etc.) to
the newly generated patient. We generate service
times (e.g., treatment/boarding times) for this patient
in a similar manner: first, we group the treatment and
boarding times from the data by time of day and day
of the week, triage level, and disposition, and then we
randomly sample service times from the set that corre-
sponds to the new patient’s profile.

The number of physicians on duty at any time of
the day is known. We assume that physicians are mul-
titasking and have the same service capacity. We set
the capacity to seven patients. It is, however, challeng-
ing to estimate the capacity of ED beds as discussed in
Section 3.3.2. We follow our empirical study setting
and use the 90th percentile of the number of patients
staying in ED beds during each hour of the day over
the study period to approximate the bed capacity at
the particular hour of the day. Using the 90th percen-
tile instead of the maximum avoids outliers created by
data collection errors or temporary increases in ED ca-
pacity. Because both physician capacity and bed ca-
pacity are time-varying, we assume that an exhaustive
discipline (Ingolfsson et al. 2007) is applied whenever
the capacity decreases.

6.2. Prioritization Policies
Next, we use a simulation to compare patient prioriti-
zation policies that do or do not consider ED blocking.
In the simulation, we use measure 1 for the ED block-
ing level (see Section 3.3.2), that is, the ratio of the
number of boarding patients over the number of extra
beds (total bed capacity net of total physician capaci-
ty). We start by defining the policies of interest.

Urgency-Based Priority Policy (UP): A nonidling
policy, under which class 1 patients receive priority
over all other patients; FCFS is followed within each
class.

Figure 4. (Color online) Hourly Patient Arrivals to Our Study ED by Time of Day and Day of theWeek

Note. Data fromAugust 2014 to July 2015.
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Congestion-Urgency-Based Priority Policy (CUP):
A nonidling policy, under which class 1 patients re-
ceive priority over all other patients; FCFS is followed
within class 1. For class 2, prioritize admit patients if
blocking level is less than η1 (≥ 0), prioritize discharge
patients if the ED blocking level is greater than
η2 (≥ η1), and follow FCFS otherwise.

CUP-Prioritize-Admit Policy (CUP-A): The same
policy as CUP except that, within class 2, discharge
patients are never prioritized. Rather, prioritize admit
patients if the ED blocking level is less than ηA (≥ 0)
and follow FCFS otherwise, that is, η1 � ηA, η2 �∞.

CUP-Prioritize-Discharge Policy (CUP-D): The
same policy as CUP except that, within class 2 admit pa-
tients are never prioritized. Rather, prioritize discharge
patients if the ED blocking level is greater than ηD (≥ 0)
and follow FCFS otherwise, that is, η1 � 0, η2 � ηD.

CUP-Prioritize-Admit-Discharge Policy (CUP-AD):
The same policy as CUP except that, within class 2, pri-
oritize discharge patients if the ED blocking level is
greater than ηAD and prioritize admit patients other-
wise, that is, η1 � η2 � ηAD.

Under UP, patients are seen mainly based on their
clinical urgency. Patients of the same urgency are seen
in their order of arrival so that fairness is exercised.
CUP is inspired by the optimal policy in Section 5,
which either prioritizes patients based on their dispo-
sitions or follows FCFS depending on ED blocking
level. We compare UP and CUP by varying the two
thresholds η1 and η2 in a wide range. In addition, we
consider three policies that are special forms of CUP,
namely, CUP-A, CUP-D, and CUP-AD. We note that
CUP-AD is similar to the prioritization of CTAS 2 pa-
tients in our empirical study, and CUP-D aligns with
the one used for CTAS 3–5 patients. All three policies
are simpler and easier to implement than CUP. We
compare them with UP by varying their correspond-
ing parameters over a broad range and quantify their
impact on patient average waiting time and LOS.

6.3. Comparison Results and Discussions
To make the simulation statistically efficient, we apply
variance-reduction techniques by using common ran-
dom numbers when creating patient arrival processes
under different policies and perform the output analy-
sis using the replicated batch means method (Law
and Kelton 2000, Argon and Andradóttir 2006). Spe-
cifically, starting from an empty ED, we simulate the
ED operations under each policy for 10 replications
with replication length 907 days. For each replication,
we identify the first seven days as the warm-up peri-
od by Welch’s method (Law and Kelton 2000); thus,
they are removed from the output. We then take sev-
en out of every nine days of the remaining 900 days as
a “batch” and calculate the average waiting time and
LOS using all of the patients who arrive and leave

during the batch period. (The two days in every nine
days are removed to reduce autocorrelation among
batches of the same replication.) Hence, we have 1,000
pairs of average waiting time and LOS for each policy.

The three plots in the top row of Figure 5 show the
95% confidence interval for the percentage reduction
in the average waiting time by using CUP over UP for
15 combinations of η1 and η2, where η1 ∈ {0:4, 0:6, 0:8}
and η2 ∈ {0:9, 1:0, 1:1, 1:2, 1:3}. Our first observation is
that prioritizing patients based on disposition and ED
blocking level can reduce the average waiting time of
all patients as much as 15%. It is intuitive that the
more we prioritize discharge patients (smaller η2), the
greater the reduction in average waiting time for dis-
charge patients. However, it comes at the cost of lon-
ger waiting for admit patients. As can be seen, the
average waiting time of admit patients increases more
(negative reduction) when a larger percentage of dis-
charge patients are prioritized. Moreover, we observe
that discharge patients have a greater impact on over-
all performance than admit patients as discharge pa-
tients are four times as many as admit patients.

There are scenarios in which the average waiting
times for patients of both dispositions decrease, for ex-
ample, (η1,η2) � (0:6, 1:3) and η1 � 0:8 for all η2, which
might seem counterintuitive at first glance. However,
this is entirely possible if critical ED resources are ra-
tioned appropriately in a highly time-varying supply
and demand environment, in which both physicians
and beds can be bottlenecks for patient flow. When
physicians are the bottleneck, that is, there are empty
beds and, hence, the ED blocking level is relatively
low, prioritizing admit patients starts boarding earlier
and increases bed utilization. When beds are the bot-
tleneck, it is wise to prioritize discharge patients; oth-
erwise, treating admit patients when few beds are
available aggravates the level of ED blocking and
impairs ED treatment capacity. Hence, a careful allo-
cation of critical ED resources through patient prioriti-
zation can benefit all patients.

A closer look at the case (η1,η2) � (0:6, 1:3) finds that
the average waiting time for all patients decreases by
10%, which is about 10 minutes (the average is 106 mi-
nutes without prioritization). Woodworth and Holmes
(2020) conclude that prolonging a patient’s waiting
time by 10 minutes increases the cost of care per ED
visit by an average of 3%–6% for moderately and most
severe patients, respectively. Dawson and Zinck (2009)
find that the average hospital cost (not including the
costs of nonsalaried physicians and laboratory tests)
per ED visit in 2005–2006 was CA$148 in Ontario, Can-
ada. With 150,000 ED visits per year, our calculation
shows that the cost savings by using CUP over UP
range from CA$666,000 to CA$1,332,000. These num-
bers could easily be doubled if we add physician/test
costs and inflation into the calculation. Note that this is
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only a rough estimate as the results in Woodworth
and Holmes (2020) are based on a U.S. ED, and Daw-
son and Zinck (2009) use data from a different Canadi-
an province more than 10 years ago. However, we be-
lieve that these numbers provide some insights into
the value of patient prioritization.

The results of comparisons between UP and the
three simpler priority policies are shown in the
bottom row of Figure 5, in which ηA ∈ {0:3, 0:4, 0:5,
0:6, 0:7}, ηD ∈ {1:0, 1:1, 1:2, 1:3, 1:4}, and ηAD ∈ {0:7, 0:8,
0:9, 1:0, 1:1}. The results are similar to that of CUP;
however, the improvements of all three policies are
less. We also note that CUP-AD outperforms CUP-A
or CUP-D. That is, greater improvement can be
achieved if management is willing to deviate further
from FCFS by prioritizing more patients. We observe
similar patterns in LOS for all policies but with a
smaller magnitude in reduction as prioritization af-
fects waiting time but not treatment time. See more
details in Online Figure 6 in the e-companion.

7. Impact on Waiting Time Prediction
In this section, we demonstrate how to incorporate
decision makers’ patient-prioritization behavior to
improve the accuracy of ED waiting time prediction.
A growing number of hospitals (our study hospital
included) have started posting predicted ED waiting
time on their websites, smartphone apps, and screens

in hospitals. An accurate prediction of waiting times
can reduce patient waiting through better coordination
in hospital networks (Dong et al. 2019). Without such
information, patients might be more prone to leave
without being seen because they may wrongly infer
waiting time (Batt and Terwiesch 2015). Therefore,
providing an accurate waiting time prediction has at-
tracted attention from both the medical and operations
communities. Nevertheless, the accuracy of prediction
models has raised concern. The American College of
Emergency Physicians (2012) warned that existing
prediction methods provide misleading results and
called for improving the prediction accuracy.

Two recent studies on waiting time prediction are
Sun et al. (2012) and Ang et al. (2015). The first work
develops a quantile regression (QR) model, and its
predictors include the number of patients of each tri-
age level waiting to be seen by physicians, the number
of patients of each triage level whose treatment
started within the past hour, triage level, time of day,
and day of the week. Ang et al. (2015) develop a
Q-Lasso model based on a combination of queueing
and statistical learning estimators. In addition to the
predictors used in Sun et al. (2012), the Q-Lasso
includes other variables, such as local weather infor-
mation, flu trend, the number of providers, and the
number of nurses. We apply the two methods to our
data set and focus on low-acuity patients (triage levels

Figure 5. (Color online) The 95% Confidence Interval for the Percentage Reduction in Long-Run AverageWaiting Time by
Using CUP over UP (the Three Figures in the Top Row) and by Using CUP-A, CUP-D, or CUP-AD over UP (the Three Figures
in the Bottom Row), Respectively
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3–5) following Ang et al. (2015). Some predictors used
in Ang et al. (2015) that are not available in our data
set are omitted. Note that we have tried several other
off-the-shelf prediction models, including neural net-
work, XGBoost, etc. However, none produces signifi-
cant improvement over Q-Lasso in terms of reducing
the root mean square error (RMSE). We then add the
last three interaction terms in Equation (2) into the
models in Sun et al. (2012) and Ang et al. (2015) and
refer to the new prediction models as Priority QR and
Priority Q-Lasso, respectively.

We apply the four prediction models to our data.
The predictor BlockLevel is by measure 2, and Disposi-
tion is predicted by the logit model in the first column
of Table 2. We choose 80% of our data for model train-
ing and the remaining 20% for testing. The absolute
values and percentage reductions of the RMSE are
shown in Table 4. When we explicitly account for deci-
sion makers’ prioritization behavior in the prediction
models, the reductions in RMSE are statistically signifi-
cant for both the QR and Q-Lasso (1.73% and 1.66%,
respectively). We also test the performance on four
subsets of the data, which contain patients who ar-
rive and find the ED blocking level below the 50th
percentile and above the 50th, 75th, and 90th percen-
tiles. The results show that, when the ED blocking
level is relatively low (BlockLevel < 50th percentile),
prediction accuracy is slightly improved by incorpo-
rating patient prioritization into QR or Q-Lasso.
When the blocking level is high, the RMSE can be re-
duced by up to 4.86% and 5.52% for QR and
Q-Lasso, respectively. We expect greater improve-
ment if decision makers behaved homogeneously.
Note that our proposed predictions rely on the esti-
mation of a patient’s disposition. Such predictions
are practically useful for (i) routing ambulances
within a hospital network (McLeod et al. 2010) and
(ii) providing a waiting time estimate to patients at
the end of their triage.

8. A Discussion on the SPT Rule
In this paper, we examine decision makers’ patient-
prioritization behavior and find that decision makers
may prioritize discharge patients over admit patients

in response to ED blocking. However, the treatment
variable Disposition also acts as an effective indicator of
a patient’s service duration. This motivates an alterna-
tive explanation: discharge patients are prioritized be-
cause decision makers are following the SPT rule,
which is observed in other healthcare settings (Ibanez
et al. 2018). Under the SPT rule, the job with the short-
est (expected) processing time of all jobs currently in
the wait line should be prioritized so that the average
waiting time is minimized (section 7.10 of Cachon and
Terwiesch 2008). The SPT rule seems to be a compel-
ling alternative to our proposed mechanism. After all,
the average time that admit patients stay in ED beds is
about three times longer than that of discharge pa-
tients for patients of all acuity levels (see Table 1). We
argue that SPT is relevant but may not serve as a sub-
stitute for our mechanism. We elaborate as follows.

The objective of SPT is to minimize the average
waiting time. Hence, both long patient waiting times
(WaitTime) and a large number of patients waiting to
be seen (WaitRoomCensus) could trigger changes in de-
cision makers’ prioritization behavior. In contrast, our
mechanism states that the primary motivation for pri-
oritizing discharge patients is to manage high levels
of ED blocking. Hence, BlockLevel drives the changes
in patient-prioritization decisions. In other words, the
SPT rule focuses on the waiting room census, whereas
our mechanism looks at the backroom census, more
specifically, boarding patients. In the empirical mod-
els, we control both WaitTime and WaitRoomCensus
by including their interactions with triage levels (see
Section 4.1 for more details). The estimation results
strongly support our mechanism as the variables of
interest are statistically significant.

It is interesting that the Pearson correlation coef-
ficients between WaitRoomCensus and any of our
five measures for BlockLevel are negative with mag-
nitudes smaller than 0.1 (see Online Table 9 in the
e-companion), suggesting that a high blocking lev-
el does not imply a concurrent congested waiting
room. This may be due to some time lag effect, in
which case, one could argue that ED decision mak-
ers apply the SPT rule in anticipation of a crowded
waiting room in the near future caused by the high

Table 4. RMSE for Waiting Time Prediction Algorithms

All BlockLevel BlockLevel BlockLevel BlockLevel
Patients <50th percentile >50th percentile >75th percentile >90th percentile

QR 81.95 83.66 83.04 79.66 84.56
Priority QR 80.55 82.66 81.44 77.21 80.64
Reduction in RMSE (%) 1.73 1.21 1.97 3.17 4.86
Q-Lasso 80.45 82.30 81.31 76.29 80.09
Priority Q-Lasso 79.12 81.55 79.77 73.35 75.67
Reduction in RMSE (%) 1.66 0.92 1.89 3.85 5.52

Note. Lower RMSE values are better.
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blocking level in the present. Then, the SPT rule is
a valid alternative for our mechanism, in which the
processing time refers to the length of time a pa-
tient stays in an ED bed. However, from a model-
ing perspective, our mechanism (and the MDP in-
spired by it) explains the interactions between the
two resources that determine the ED’s capacity in
treating patients, that is, physicians and beds. As a
result, our mechanism provides further insights.
More specifically, when physicians are the bottle-
neck resource and there are sufficient beds, opera-
tionally it is better to prioritize admit patients to
start boarding earlier and increases bed utilization.
Our simulation results confirm this insight by
showing that policies that prioritize admit (dis-
charge) patients when the blocking level is suffi-
ciently low (high) can reduce the average waiting
times of both admit and discharge patients.

As a last note, to understand decision makers’ cog-
nitive process in patient prioritization, we should be
aware of medical practitioners’ position on the root
cause of ED overcrowding. Exemplary research on
this topic includes Pines et al. (2011), in which physi-
cians in 15 countries identify the boarding of admitted
patients as the main cause of ED overcrowding. Simi-
larly, the professional association of emergency physi-
cians in Canada points out the following (Affleck et al.
2013): “When inpatients occupy ED stretchers for pro-
longed periods of time, they block access to these care
spaces by ill and injured patients in the waiting room
and increase waiting times for newly arriving patients
… the inability of admit patients to access inpatient
beds from the ED is the most significant factor causing
ED overcrowding in Canadian hospitals.” (Here, inpa-
tients refer to boarding patients in our paper.) Within
this context, it seems an intuitive and sensible decision
for decision makers to prioritize discharge patients in
response to ED blocking. Our discussions with ED
physicians confirmed this insight.

In conclusion, SPT is very relevant but may not ex-
plain our empirical findings on its own. However,
there is not enough evidence to rule out SPT either be-
cause the estimation results show that both WaitTime
and WaitRoomCensus affect the prioritization deci-
sions. It is possible that both our mechanism and SPT
are at work. Especially, ED nurses might apply SPT
because they are the ones who interact with and care
for the patients in the waiting room.

9. Conclusions and Future Research
Motivated by an intriguing observation from compar-
ing the average waiting times of admit and discharge
patients by triage level, we study how ED decision mak-
ers choose the next patient for treatment. Using data
from a large urban teaching hospital in Canada, we find

that decision makers apply urgency-specific, delay-de-
pendent prioritization. Moreover, decision makers start
to prioritize discharge patients to prevent the ED from
being further blocked when the blocking level is suffi-
ciently high. We then draw insights from a stylized
MDP formulation to explain the rationale behind such
prioritization behavior. To the best of our knowledge, it
has not been documented that medical workers consider
ED blocking in their patient-prioritization decisions.
Our work fills this gap by providing empirical evidence
and explaining the rationale behind it. Our work also
contributes to the queueing literature by explicitly
modeling the interactions between two bottleneck re-
sources in a two-station multiclass service network. Our
simulation study shows that priority policies—derived
from our empirical findings and insights from the MDP
model—can improve patient flow by reducing average
waiting time and LOS. We also show how to leverage
our findings to improve waiting time prediction
algorithms.

9.1. Managerial Insights
Our study offers useful managerial insights. Our find-
ings suggest that EDs may not operate like a multi-
class queueing system in which triage levels indicate
strict priority. Rather, ED decision makers use discre-
tion and consider both clinical and operational factors
when prioritizing patients. This is not surprising as
management teams at the ED and hospital levels are
often practitioners themselves. However, our study
provides additional insights into how to leverage such
prioritization behavior to improve ED operations.
Specifically, we devise prioritization policies under
which the average waiting times and LOS for both ad-
mit and discharge patients are reduced. As a result,
hospitals can save millions of dollars annually be-
cause of improved quality of care. Our queueing mod-
el explains the interaction between the two bottleneck
resources at EDs, namely, physicians and beds (deter-
mined by nurses), which also provides insights into
ED staffing. For example, during a surge in ED de-
mand, bringing in a nurse is probably more effective
than bringing in a physician when the ED blocking
level is high. Our recommendations for improving ED
waiting time forecasting is practically useful, particu-
larly as an increasing number of hospitals have started
posting their ED waiting times online, and accurate
prediction algorithms are urgently needed (American
College of Emergency Physicians 2012).

9.2. Relevance to Non-Healthcare Settings
Our empirical findings and MDP model reveal that,
in a dual-resource constrained system (physicians
and beds), when one resource becomes the bottle-
neck (ED blocking), reordering jobs (prioritizing pa-
tients) can achieve a better match between capacity
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and demand. This distinguishing feature is relevant to
many case-manager type systems, borrowing the term
from Campello et al. (2016). For example, in call cen-
ters, a customer can be served only when there are
agents and trunk lines available, both of which have
limited capacity. In a constant-work-in-process pro-
duction system, a finite number of kanban cards may
be introduced to control inventory among a set of
workstations. Hence, both kanban cards and worksta-
tions need to have available capacity to start a new job.
A warehouse has finite pallets and human (or robot)
servers—both are necessary—for order fulfillment. In
all of these examples, a job, be it a customer, work, or
an order, cannot be processed if there are no available
trunk lines, kanban cards, or pallets. Hence, our find-
ings on patient prioritization are also relevant to ser-
vice and manufacturing systems. The triage levels in
our study represent the job types, for example, regular
and VIP customers in call centers, urgent and nonur-
gent orders in production lines. The predicted disposi-
tions stand for an early prediction of job demands on
certain resources. Our findings suggest that it is benefi-
cial for operations managers to adjust the processing
order of jobs in response to the pressure on bottleneck
resources, specifically, to prioritize jobs that are less de-
manding on the bottleneck resources so as to ease the
system pressure and preserve the system’s capability.

9.3. Future Research Directions
Our study serves as a first step toward understand-
ing the patient-prioritization behavior of ED deci-
sion makers. However, there are many questions to
be explored for the broader implementation of
patient-prioritization rules, for example, whether de-
cision makers react to ED blocking too little, too
much, or just right. Controlled experiments could
provide more direct answers to this question. Our
analysis is based on data from one hospital. There-
fore, the findings may not extend to hospitals of dif-
ferent sizes or to hospitals in which ED beds are not
the bottleneck resource. Hence, it would be valuable
to conduct analysis using data from other hospitals.
Our mechanism on patient prioritization may be an
aggregation of several lower level mechanisms in-
volving multiple decision makers. Hence, it would
be of interest to examine the behavior of different
stakeholders, for example, nurses and physicians, sepa-
rately. Ibanez et al. (2018) find that doctors exercise
more discretion in task ordering as they accumulate ex-
periences. Therefore, it would be valuable to include de-
cision makers’ characteristics in the choice model. Two
other issues that are left out of this paper are the quality
of care and ethical concerns resulting from the prioriti-
zation (and deprioritization) of a certain group of pa-
tients. It would be of interest to infer the effects of
disposition-dependent prioritization on quality of care.

For example, the increased waiting for admit patients
resulting from the prioritization of discharge patients
may lead to higher risk of adverse health outcomes
(Richardson and Bryant 2004, Sun et al. 2013). All of
these issues would benefit from further investigation.
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Endnotes
1 Our data shows that the number of admit patients delayed by a
discharge patient, that is, who arrives later but gets treated earlier,
is higher than that of discharge patients delayed by an admit pa-
tient for triage levels 3–5 but lower for levels 1 and 2, which pro-
vides more evidence for the conjectured prioritization behavior.
2 One possible explanation of Figure 1 is the inclusion of fast-track
patients. Fast-track patients are streamed into a different queue af-
ter triage and treated by a dedicated team in a separate area. Most
fast-track patients are discharged after their treatment in the ED. It
is possible that fast-track patients having low waiting times drives
this observation. However, the figure barely changes when we re-
move fast-track patients from the data set, and the puzzle remains.
3 The maximal bed capacity is rarely observed because hospitals
may temporarily increase their capacity in extreme situations
(Armony et al. 2015, Berry Jaeker and Tucker 2017). We follow Kim
et al. (2014) and test the 95th percentile in the robustness checks.
The estimated hourly bed capacity is provided in Online Table 7 in
the e-companion.
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