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We study the behavior of batching by discretionary workers in the first stage of a two-tier queuing system,

and explore the trade-off it causes between their productivity and second stage wait times. Specifically,

we focus on the behavior of batching admissions by emergency department (ED) physicians. Using data

from a large hospital, we show that the probability of batching admissions is increasing in the hour of an

ED physician’s shift, and that batched patients experience a 4.7% longer delay from hospital admission

to receiving an inpatient bed. Using a mediation analysis we show that this effect is partially due to the

increase in the coefficient of variation of inpatient bed-requests caused by batching. However, we also find

that batching admissions is associated with an average of 10.0% more patients seen in a shift, and a 2.6

minute reduction a physician’s average throughput time. An important implication of our work is that

workers may induce delays in downstream stages, caused by practices that increase their productivity.
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1. Introduction

Operations management literature has employed queuing models extensively in manufac-

turing and service settings to optimize capacity and wait times. Nonetheless, understanding

the behavior of workers is a crucial aspect of designing and operating successful queuing
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systems. In this work, we focus on the batching behavior of servers in a two-tier queuing

system. Specifically, we focus on the servers in the first stage, who batch referrals to the

second stage; we explore the trade-off it causes between worker productivity in the first

stage and wait times due to batched arrivals in the second stage. To our knowledge, this

paper is among the first to study this trade-off.

We investigate this question empirically in an emergency department (ED) setting. We

choose this setting for two reasons. First, an ED is essentially a two-tier queuing system;

arriving patients are queued to be roomed in the ED, and those who require further hospital

care are admitted, and are queued to receive an inpatient bed. Second, ED overcrowding is

a worldwide problem, and part of the solution is improving patient flow in the ED (Morley

et al. 2018). The main reason for ED overcrowding is ED boarding, which is defined as

the delay from when an ED patient is admitted to the hospital for inpatient care until

she physically departs the ED (ACEP 2018, Morley et al. 2018). Our paper focuses on

the behavior of batching admissions by ED physicians, a practice that generates batched

arrivals to the queue for inpatient beds. We explore when physicians are more likely to

batch admissions, and its impact on boarding times and their shift-level productivity.

Specifically, we ask the following research questions:

1. Do physicians batch their admissions toward the end of their shifts?

2. Does batching admissions negatively affect boarding times?

3. Does batching admissions improve physician productivity?

We collect 25 months of detailed, retrospective patient and ED physician shift data from

a single urban academic hospital with one of the busiest EDs in the US (Mackenzie Bean

2018). Arriving patients are first triaged, and roomed primarily on a first-come-first-serve

(FCFS) basis according to their severity level. Physicians sign up to treat patients once

they are roomed. Once a patient undergoes the required evaluation and treatment, their

attending physician determines whether the patient needs to be admitted to the hospital

for inpatient care or discharged. If she admits the patient, a “bed request” is submitted

electronically, along with some details about the patient’s condition. Physicians may decide

to postpone this task to attend to other patients, especially when the ED is busy. Once a

bed is requested, the responsibility of managing patient flow is transferred to departments

outside of the ED. First the bed control department must assign an inpatient bed; this

process primarily depends on the inpatient unit capacity and the number of admitted
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patients awaiting transfer. Next, the cleaning staff must ensure that the inpatient bed and

room is ready, and patient transport must be scheduled to transfer the patient from the

ED to the inpatient bed. Finally, the ED physician signs the patient out and then the

patient leaves the ED.

Occasionally, a physician cannot make a disposition decision (i.e. discharge or admit)

by the end of their shift. In these cases, the patient is handed off to the next physician.

However, there is a disincentive to hand-off patients because the second physician in our

study ED is not credited for the patient’s care. We hypothesize that physicians start their

shifts with attending to many patients, but toward the end of their shifts, they wrap up

the tasks at hand to avoid handing their patients off to the next physician. This process

may result in having to admit multiple patients in a relatively short period of time or in

other words, back-to-back. We refer to this behavior as admission batching.

We define two or more admissions to be back-to-back (i.e batched) if they occur within a

threshold of 9.1 minutes of one another. The threshold is derived empirically, and is in line

with our observations of the ED, and the experience of our ED physician partner. We find

that the probability of batching admissions is increasing in the hour of shift, and in fact,

physicians are 4.8×more likely to batch their admissions in the final two hours of their shift

compared to the beginning of their shift. Next, we find the impact of batching admissions

on the boarding times of batched patients, and on physicians’ shift-level productivity.

We follow Shi et al. (2015), and divide boarding time into two portions: the delay from

when a bed is requested until one is assigned (pre-allocation delay), and the delay from

when the bed is assigned until when the patient physically departs the ED (post-allocation

delay). We focus on pre-allocation delay to the hospital’s medical units as our key mea-

sure of boarding time. Drawing from queuing and healthcare operations literature, we

hypothesize, and show, that batching admissions increases pre-allocation delay. Specifi-

cally, batched patients experience a pre-allocation delay increase of ∼ 7 minutes, or 4.7%,

on average. We further show that this increase is, in part, due to the increase in coefficient

of variation (CV) of bed requests. In a counterfactual analysis we estimate that average

system-level pre-allocation delay may be reduced by a theoretical maximum of 15% if

batching is eliminated. Furthermore, we find that the impact of batching on pre-allocation

delay in our empirical results are in the same order of magnitude as the predictions of

queueing models with batched arrivals.
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To study the impact of admission batching on physician productivity, we consider two

productivity measures used in the healthcare operations literature, and relevant in practice:

time to making a disposition decision (akin to discharge rate used in Song et al. (2015) and

Song et al. (2018)), and number of patients served (KC et al. 2020). We find that in shifts

with at least one batch of admissions, the physician attended to an average of 2.1 additional

patients in their shift, equivalent to a 10.0% increase in number of patients served. Also,

their shift-level average time to disposition decision decreases by ∼ 2.6 minutes.

This work makes several contributions to theory and practice. First, much of the ana-

lytical work in healthcare operations management literature that studies ED boarding has

primarily employed queuing models with time-homogeneous or -non-homogeneous Pois-

son arrivals (or admissions), with a focus on either capacity-related or patient-flow-related

issues, with the goal of better matching inpatient bed supply with demand over the course

of a day (Green 2002, Best et al. 2015, Véricourt and Jennings 2011, Yankovic and Green

2011, Dai and Shi 2019, Shi et al. 2015, Whitt and Zhang 2017). Our findings comple-

ment this literature. We focus on a behavior of ED physicians, batching admissions, and

empirically show that it exacerbates boarding times. This is important because it demon-

strates that in a multistage queue, such as a hospital’s ED, server behavior may distort

an assumed exogenous interarrival distribution to the system when passing units to down-

stream stages, and add to its inherent variance. Moreover, to our knowledge, our paper

is the first to empirically quantify the impact of batching on wait times, and tie these

results with analytical work on queueing systems with batch arrivals. Second, this paper

contributes to the behavioral operations literature on the impact of batching tasks on

worker productivity. Whereas Ibanez et al. (2017) shows a decrease in productivity when

workers try to batch similar tasks, we demonstrate that batching may be associated with

an increase in productivity. Third, from a practical lens, we find that boarding is partly

caused by ED physicians’ work practices, something that is under the ED’s control. That

said, we also show that batching admissions is associated with an increase in shift-level

productivity. This implies that the impact of batching admissions on ED overcrowding is a

trade-off between longer boarding times vs. shorter patient throughput times. Ultimately

however, we find that overall ED length of stay (LOS) is longer in physician shifts with

batched admissions, and that patients admitted in a batch also experience a longer LOS.
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2. Literature Review

The medical literature has investigated and offered solutions to ED overcrowding by either

reducing ED demand (e.g., by improved access to primary-care physicians), expediting

diagnosis and treatment process (e.g., the provider-in-triage model), or shortening the

discharge/boarding process (e.g., setting ED LOS targets) (Moineddin et al. 2011, Napoli

et al. 2020, Ngo et al. 2018, Jones et al. 2017, Forero et al. 2010). See Morley et al. (2018)

for a thorough review.

Our paper focuses on the behavior of batching admissions by ED physicians, the gate-

keepers to inpatient care. We study the trade-off between higher physician productivity

and increased boarding times caused by this behavior. As such, our research is most rele-

vant to three streams of operations management literature: 1) healthcare operations, with

emphasis on queuing models that investigate ED patient flow and boarding, 2) behavioral

queuing, with a focus on the effect of server behavior on system performance, and 3) queues

with batched arrivals, and batching behavior by servers.

Many papers in the operations management literature have developed models for capac-

ity planning on a strategic level, with the goal of timely service to patients (Green 2002,

Yankovic and Green 2011, Yom-Tov 2010). For instance, Best et al. (2015) finds the optimal

number of hospital wings considering the trade-off between the boarding time advantage

offered by capacity pooling vs. the shorter length of stay when patients receive focused

care in specialized wings. In a similar context, Véricourt and Jennings (2011) finds the

optimal number of nurses considering how frequently patients require nursing services.

Other scholars have studied bed allocation and discharge policies, considering that sys-

tem dynamics at the level of hour-to-hour resolution is crucial for operational planning

in practice (Armony et al. 2015, Powell et al. 2012, Shi et al. 2015, Chan et al. 2017,

Saghafian et al. 2012). For example, Chan et al. (2017) finds the optimal number and

timing of physician rounds in an inpatient unit, noting that patients need a physician to

evaluate them before discharge. Most relevant to our paper is Shi et al. (2015), which uses

a stochastic network model to capture the complex dynamics of hospital operations on

an hourly level, and uses it to study discharge policies that smooth ED patient flow, and

predict boarding times. Most modeling papers assume that admissions (or arrivals) follow

a time-homogeneous or -non-homogeneous process, where CV = 1. While this assumption
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is tractable for modeling purposes, it does not capture the system dynamics due to server

behavior.

The behavior of servers in queuing systems has been shown to vary with queue structure

(Song et al. 2015, Wang and Zhou 2018) and system utilization (or workload) (KC and

Terwiesch 2012, Berry Jaeker and Tucker 2016). For instance, counter to the prediction of

theoretical models, Song et al. (2015) shows that wait times are lower when the ED assigns

patients to physicians upon arrival to the waiting room (dedicated queue) instead of the

time when they are roomed (pooled queue). This is because physicians in a dedicated queue

were able to manage their workload more efficiently, and became more productive. Similar

results were obtained in Wang and Zhou (2018) in a supermarket setting. A few studies have

also investigated server behavior in two-tier queuing systems, similar to our ED setting.

For instance, Batt and Terwiesch (2016) shows that to alleviate downstream congestion

under high demand, triage nurses in the first stage of ED care initiate diagnostic tests

which are normally handled by the ED physician, in the second stage of ED care. Freeman

et al. (2017) finds that midwives in a maternity department, who act as gatekeepers to

specialists, increase their referral rate in response to increased workload. Our study adds to

this literature by highlighting the trade-off between increased productivity and longer wait

times, when gatekeepers batch referrals to the second stage of a two-tier queuing system.

The characteristics of queues with batched arrivals (e.g., MX/M/c queue) have been

investigated extensively, analytically (Burke 1975, Sakasegawa 1977, Eikeboom and Tijms

1987, Van Ommeren 1990, Lee and Srinivasan 1989, Pang and Whitt 2012, Yao 1985).

A recent application of such model is demonstrated in the context of optimizing blood

testing procedures, which is performed in batches (Bar-Lev et al. 2017). However, studies

of batching behavior by workers, and whether it is operationally beneficial, are relatively

new. Closely related to our work is Dobson et al. (2012) that studies batching by ED

residents. Inspired by the observation that ED residents visit multiple patients (batch

visits) before discussing each individual case with their attending physician, Dobson et al.

(2012) uses a queuing model to study its impact on ED throughput time. It proposes a

three-stage tandem queueing system with two distinct servers: a resident and an attending

physician. Each patient (pronoun he) receives service in three stages. In the first stage,

the resident examines the patient. In the second stage, he enters a concurrent queue where

he waits for a consultation between the resident and the attending physician. In the third
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stage, the patient enters the attending physician’s queue and waits to receive the final

examination after which he leaves the system. When the attending physician is busy, the

resident has the option to wait for the attending physician to become free to perform a

consultation, or alternatively, may continue to take on new patients from the first queue

and present them to the attending physician in a batch. Dobson et al. (2012) shows that

a throughput-maximizing policy involves batching, albeit the batch size for number of

patients presented to the attending physician for a single consultation must be below a

threshold. Our empirical results are in line with the findings of Dobson et al. (2012) in

that we show that batching may be beneficial for physician productivity (i.e., throughput

time). However, we also find that batching admissions may negatively affect the wait times

of downstream queues. An important gap we address in this body of work is to empirically

study a queueing system with batched arrivals, as suggested by Pang and Whitt (2012).

Ibanez et al. (2017) shows that when faced with a queue of images to read, radiologists

are likely to modify the work sequence from a first-come-first-serve policy (FIFO), to

spending time to find similar tasks in the queue, and performing those tasks in a batch.

This behavior is shown to be detrimental to worker productivity since the deviation cost

outweighs the benefit of batching, resulting in a higher average throughput time. In another

empirical study, Meng et al. (2018) finds that nurses batch patient visits to distant rooms

in the ED to minimize walking, which results in longer wait times between nurse visits

and lower satisfaction for these patients. We contribute to this literature by demonstrating

that batching admissions by ED physicians is more likely to occur towards the end of

their shifts; and unlike (Ibanez et al. 2017), we find that this behavior increases physician

productivity, but at the cost of longer boarding times for the batched patients.

3. Clinical Setting

Our data comes from a large 567-bed academic institution with a level 1 trauma center,

which consists of two distinct campuses. The hospital’s ED served over 135,000 patients

in 2018, making it one of the top 10 busiest EDs in the United States (Mackenzie Bean

2018).

Similar to most EDs, patients arriving at our study ED are first registered, triaged, and

assigned an Emergency Severity Index (ESI) score from 1 (most severe) to 5 (least severe)

based on their medical condition (Gilboy et al. 2011). After triage, walk-in patients – which

Electronic copy available at: https://ssrn.com/abstract=3819868



Feizi et al.: Impact of Admission Batching on Boarding Time and Productivity
8 Article submitted to ; manuscript no.

constitute about 70% of ED arrivals – wait in the waiting room to be placed in an ED bed.

We refer to being placed in a room as “being roomed”. Patients arriving via ambulance

(about 30% of patients) are roomed within minutes of arriving to the hospital. Waiting

room patients with lower ESI scores have higher priority, and within a given ESI score,

patients are mostly served on a first-come-first-serve basis1.

Patients are roomed in a particular “pod”. The ED consists of 4 pods, where each pod is

an area in the ED staffed by a team of caregivers. Although each pod has a limited number

of beds, it is common for triage nurses to place patients in a gurney in the hallway spaces

within the pods when the ED is busy. Hallway placement is a common surge capacity policy

across many EDs in the US (Stiffler and Wilber 2015). This implies that in practice, the ED

capacity is not constrained by its number of beds, as most ED arrivals are accommodated

in a timely manner.

Staff scheduling is such that each pod is managed by at least one physician in the busier

hours of the day, in addition to 3–6 nurses. In the quieter hours such as after midnight

and weekends, one physician may be responsible for managing patient flow in more than

one pod. However, staffing levels are relatively constant for a given shift. In other words,

for a given day of week and time of day, staffing levels do not vary. Noteworthy is that

physicians are rotated, so they are placed relatively uniformly across the different sections

of the ED.

Physicians sign up for patients after they are roomed. There are no direct financial

incentives for physicians to take on new patients. In addition, although their productivity

does contribute to their relative value units (RVUs) which are tracked, it is not heavily

emphasized on an individual basis; but is instead a group performance metric. That said,

the institutional culture is such that attending physicians feel ownership of their designated

pods, and responsibility for managing patient flow. Also worth noting is that there are no

policies that limit the number of patients that a physician can take.

Once a patient is picked up by a physician, they are diagnosed and treated. Most diag-

nosis tests are ordered shortly after the initial evaluation, and in some cases, additional

tests are ordered during their ED course. Finally, the physician must make a disposition

decision; she must either discharge the patient to go home (or to another facility), or admit

the patient to the hospital for further care by electronically submitting an inpatient “bed
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request”, along with details about the patient’s condition. A point to note is that often res-

idents assist physicians. It is possible that the resident submits the patient’s bed request,

and the attending physician “cosigns” the admission. This policy facilitates admissions and

prevents delays, especially when ED workload is high. Cosigns need not be instantaneous.

For example, a physician may cosign an admission even 24 hours after it occurred. The

bed request will be under the attending physician’s name, and not the resident. This detail

is important because it justifies admissions with timestamps that are after the physician’s

assigned shift has ended, as we later discuss in section 5.2.

A patient’s admission process involves reviewing charts and/or pulling test results, and

the median time-to-admission, defined as the time interval from when they are roomed

until they are admitted, is ∼ 170 minutes. Nevertheless, physicians typically have prior

beliefs on which patient(s) will end up being admitted. As such, reviewing test results is

more of a confirmation on a prior belief than providing all information about the patient

(Li et al. 2020)2. That said, some cases will require some critical data. For instance, a

patient presenting to the ED with abdominal pain requires a computerized tomography

(CT) scan test to be examined to ascertain if they have appendicitis and need to be

admitted, or can be discharged with minimal risk of readmission. Although we do not have

detailed patient-level data for the turnaround times (TATs) of all tests3, from reviewing

limited data we know that the median TATs for imaging exams (e.g. radiology or CT),

electrocardiograms (EKGs) and ultrasounds, and laboratory tests (e.g. blood or urine) are

∼ 90 minutes, < 15 minutes, and ∼ 60 minutes, respectively. Also, there is little variation

in test TAT. Furthermore, a patient’s test results may be available, but the physician is

busy with other patients and therefore cannot read the results immediately.

If a patient’s disposition cannot be determined by the time their physician’s shift ends,

the patient is handed off to the next physician coming in. Such instances may occur either

because the patient’s condition requires additional observation, or sometimes, because they

are still awaiting important test results. Interestingly, although the new physician may

even end up performing much of the work, she does not “take credit” for the patient, and

therefore, in most cases, will not even add herself to the patient’s caregiver team. This

is because the patient is billed under the first attending who signed-up for the patient,

who, by convention, completes a provider note. Therefore, there is a disincentive among

physicians to sign up for patients toward the end of their shifts because they know the
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incoming physician will be available soon, and can “start fresh” with a patient and be the

primary provider on the case. Rather, toward the end of shifts physicians aim to wrap up

the cases they already have, which may result in batching of admissions.

To further illustrate how batching admissions may occur, Fig. 1 shows the timeline of

patient admissions in two 7am – 3pm physician shifts from our data which are similar

in terms of number of patients admitted, discharged, and the average ESI scores of the

patients. Each patient’s bar represents the time from when they were roomed until when

they were admitted, rounded up to the nearest five minutes. Also, the number of diagnosis

tests for each patient is noted on each bar. The physician in the top panel spreads admis-

sions more evenly, and conversely, the physician in the bottom panel admits three of her

patients (patients #4, #5, #6) toward the end of her shift. (Note that patient #6 in the

bottom panel had no diagnosis tests.) This anecdote further suggests that the number of

tests does not necessarily determine whether or not a patient is admitted in a batch.

Once a bed is requested, the bed control unit, staffed by 1–3 people depending on the

time of day, must assign an inpatient bed to the patient. This takes an average of 1.2

hours for an ICU bed and 2.1 hours for a general ward bed. The bed control unit also

notifies an inpatient provider that she is to receive a patient. Noteworthy is that medical

ward patient bed placement is performed by clerical staff from the bed control admitting

office, whereas ICU patient bed placement is done by a senior level bed control nurse and

uses a different bed allocation process. Once notified, the inpatient provider will then call

Figure 1 (Color online) Example of two shifts, with and without admissions batching.

Shift with no batching

Shift with batching
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the ED physician and signal her readiness to receive the new patient. Occasionally, the

inpatient caregiver is a physician-in-training or resident who is ineligible to admit patients

if they have reached their daily quota (also known as admission cap); in this case, the unit

is said to be “capped”. These capping rules are enforced at the national-level based on

the trainee’s specialty (ACGME 2019), and are designed to manage resident workload and

improve patient safety (Thanarajasingam et al. 2012). Patients admitted to a unit which is

capped may experience a longer boarding time since they will have to wait for a physician,

or even a shift change, to be transferred. Once the inpatient bed and the providers are

ready, finally, the ED physician performs patient sign-out, and the patient is ready to leave

the ED.

4. Hypothesis Development

4.1. Likelihood of Batching Admissions Toward End of Physician Shifts

The literature on worker productivity in healthcare settings provides compelling evidence

that workers increase their service rate toward the end of their shifts (Deo and Jain 2018,

Batt et al. 2019, Chan 2018). For example, Chan (2018) finds that ED physicians accept

fewer patients and rush to complete their work toward the end of their shifts. Batt et al.

(2019) finds similar results, and that physicians attempt to either discharge or admit

the patients in their care to avoid handing them off. Given the patient flow process and

institutional culture of our study ED explained in section 3, we posit that at the beginning

of the shift, a physician is fresh, and likely to accept as many patients as they can in an

effort to facilitate patient flow in the ED. In addition, after visiting and treating a patient,

she may decide to examine others before returning to her desk to fill out orders for tests

and consults for the set of patients. Conversely, toward the end of the shift, physicians

slow down on taking new patients, and speed up to complete the pending tasks for the

remaining patients in their care. This behavior is analogous to reordering tasks in a queue,

and executing similar tasks in a batch (Ibanez et al. 2017). As a result, we theorize that

physicians are more likely to admit multiple patients back-to-back toward the end of their

shift. Therefore:

Hypothesis 1. The likelihood of batching admissions is higher toward the end of a physi-

cian’s shift.
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4.2. Impact of Batching Admissions on Pre-allocation Delay

We hypothesize that batches of admissions are more likely to form toward the end of

physician shifts. Considering that most of the shifts in our ED setting are non-overlapping

(most physicians rotate at 7am, 3pm, and 11pm), any form of batching behavior on an

individual-level due to the hour in shift will be amplified to a system-level because other

physicians are most likely batching around the same time.

When the bed control unit is faced with a sharp increase in admission rate, it may

become overloaded and operate past the point of speeding up (Berry Jaeker and Tucker

2016). Specifically, to assign a bed, the bed manager must first communicate with the

ward manager that they would be receiving a new patient. This is a serial process if the

patients in the batch are to be placed in different wards. In other words, multiple beds

cannot be assigned at once, and there is little a bed manager can do to expedite the

process. Furthermore, there may not be sufficient staff in a ward to accommodate a batch

of patients if the unit is capped. Therefore, we theorize that a spike in admissions caused by

physician-level batching will result in an increase in pre-allocation delay. Stated formally:

Hypothesis 2. Patients who are admitted in a batch experience a longer pre-allocation

delay.

4.3. Impact of Batching Admissions on Physician Productivity

Similar to the idea of reducing setup times per unit of inventory in batch manufactur-

ing (Drexl and Kimms 1997), we posit that physicians batch their admission decisions

to minimize the setup costs associated with switching between tasks – whether the cost

is physical (e.g. Meng et al. 2018) or cognitive work (e.g. Staats and Gino 2012). For

instance, the task of evaluating patients involves walking to patient beds, interacting with

patients, and ordering diagnostic tests. In contrast, the task of completing a case com-

prises discharging or admitting the patient and also, discussing the assessment and plan

with the care team, and executing other communications as appropriate (with the patient,

her/his outpatient providers, family, etc). Signing up for multiple patients to evaluate,

and subsequently, batching admissions when possible, may facilitate productivity through

serving more patients at once (KC 2014), while avoiding interruptions (Froehle and White

2014). Therefore, we theorize that physicians who engage in batching admissions serve

more patients in their shift.
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Hypothesis 3A. More patients are served in shifts with batched admissions.

Arguably, not all patient admissions can be postponed to the end of a shift. For instance,

patients who need immediate care cannot be delayed. As such, we hypothesize that physi-

cians are selective as to which admissions are postponed to the end of a shift. KC et al.

(2020) shows that under increased workload, physicians are more likely to select easy tasks

– defined by less severe patients in that study – to complete, which increases their shift

productivity. Building on this, we posit that physicians are more likely to complete non-

complex cases (i.e. those with an easy decision to discharge or admit) on an individual

basis, but delay the admission decision of complex cases (i.e. those with a more difficult

decision) to complete in a batch. Taken collectively, we theorize that:

Hypothesis 3B. Average disposition time is lower in shifts with batched admissions.

5. Data and Variable Description

5.1. Data Sources and Cleaning Procedure

Our data consists of patient-level data and physician shift data from 1 June 2016 to 31

July 2018. It consists of four separate data sets. We summarize each data set below, and

describe the cleaning process. A summary illustration of the descriptions and data cleaning

procedure is given in Fig. 2.

Figure 2 Data sources and data cleaning process.
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1) ED timestamps: The first data set consists of patient-level data for all ED patients.

This data includes the date and time of day for: when they arrived, when they were roomed,
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the tests performed in the ED, when they were admitted (i.e. a bed request was issued),

when an inpatient bed was assigned, and when they physically departed the ED. It also

includes their ESI score, the hospital service they required, and their visit class (inpatient

or observation). In addition, our ED patient data includes demographic information: age (in

years), race (9 categories, coded as Black vs. non-Black), gender (male/female/unspecified),

insurance type (4 main categories). After excluding patients who left the ED prior to

being roomed, the study period comprises 239,874 patient visits in the ED (108,931 unique

patients), where an inpatient bed was requested on 51,552 of these visits (29,574 unique

patients). Additional details are provided in table EC.24 and Fig. EC.2 in the electronic

companion.

2) Provider shifts: The second data set consists of the dates and times of ED caregiver

shifts. It includes 10,911 physician shifts during the study period. There are a total of 66

caregivers in this data set: 49 physicians and 17 nurse practitioners (NPs) or physician

assistants (PAs). Over 90% of the ED physician work shifts in our study period are 8 hours

long, and are mostly divided into the following: 7am – 3pm (20.4%), 3pm – 11pm (20.6%),

8am – 4pm (18.2%), 4pm – 12am (11.9%), and 11pm – 7am (14.9%). Each physician in

the data set has an median of 250 shifts.

3) Patient providers: The third data set is the patient provider data, which consists of

all the caregivers (including physicians, NPs, PAs, nurses, residents, surgeons, consultants,

therapists and etc.) who served a patient during her visit, and timestamps for when their

service to the patient began and ended. We match 222,372 patient visits with at least one

ED provider.

4) Department transfers: The final data set includes timestamps for arrivals and depar-

tures to and from all hospital departments for all patient visits. This data allows us to

physically track the location of patients from the time they entered the hospital to the

time they were discharged. Out of the patients who started their clinical pathway from the

ED, 49,222 were transferred to inpatient care units, 27,490 of whom where admitted to a

medical unit.

Boarding time consists of two segments: the delay between bed request and bed assign-

ment, known as “pre-allocation delay”, and the delay between bed assignment and physical

departure from the ED, known as “post-allocation delay” (Shi et al. 2015). We use pre-

allocation delay as the dependent variable in our analysis of boarding times in hypothesis
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2 because it is closely related to the operations of the ED and the state of the hospital. For

example, hospital occupancy levels or weekends are important predictors of pre-allocation

delay. Also, we are interested in how the batching behavior of ED physicians impacts

boarding times; and pre-allocation delay – which starts with the physician requesting a

bed – is more proximal to physicians’ behaviors than is post-allocation delay. In other

words, pre-allocation delay is determined by the bed management unit’s capacity to assign

beds, which is partly influenced by the timing of bed requests by ED physicians. In con-

trast, despite the operational significance of post-allocation delay, its underlying causes are

primarily due to inpatient operations not present in our data (Shi et al. 2014).

When estimating pre-allocation delay, we focus on patients who were admitted to a

general medical ward, rather than those admitted to an ICU, surgical ward, or observation

ward since this approach offers the cleanest estimation of pre-allocation delay. The reasons

are as follows. First, medical admissions comprise the largest group of patients. ∼ 56%

of the patients admitted to the hospital from the ED fall into this category. (See table

EC.26 of electronic companion for full breakdown of admissions and average ED boarding

time for admissions to each unit.) Those patients also have long boarding times in general.

Thus, they are the subset of patients for whom ED boarding poses the biggest problem.

Second, there are inherent differences in the types of units; (i) ICU bed allocation requires

senior level bed control nurse, (ii) observation units operate differently than medical units,

and (iii) most admissions to surgical units are not directly from the ED (∼ 70%), and the

admission-related operations of the surgical units are heavily dependent on scheduling of

surgeries, which is not the focus of this paper. Furthermore, off-service placement can affect

boarding time and is primarily a problem of medical patients being placed on surgical

wards (Dai and Shi 2019, Song et al. 2020). Thus, off-service placement, which is not the

focus of our study, could inflate pre-allocation delay if we include surgical ward placements.

As depicted in Fig. 2, first we merge the ED timestamp data with the department

transfers data; this results in a data set of 47,336 patient visits, where the patient was

transferred to an inpatient care unit in response to an ED bed request, and their destination

unit and pre-allocation delay is known. A sub-sample of 1,886 patients (44 medical) in our

sample were dropped because they were missing either a “bed request” or “bed-assigned”

timestamp, so we could not calculate pre-allocation delay for these observations4. Complete
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summary statistics for admitted vs. non-admitted patients are given in table EC.27 in the

electronic companion.

Next, we match each patient visit’s provider(s) with their shifts. For patient visits with

more than one ED provider (∼ 10% of patient visits), we further use the exact disposi-

tion time from the ED time stamp data to identify the unique person who discharged or

admitted the patient by matching the time frame the physician served the patient with the

disposition time. This results in a data set of 220,721 patient visits for which the provider at

the time of disposition, and her shift, is known. This data set is used to determine whether

an admission was done in a batch with other admissions, and find at what point in the

shift it took place. Note that all admitted patients – and not only medical – are included

when determining whether the admission was done in a batch. Out of the observations in

this data set, 210,329 patients were not missing their time to disposition decision, defined

as the time interval from when a patient is roomed to when their physician makes their

disposition decision (discharge or admit). To test whether batching admissions impacts

physicians’ throughput time, we perform our analysis on a physician-shift level, where the

key dependent variable of interest is the average time to disposition decision in a shift. We

trim time to disposition decision on a patient-level by removing the observations in the top

and bottom 1% of its distribution to eliminate outliers, then we collapse the data set at

the physician-shift level. This results in a sample of 10,659 physician shifts, out of which

7,709 shifts had at least two admitted patients. We use this sample to test hypothesis 3.

Note that we exclude shifts with under two admissions because if a shift has fewer than

two admissions it is not possible for physicians to batch admissions.

Finally, we match the “department transfers with timestamps” data set, with “patient

provider with shifts” data set, to obtain a sample of 45,370 admitted patient visits, where

the physician who admitted them and her shift, and whether or not they were admitted

in a batch, is known. After trimming the top and bottom 1% of pre-allocation delay,

and removing observations where the hospital occupancy was under 20% at the time of

admission (∼ 1% of data), we arrive at a sample of 44,058 admitted patient observations,

out of which 26,092 are admitted to a medical unit. We use this sample to test hypotheses

1 and 2.

Electronic copy available at: https://ssrn.com/abstract=3819868



Feizi et al.: Impact of Admission Batching on Boarding Time and Productivity
Article submitted to ; manuscript no. 17

5.2. Independent Variables

There are three key independent variables used in our study: a binary variable to determine

whether an admission was done in a batch, the time left in a shift when an admission

occurred, and a binary variable on a shift-level that determines if batching occurred in

that shift.

5.2.1. Batched Admissions: Batching admissions is admitting patients “back-to-

back”. Since there is no universal definition for how high a physician’s admission rate must

be for a batch to be formed, or even any objective way of knowing from our data if a

physician batched her admissions, we rely on an empirical estimation. We use a Gaussian

mixture model (GMM) for this purpose. Mixture models are probabilistic tools to iden-

tify latent (i.e. unobserved) sub-samples within a larger sample; for example, to identify

unobserved customer segments within a large group of shoppers (Fiebig et al. 2010). In our

paper, we assume that the distribution of time between bed requests for physicians is a

combination of multiple latent distributions, one of which belongs to batched admissions.

Then, our goal is to find the distribution of inter-bed-request times for batched admis-

sions, and determine the empirical inter-bed-request time threshold, below which two or

more patients are assumed to be admitted in a batch. To execute this idea, we first find

the empirical distribution of intervals between successive admissions (i.e. inter-bed-request

time) during a physician’s shift, and log-transform it to reduce its skew, and allow for

negative values in the distribution. Next, we find the optimal number and parameters for

Gaussian distributions that estimate the log-transformed distribution using the expecta-

tion maximization (EM) algorithm (Bishop 2006, ch. 9). As depicted in Fig. 3, we find

that three distributions provide the best approximation. We assume that the distribution

with the lowest mean is the inter-bed-request time distribution of batched admissions. We

set the batching threshold to 9.1 minutes, equivalent to the time interval below which the

probability of an inter-bed-request belonging to the batched distribution exceeds 50%. This

threshold is practically in-line with our observations at the ED, and the experience of our

ED physician partner. ∼ 18% of the patients in our data are admitted in a batch. In ∼ 80%

of the cases the batch size is two, and in ∼ 97% of the cases the batch size is less than four.

We show the robustness of our results to defining a batch based on a minimum batch size

of three in section EC.1.5, and defining a batch from all disposition times (instead of only

admissions) for hypotheses 1 and 3 in section EC.1.4 of the electronic companion.
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Figure 3 (Color online) Distribution of inter-bed-request time and approximated distribution using GMM
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Note. Goodness-of-fit plots are provided in Fig. EC.3 of the electronic companion.

5.2.2. Time Left in Shift: To test hypothesis 1, we must show the probability of a

physician batching her admissions over the course of her shift. We define “time left in shift

(TLS)” for each admitted patient as:

TLSi = ShiftEndjs−BedRequestij

where BedRequestij is the date/time server j admitted patient i, and ShiftEndjs is the

date/time server j’s shift s ended. This variable captures how much time was left in a

server’s shift when she admitted a patient.

The histogram for TLS is shown in Fig. 4, where the red dashed line at zero indicates the

end of a shift. Note that the number of bed requests increases towards the end of the shift

(TLS = 0), but decreases once the shift ends. The negative values of TLS suggest that the

bed request occurred after the server’s shift ended. While this may seem counterintuitive

at first, it is actually quite plausible for two reasons. First, many times a resident submits

the bed request, and the attending physician cosigns it, even after their assigned shift has

ended (Arndt et al. 2017). Second, most often physicians do not add themselves to the

caregiver team of patients handed off to them since they are not credited for the patient.

Therefore, the patient is not admitted under the second physician’s name, and in the data,

it appears as though the first physician admitted the patient after their assigned shift had

ended.
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Figure 4 (Color online) Histogram of time left in shift when requesting inpatient bed
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5.2.3. Shift with Batching: To find support for hypothesis 3, we must show that

when physicians batch their admissions their productivity increases. We define the variable,

“shift with batching (SB)”, as:

SBjs = 1[NBatch,js ≥ 2]

where NBatch,js is the number of patients admitted in a batch for physician j at shift s

and 1[.] is an indicator function. Hence, SBjs is a binary variable equal to one if there are

at least two patients admitted in a batch. Note that by definition, two is the minimum

number of patients required for a single batch to be formed. Out of the 7,709 physician

shifts with at least two admissions (see Fig. 2), ∼ 43% are a batched shift. We identify the

impact of SB on the average number of patients served in the shift (hypothesis 3A) and

average throughput time (hypothesis 3B).

5.3. Dependent Variables

5.3.1. Pre-allocation Delay: Hypothesis 2 studies ED boarding, which is the delay

between being admitted to the hospital and leaving the ED. For the reasons explained

in section 5.1, we use pre-allocation delay as our key dependent variable. We log trans-

form pre-allocation delay (hereafter denoted by LPAD) in our regression analysis because
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the distribution is otherwise right-skewed (Song et al. 2015). The empirical PDFs of pre-

allocation delay, post-allocation delay, and boarding time are shown in Fig. EC.4 for

admissions to the medical units.

5.3.2. Shift Productivity: We use two measures of shift productivity: 1) the total

number of patients seen in shift, denoted by Npts, similar to KC et al. (2020); and 2) patient

throughput time, similar to Song et al. (2015), but averaged on a physician-shift level.

Average shift throughput time, denoted by STT , is calculated as follows:

STT js =
1

ND
pts,js

ND
pts,js∑
i=1

(Dispositionijs−Roomedijs)

where Dispositionijs is the disposition date/time, and Roomedijs is rooming date/time of

patient i, served by physician j during shift s. Disposition time is equivalent to the time

of discharge decision for patients who are discharged, and time of bed request for patients

who are admitted. ND
pts,js is the number of patients discharged or admitted during the shift.

We exclude patients admitted or discharged after the shift when calculating average shift

throughput time because after-shift patients are not completed by the original physician,

and the behavior of another physician on another shift may impact their disposition time.

We use both measures of productivity since they complement each other. Considering

only the number of patients served could be misleading because it does not capture how long

it took to serve the patients. In other words, serving more patients does not automatically

translate to higher patient flow if they are not discharged or admitted in a timely manner.

Likewise, considering average shift throughput time, alone, may not necessarily indicate

higher productivity since it does not capture the number of patients on whom the average

is generated.

5.4. Control Variables

We employ five sets of controls in our analysis:

Date/time controls: We use date/time variables, including the hour of day, year,

week of year, and day of week of admission, to control for trends and seasonal changes

in demand. In addition, these controls absorb the variation in staffing levels. Specifically,

although the number of workers varies from shift to shift, for any given shift (e.g. morning

shift on a weekday), it does not vary. Hence, the date/time variables also serve as a proxy

to control for staffing levels.
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Ward Controls: First, we control for the actual ward to which the patient was admit-

ted. This also accounts for any unobserved variables related to the site of some departments

located in a second, discontinuous campus.

We also control for the possibility that the unit was capped at the time of admission.

To do this we use the proxy of the ward’s number of new patients (N6h) in the 6 hours

prior to the patient’s bed request. Since our data does not include the residents’ shifts,

we are unable to precisely determine whether a team or unit was capped at the time of

bed requests. The idea behind our proxy variable is that if a unit was capped, the average

number of new patients to that unit should be lower. We include this variable to control

for the possibility that knowledge of the unit being capped may influence a physician’s

timing of a bed request.

Finally, we control for the occupancy level of the destination unit at the time of a

patient’s bed request, denoted by Occ, which directly impacts boarding times. To find

occupancy levels, similar to Berry Jaeker and Tucker (2016), we pool the capacity of each

unit (i.e. medical, surgical, surgical ICU, medical ICU, and observation), and calculate its

occupancy level by dividing the number of occupied beds at the time of bed request by

the maximum number of occupied beds in that month.

Medical Controls: Certain medical conditions could increase the likelihood of batch-

ing and also be associated with longer waits. For example, physicians could prioritize the

admission of urgent patients and delay admission of less severe patients, which could result

in multiple low-severity patients being admitted at once. To address this, we include several

control variables related to patients’ medical conditions: ESI score, age, number of tests

performed in the ED (Ntst) as a measure of diagnosis complexity, their Charlson comor-

bidity index (CI) (Charlson et al. 1994), the inpatient service they required, and whether

they were admitted as an inpatient or observation patient. We also include the number of

ICU visits (NICU) for the patient visit in the duration of their hospital visit as another

proxy for how sick they were when arriving to the ED (Song et al. 2020).

Shift Controls: We use shift controls when evaluating hypotheses 1 and 3. The idea

behind these variables is to control for idiosyncratic features of shift structures, physicians,

and workload within shifts that may increase the probability of batching admissions, or

impact physician productivity. For instance, batching is arguably more probable during
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the 7am – 3pm shift because of higher demand, or the number of patients served is higher

when there are more patients roomed. For each physician-shift the controls include: length

of shift in hours (Hour), hours since last shift (Hlast), hours to next shift (Hnext), the

shift time (morning, afternoon or overnight), number of patients roomed in shift (Nroomed),

waiting room census (WRC), and the admitting physician. In testing hypothesis 1, we also

include the order of the patient within the patients seen on that shift. In testing hypothesis

3, we also include the numerical medical controls averaged at a shift-level, as an indicator

of patient sickness for the shift; these include Ntst, ESI, NICU , CI, AGE and WRC.

Patient Controls: These comprise of the patient’s race (coded as Black or non-Black),

gender and insurance information. Table EC.28 includes the summary statistics of patient

controls, specifically for those who were admitted to medical units.

Table 1 provides summary statistics of the continuous patient-level variables and their

correlations, for the sample of patients who were admitted to medical units. Similarly, table

2 provides the same information for shift-level variables, for the sample of physician-shifts

which have at least two admissions.

Table 1 Summary statistics and correlation table for ED patients admitted to medical units

µ σ 1 2 3 4 5 6 7 8 9 10 11 12

1 LPAD 0.34 1.18 1.00

2 BCH 0.18 0.39 -0.00 1.00

3 TLS 1.15 3.70 0.07* 0.05* 1.00
4 Occ 85.6 6.69 0.24* -0.04* -0.05* 1.00

5 N6h 1.25 1.42 -0.08* 0.01* -0.03* -0.02* 1.00

6 Age 58.6 17.6 0.02* 0.02* 0.03* -0.03* -0.02* 1.00
7 ESI 2.51 0.56 0.01* -0.01* -0.02* -0.03* 0.04* -0.07* 1.00

8 Ntst 3.61 1.27 -0.00 0.01 -0.13* 0.03* -0.03* 0.19* -0.19* 1.00

9 CI 3.05 2.95 0.03* 0.00 0.06* -0.02* -0.06* 0.34* -0.04* 0.06* 1.00
10 NICU 0.05 0.29 -0.02* -0.00 -0.01 -0.02* -0.02* 0.02* -0.03* 0.05* 0.02* 1.00

11 Black 0.68 0.47 -0.01 -0.00 -0.00 0.00 -0.01 0.01 -0.00 0.01* 0.09* -0.02* 1.00

12 Male 0.53 0.50 -0.00 0.00 0.03* -0.00 -0.01* -0.09* -0.03* -0.04* -0.00 0.02* -0.04* 1.00
13 WRC 104.8 75.5 -0.01* 0.02* 0.07* -0.13* 0.12* 0.01 0.01* -0.01 -0.00 0.00 -0.00 -0.01

Note: *p < 0.05, N = 25,565

6. Econometric Models and Results

6.1. Batching Admissions Toward End of Shifts

6.1.1. Model We run the logistic regression in equation 1 on a patient-level to find

the likelihood of a patient being admitted in a batch as a function of a physician’s time left

in her hourly shift. We only include admissions that occurred during the shift (observations
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Table 2 Summary statistics and correlation table for shift-level variables

µ σ 1 2 3 4 5 6 7 8 9 10 11 12

1 Npts 20.9 5.84 1.00
2 STT a 2.67 0.57 -0.06* 1.00

3 SB 0.37 0.48 0.17* 0.12* 1.00

4 Hour 7.91 0.53 0.20* -0.07* -0.04* 1.00
5 Nroomed 112.7 38.5 -0.09* -0.13* -0.01 0.44* 1.00

6 AGE 49.3 5.74 -0.14* 0.20* 0.18* -0.01 0.27* 1.00

7 Ntst 2.38 0.55 -0.23* 0.42* 0.27* -0.20* 0.05* 0.45* 1.00

8 ESI 2.81 0.26 0.14* -0.40* -0.24* 0.24* -0.00 -0.44* -0.73* 1.00

9 CI 1.69 0.64 -0.10* 0.20* 0.16* -0.07* 0.13* 0.53* 0.41* -0.41* 1.00

10 NICU 0.07 0.10 -0.16* -0.03* 0.12* -0.08* -0.04* 0.19* 0.39* -0.37* 0.15* 1.00

11 Hlast 71.1 115.0 -0.00 0.00 0.00 0.00 0.08* 0.027* 0.02* -0.01 0.02* -0.02 1.00
12 Hnext 71.8 108.2 -0.02 -0.01 -0.00 -0.01 0.05* 0.01 0.02 -0.00 0.01 -0.01 0.17* 1.00

13 WRC 99.27 72.24 -0.02* 0.01 0.05* 0.15* 0.35* 0.11* 0.07* -0.04* 0.03* 0.01 0.01 -0.02

Note: *p < 0.05, N = 7,709. aunit is hours

with TLS > 0) because as described in section 3, for admissions that occurred after the

shift (i.e. TLS < 0) the physician either cosigned the order after their shift ended, or the

patient was handed off and admitted by a second physician. However, for the sake of

comparison, we run a separate model in which we include all observations. Hypothesis 1

holds if β1 < 0 because it indicates that as we approach the end of a shift, the probability

of batching increases.

ln(
Prob(BCH)i

1−Prob(BCH)i
) = β0+β1TLS+γXi (1)

The control vector X includes shift, date/time, ward, medical and patient controls.

Importantly, recall that the shift controls include the admitting physician fixed effects

to adjust the estimates for unobserved person-specific practice features of the physicians,

and number of patients roomed in shift as a proxy for demand because the likelihood

of batching admissions could be higher in the busier hours of the ED. We also cluster

the standard errors by physician to account for the possibility that error terms could be

correlated within each physician.

6.1.2. Results Results for the logit model are presented in Table 3. (The complete

results of the models are provided in table EC.30 of the electronic companion.)

The coefficient of TLS in model (a) is β1 =−0.1543 (p < 0.01), and increases in magni-

tude to β1 =−0.2060 (p < 0.01) when we add all controls. The negative coefficient provides

support for hypothesis 1: the likelihood of batching admissions increases by an average

of e0.2060 − 1 = 22.9% per hour closer to the end of a shift. Note that individual batching

tendencies are accounted for in this analysis since we control for the admitting physician.
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Table 3 Hypothesis 1: Likelihood of batching admissions towards end of shifts

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(a) (b) (c)

TLS -0.1543** -0.2060** 0.0889**

(0.0093) (0.0183) (0.0104)

Controls NO All controls All controls

N 31,563 30,466 42,034

R2 0.0146 0.0423 0.0374

LL -15750.0 -14888.5 -19272.6

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Standard errors clustered by physician. Drop in
N in model (b) is due to missing values in controls. Model (c) includes all observations (both TLS < 0 and TLS ≥ 0).

When we include during- and after-shift admissions (all observations) in model (c), the

coefficient on TLS becomes positive β1 = 0.0889 (p < 0.01), which disproves the hypothesis.

To explore the large difference between the results of models (b) and (c), we examine the

hour-by-hour behavior of ED physicians. This also relaxes the assumed linear relationship

between the likelihood of batching and time left in shift in the earlier OLS model. We

replace the continuous TLS with the discrete HoursLeft= ⌊TLS⌋, and rerun model (c)

to find the marginal effect of each hour left in a shift on the probability of batching, for

up to 8 hours after the shift has ended. The result is plotted in Fig. 5. It is clear that

Figure 5 Hourly probability of batching admissions

-8-7-6-5-4-3-2-1012345678

Time left in shift (hour)

0

0.05

0.1

0.15

0.2

0.25

P
ro

b(
B

at
ch

ed
) 

w
ith

 9
5%

 C
on

fid
en

ce
 In

te
rv

al
s During shift After shift

Note. The x-axis is reversed to aid readability.

Electronic copy available at: https://ssrn.com/abstract=3819868



Feizi et al.: Impact of Admission Batching on Boarding Time and Productivity
Article submitted to ; manuscript no. 25

the probability of batching in the earliest hour of the shift (TLS = 7) is nearly 5%, and

increases to about 24% in the final two hours of the shift. (Recall from table 1 that the

base probability of a patient being admitted in a batch is 18%.) This shows that toward

the end of their shifts, physicians are about 4.8× more likely to batch admissions compared

to the start, and ∼ 1.3× more likely compared to the baseline probability.

One explanation for this result could be the possibility of unequal shift times. For exam-

ple, in a hypothetical situation where physicians had either 4-hour or 8-hour shifts, even if

patients were uniformly admitted throughout shifts, there would still be more admissions

in the 0 – 4 hour interval, simply because all shifts contain this interval, but not a 4 – 8

hour interval. However, in our data this is rarely the case; 96.0% of physician work shifts

are 7 or 8 hours long, so unequal shift lengths do not explain our finding.

In summary, regardless of whether TLS is defined as a continuous or discrete hourly

variable, we find that the probability of batching is increasing toward end of shifts, which

supports hypothesis 1.

6.2. Impact of Batching Admissions on Pre-allocation Delay

6.2.1. Model To test the impact of batching admissions on pre-allocation delay, we

run the ordinary least squares (OLS) model in equation 2 on a patient-level:

LPADi = β0+β1BCHi+γXi + ϵi (2)

where, X is a control vector that includes date/time, ward, medical, and patient controls.

We also control for the admitting physician. Hypothesis 2 is supported if β1 > 0.

Arguably, there exists an endogeneity concern due to selection into treatment. It is

possible that less sick patients are selected to be batched, and due to their less severe

condition, their pre-allocation delay is longer. Therefore, to ensure that β1 has a causal

interpretation, we first check the covariate balance between the batched and unbatched

patients. We find that the normative difference of all covariates between the treated and

untreated samples are under 0.1; typically, a difference below the threshold of 0.1 or 0.2

indicates that the two samples are statistically identical (Batt et al. 2019). Hence, there is

no substantial evidence that suggests that patients who were batched were not chosen at

random. Table EC.29 in the electronic companion shows the complete covariate balance.
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6.2.2. Results Table 4 shows the results for the model presented above, before and

after adding the controls. In model (b) which includes controls, β1 = 0.0455, (p < 0.01)

which means that batched patients experience an average of 4.7% increase in pre-allocation

delay, equivalent to 7 minutes. In terms of magnitude, this is equivalent to the pre-allocation

delay increase caused by a 1.2% increase in hospital occupancy (0.0455/0.0376 = 1.2).

Complete regression results are presented in table EC.31 of the electronic companion.

Table 4 Hypothesis 2: Impact of batching admissions on pre-allocation delay

Dep. Variable: ln(Pre-allocation Delay)

(a) (b)

BCH -0.008 0.0455**

(0.0188) (0.0168)

Occ 0.0376**

(0.0016)

Controls NO YES

N 25,565 25,565

R2 0.0000 0.2172

F 0.18 45.40

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is
because we removed observations with missing values in controls.

We show the robustness of our results to (i) including admissions to all units in our

sample (and not only medical units), and (ii) using boarding time, and post-allocation

delay as dependent variables in section EC.1.1.

6.2.3. Mechanism As one possible mechanism, we test whether the coefficient of

variation (CV) of bed requests, defined as standard deviation/mean of inter-bed-request

times, mediates the relationship between batching admissions and pre-allocation delay. We

posit that a spike in inpatient bed demand caused by batching admissions on a physician-

level distorts the bed request distribution on a system-level, and injects variance in the

overall inter-bed-request time distribution observed by the bed management unit. Conse-

quently, according to queuing theory, an increase in interarrival CV increases the average

wait times (Whitt 1993).

An empirical challenge is approximating the inter-bed-request CV at a patient-level.

First, we sort the data by time of bed request, and calculate all inter-bed-request times.
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Next, we Winsorize the top 1% of inter-bed-request times by replacing the inter-bed-

request time of those observations with the average value. This prevents long time gaps in

admissions from heavily impacting our CV calculation, and is shown to produce a more

robust estimate of sample variance (Wilcox 2011)5. Then for each focal patient i who is

assumed to be admitted at time t0, we generate the set of inter-bed-request times, defined

by Ti = {∆tn = tn− tn−1 :−4≤ n≤ 0}, on which we calculate CV. In summary, we calculate

each patient’s bed request CV on the set of 5 most recent admissions, which includes the

focal patient. We select a group of 5 observations because over 95% of the batches in our

data have a size less than 5, and to capture the effect of batching on CV, we must include

at least one non-batched observation in the group. Also, the disadvantage of increasing

the group size is that the time span over which CV is calculated is increasing. When 5

observations are used, the median time span is 1.2 hours. Also, about 95% of the time

spans fall below 3 hours, which is reasonable for estimation since the longest time spans

occur in early morning hour when the hospital is not busy. The advantage of this method

in calculating CV is twofold. First, this method ensures that the focal patient is always

the last person in their respective set in the time domain. For instance, if observations

are aggregated by hour (or any other fixed unit of time as in Shi et al. (2015), Ahuja

et al. (2021)), the CV experienced by each patient will most likely depend on future bed

requests in the same hour. Second, each patient’s CV is generated from an equal number

of observations. Therefore, any numerical biases in CV calculation due to the number

of observations in the sample is consistent across all observations, which is essential for

identification. Specifically, consistent with observations in Shi et al. (2015), the numerical

calculation of CV is a function of the number of observations used in the sample, even if the

underlying sample is independent and identically distributed (IID). Also, for a positively-

skewed distribution – such as inter-bed-request times – the sample CV is negatively biased,

and the magnitude of the bias is non-linearly decreasing in sample size (Breunig 2001). In

our empirical analysis, if each patient’s CV is more biased when the ED is not busy (i.e.

fewer observations) and less biased when the ED is busy (i.e. more observations), a positive

correlation between CV and batching may emerge due to the fact that both admission

batching and the numerical error in calculating CV are correlated with how busy the ED

is. A higher CV will also most likely be associated with longer pre-allocation delay (again,

because the ED is busy). Hence, if numerical bias in CV calculation is inconsistent across
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the observations we may detect (non-existent) effects caused by the way CV is measured.

Noteworthy is that it is difficult to mitigate this problem by simply controlling for the

number of observations in our analysis due to the non-linear relationship between sample

CV and sample size.

Summary statistics for CV are given in Table 5.

Table 5 Summary statistics of CV

µ σ min p10 p25 p50 p75 p90 max

CV 0.870 0.289 0.094 0.523 0.668 0.845 1.045 1.254 2.029

Note. N = 25,565. Slight drop in number of observations is because we remove patients with missing controls.

To test the mediation effect of CV, we follow the product-of-coefficients method proposed

in Preacher and Hayes (2008) and used by others (Dietvorst et al. 2018, Boulding et al.

2017, Kim et al. 2019). Having established the total effect of batching on pre-allocation

delay without the mediator (CV) in the OLS model (table 4), we now estimate the regres-

sions in equations 3 and 4 on a patient level, and allow for the error terms to co-vary

(seemingly unrelated regression). The control vector X is identical to that used in equation

2.

CV = α0+ aBCH +α2OCCp+γXi +µi (3)

LPAD= β0+ c′BCH + bCV +β2OCCp +θXi+ νi (4)

The indirect effect of BCH on LPAD (mediation) is captured by a× b: the impact of

batching on CV in equation 3 times the impact of CV on LPAD from equation 4. The

direct effect is c′, and the total effect is c= c′ + a× b. We bootstrap this procedure 5000

times, as recommended (Preacher and Hayes 2008). We find that a = 0.0713 (p < 0.01),

b= 0.0555 (p < 0.05), a×b= 0.0040 , (p < 0.05), and c′ = 0.0416, (p < 0.05). The mediation

level of CV is therefore derived from a×b
a×b+c′

= 8.8%. Altogether, this analysis shows that

patients admitted in a batch suffered an average of 4.7% longer pre-allocation delay (7

minutes), where 8.8% is because of the increase in CV . Complete regression results are

presented in table EC.32. Recall that an admission batch is determined at a physician-level,

whereas CV is determined at a system-level. Hence, the significant impact of batching on

CV, given by a, is an indication of individual behaviors impacting system-level performance

in aggregate.
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Noteworthy is that measurement errors in the mediator variable, caused by estimating

CV using a small sample size will only attenuate the estimated indirect effect and inflate

its standard errors (Fritz et al. 2016, Wooldridge 2015). Hence, the above analysis serves

as a conservative estimate of the mediating role of CV in the impact of batching on pre-

allocation delay. That said, our results remain fairly robust when we estimate patient-level

CV using a range of sample sizes (2≤ n≤ 11) as we show in section EC.1.3 of the electronic

companion.

6.3. Impact of Batching Admissions on Physician Productivity

6.3.1. Model We are interested in testing the impact of batching admissions on physi-

cian productivity (hypothesis 3). Recall from section 5.1 that for this purpose, the treat-

ment in which we are interested is a binary variable, “shift with batching” (SB), which

is defined on a physician-shift level, and is equal to one if at least one batched admission

occurs in the shift. We run the model below, where the unit of analysis is a physician-shift.

Yjs = β0+β1SBjs+θXj + ϵjs (5)

In this model, Y is either average shift throughput time (i.e. average time to making a

disposition decision) or number of patients seen in shift. The control vector X represents

the shift controls as described in section 5.1, and ϵ is the error term, clustered by physician.

Hypotheses 3A and 3B are supported if β1 > 0 and β1 < 0, respectively.

An endogeneity concern due to selection into treatment exists the model described in

equation 5. Specifically, shifts with batching admissions may be busier shifts, where admis-

sions naturally occur at a higher rate; also, shifts which have less sick patients are less

likely to have admissions, and therefore batching; but at the same time, throughput rates

may be higher since the decision to discharge is easier and faster. Therefore, we must first

match shifts with and without batching with respect to the shift workload. We do so using

coarsened element matching (CEM).

Unlike propensity score matching, CEM does not require a selection model to determine,

in our case, the probability that a physician will batch admissions in their shift, which may

be theoretically difficult to set up and specify correctly (Blackwell et al. 2009). The CEM

method stratifies the set of desired covariates into bins, similar to a histogram. Next, it

drops the strata that do not contain at least one observation with one treated and one
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untreated observation. Finally, the observations are weighted based on the proportion of

treated observations in their stratum (Imbens and Wooldridge 2009). We run the specifi-

cation in equation 5 using a weighted OLS on CEM-matched observations (i.e. the doubly

robust estimator Robins and Ritov 1997).

6.3.2. Results Table 6 provides a summary of the covariate balance before and after

CEM matching. Prior to matching, note that the standardized difference in a few of the

covariates is greater than 0.2, indicating imbalance in the original data, which may bias our

estimates. However, the matched sample is well-balanced in all covariates, suggesting that

we have successfully generated a sample in which the probability that a shift is batched can

be considered random. Estimating our model on this sample reduces the possibility that

our results are driven by selection into treatment rather than differences between shifts

with and without batching.

Table 6 Covariate balance in full and matched samples, used to test hypothesis 3

Sample
Full sample CEM-matched sample

No weights CEM-weighted

Variable SB=0 SB=1 Norm. Diff. SB=0 SB=1 Norm. Diff.

Mean age 48.65 50.38 0.22 49.57 50.36 0.02

Shift length 7.91 7.94 0.04 7.95 7.95 0.00

Mean number of ED tests 2.29 2.53 0.31 2.51 2.51 0.00
Number of patients roomed 111.7 114.5 0.05 114.44 114.62 0.00

Mean ESI 2.85 2.75 0.26 2.77 2.75 0.01

Mean Charlson Score 1.63 1.79 0.17 1.71 1.79 0.05
Mean number of ICU visits 0.06 0.08 0.13 0.07 0.08 0.03

hours since last shift 70.75 71.54 0.00 63.59 65.74 0.02

hours to next shift 71.59 71.81 0.00 65.74 65.51 0.00
Morning Shift 0.43 0.36 0.10 0.35 0.35 0.00

Afternoon Shift 0.35 0.48 0.18 0.48 0.48 0.00
Overnight Shift 0.22 0.17 0.10 0.17 0.17 0.00

Weekend shift 0.22 0.25 0.04 0.21 0.25 0.07

Waiting room census 95.43 106.05 0.10 106.32 106.34 0.00

N 4723 2844 4331 2729

Results for the specification given in equation 5 are provided in table 7. (See table EC.33

of electronic companion for complete results.) Results that assess the impact of shift with

batching on the number of patients served in shift and throughput time are provided in

models (a)-(b), and models (c)-(d), respectively. Models (a) and (c) show baseline OLS

results with no matching for comparison, and models (b) and (d) show the results after

CEM-matching. According to model (b), an average of β1 = 2.1 (p < 0.01) more patients

were served in shifts where the physician batched their admissions; this is 2.1/20.9 = 10.0%
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higher than shifts with no batching. This provides support for hypothesis 3A. Likewise,

according to model (d), the coefficient β1 =−0.0431 (p < 0.01) indicates that in shifts with

admissions batching the average throughput time of the physician is lower by 2.6 minutes6.

This lends support for hypothesis 3B. Note that the coefficients in the OLS models are not

very different than their CEM-matched counterparts. That said, the coefficient decrease in

model (b), and magnitude increase in model (d) demonstrates that the decision to batch

admissions could have been, in part, driven by patient demand or the sickness of patients

served.

Table 7 Hypothesis 3: Impact of batching admissions on physician productivity

Dep. Variable: Number of Patients Seen Average Throughput Time

(a)

unweighted OLS

(b)

weighted CEM-matched

(c)

unweighted OLS

(d)

weighted CEM-matched

SB 2.2957** 2.1340** -0.0264ˆ -0.0431**

(0.1092) (0.1138) (0.0138) (0.0143)

Shift Length 1.8243** 2.0065** 0.2119** 0.2229**

(0.1824) (0.2059) (0.0149) (0.0195)

Mean Num. of ED tests -1.8324** -1.9750** 0.3029** 0.3030**

(0.1472) (0.1730) (0.0164) (0.0202)

N 7567 7060 7567 7060

R2 0.3369 0.3422 0.2328 0.2005

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. 90 out of 7,709 physician shifts had none of the
admissions occur during the shift, and were therefore removed from the sample. An additional 52 physician shifts were missing either hours
to next shift or hours since last shift, and hence were eliminated from the sample. Controls included in all models.

In section EC.1.2, we show the robustness of our results to using the actual number of

batched admissions during the shift instead of a binary measure (SB) as the independent

variable, and using shift-level time to discharge and time to admit as dependent variables.

7. Post-hoc and Counterfactual Analyses

7.1. Connection to Theory of Queues with Batched Arrivals

In this section, we relate our empirical findings on the impact of batching admissions on pre-

allocation delay with the theoretical literature on queues with batched arrivals (Hanschke

2006, Yao 1985, Pang and Whitt 2012). Most relevant to our work is Yao (1985) that

provides a closed-form approximation for the expected wait time in a queue with batched

arrivals. We use this approximation as a baseline to estimate: 1) what would happen in

our system if batching did not occur; 2) the extent to which our empirical results align

with the predictions of queueing models.
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In a queue with batched arrivals, the average wait time (Wq) in steady state is calculated

from Little’s Law, as follows:

Wq =
Lq

λBmg

(6)

where λB is the arrival rate of batches, mg is the average batch size, and Lq is the

queue length. Yao (1985, Expression 13) provides a two-moment approximation for Lq in

a GIX/G/c queue in equilibrium. This expression can be simplified for a MX/M/c case

where c > 1 as:

Lq ≈

[
ρ
√
2c+1

1− ρ

][
mg(1+ c2g)+ 1

2

]
+

[
mg(1+ c2g)− 1

2

]
ρ
√

0.5(c+1) (7)

where c2g is the squared CV (SCV) of the batch size distribution, and ρ is the queue traffic

intensity, defined by

ρ=
λBmg

cµ

where µ is the mean service rate.

We are able to estimate all parameters in equation 7 with the exception of number of

servers, c, as shown in table 8. The challenge with estimating c is that it is not clear how

many inpatient beds are assigned to ED patients at any given time. Namely, the medical

units see patients coming in from both the ED and transfers from other units. Moreover,

recall that a unit may be capped and the inpatient team cannot accept any new incoming

patients (see section 3). Due to these challenges, we conduct our analysis for a range of c.

Table 8 Empirical estimate of parameters in equation 7

mg c2g 1/λB (min) 1/µ (min) Wq (min)

1.11 0.402 47.5 3594.0 152.1

To estimate pre-allocation delay in a system without batching, we set the arrival rate

to λ = mgλB for a fair comparison. This implies that the total traffic for systems with

and without batched arrivals are similar. Fig. 6a illustrates the results for this comparison

as a function of number of beds, c. The horizontal line represents the baseline average

pre-allocation delay in our setting (Wq = 152.1 minutes). We observe that our system’s pre-

allocation delay corresponds to a bed capacity of ≈ 92, which is about 50% of the average

monthly bed occupancy we see in our data. At c= 92, the average wait time in a system
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without batched arrivals is ∼ 15% lower than that of a system with batched arrivals, such

as the ED in our setting. This implies that if batching admissions were eliminated, it would

have a significant impact on the overall system-level boarding times.

Next, we compare our empirical estimates to predictions from queuing models with

batched arrivals. For this, we run a discrete-event simulation of a Mx/M/c queue to com-

pare the wait times of arrivals in a batch with those who are not batched. We derive the

probability mass function of batch size distribution from our data, and generate batches

of size g which arrive with rate λB as inputs to the simulation. Also, to mimic the ED,

we set c= 92, and 1/µ= 3594.0. The simulation output is the mean wait time difference

between inputs of size g > 1 (i.e. batched arrivals) and those of size g = 1 (i.e. unbatched

arrivals).

We run the simulation for a time equivalent of > 20 years (1.2×107 minutes), and discard

the first ∼ 5 years (i.e. 2.6×106 minutes) of data to ensure that our results are taken from

when the queue is operating in a steady state. We run the simulation for a range of 1/λB

(i.e. 1/λB) to account for the fact that our estimate of c may not be entirely accurate, and

we may further tune the simulation by slightly adjusting the batch arrival rate. Fig. 6b

shows that at 1/λB = 48.0 the simulated Wq is very close to our data.

The simulated wait time difference between batched and unbatched arrivals are depicted

in Fig. 6c. The horizontal line at δ = 4.6% shows the baseline empirical estimate from

section 6.2. We observe that our empirical estimate of the impact of batching on pre-

allocation delay is slightly greater than the prediction of a queueing model. This is most

likely due to the many factors involved in the data generation process in the ED which

are not captured in a time-invariant Mx/M/c model. First, note that we simulate the

medical units, but there are other units (e.g. ICUs) in the hospital, and bed requests to

those units may be prioritized over medical units. Second, our simulation does not consider

the important day-of-week and hourly effects, which are correlated with admission rates,

staffing levels, and hospital occupancy, all of which impact pre-allocation delay.

Overall, our counterfactual simulation and comparison with models of queues with

batched arrivals highlight two points. First, there is significant potential for reducing pre-

allocation delay if batching on an individual-level is eliminated. Second, our empirical

estimate of the impact of batching on pre-allocation delay is greater than the prediction

of a queueing model; albeit, they are in the same order. An important advantage of our
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Figure 6 Counterfactual analysis results
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discrete-event simulation is that we are also able to model small time gaps between the

arrival times of the patients who make up a batch (Pang and Whitt 2012) to better mimic

the ED admission process; that said, we do not find any significant differences in the results.

7.2. Post-hoc Analysis

Below we provide an overall summary of our two post-hoc analyses, but refer readers to

section EC.2 of the electronic companion for additional details.

7.2.1. Net effect of batching on ED length of stay: First we conduct a patient-

level and shift-level analysis to assess the overall impact of batching on ED LOS, defined

as the time from when a patient is roomed, until the time they depart the ED (which

includes boarding time for admitted patients).

First we explore the net effect of batching on ED LOS on a patient level, which includes

only a sample of admitted patients. We find that the net effect of batching admissions on

ED LOS is positive and negative for patients admitted during and after the shift, respec-

tively. Specifically, patients admitted in a batch during a shift suffer both a longer time to

admission, and a longer boarding time, which adds to total ED LOS. However, although

patients admitted after shift by a second physician (or through a cosigning procedure)

experienced an overall longer ED length of stay, those who appeared in a batch were less

affected due to an expedited admission.

To complement the patient-level analysis, we also investigate the impact of batching on

the average LOS of all patients treated in a shift. In other words, given that batching

admissions in a shift boosts productivity at a cost of longer boarding, we study which
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effect is dominating. We find that in shifts with batching the overall LOS of patients is

higher than shifts without batching.

In summary, our analysis shows that the system-level cost of batching admissions is

greater than the individual-level productivity gain. This suggests that batching admissions

is detrimental to ED overcrowding, since it increases the average ED LOS.

7.2.2. Batching mechanism: Or second post-hoc analysis explores how batches

form by focusing on the time it takes for the physician to admit a patient. We find that

batched patients experienced a longer time to admission compared to unbatched patients.

Our physician partner suggests that the delay may be due to postponing tasks at various

points in the shift. Specifically, many times physicians order tests, but postpone the task

of reviewing them in order to attend to other patients who have not yet been diagnosed.

This behavior may result in delaying the admission of some patients to attend to a higher

number of patients.

8. Discussion and Conclusion

We study the behavior of batching admissions by ED physicians, and the trade-off it causes

between productivity and boarding times. We focus on this behavior because not only is

it a known - yet understudied - phenomenon (Vose et al. 2014, Etzler 2019), but also,

our data allows us to measure its impact through the time patients spend in a queue to

receive an inpatient bed (i.e. pre-allocation delay) and the shift-level performance of the

physicians. We define two or more patients to be admitted in a batch if they are admitted

within 9.1 minutes of each other, a threshold derived empirically and in-line with practice.

First, we show that the probability of batching admissions increases toward the end of

physician shifts. We further show that physicians who batch their admissions may benefit

from higher productivity, measured by the number of patients seen in a shift, and their

average time to disposition decision. On the other hand, we also find that patients who are

admitted in a batch experience a longer pre-allocation delay, in part because of the increase

in bed request CV. Specifically, we show that when physicians batch their admissions at

an individual level, it increases the bed request CV observed at a system level, especially

since most shifts are overlapping. Finally, our counterfactual analysis suggests that by

eliminating batching, pre-allocation delay may be reduced by a theoretical maximum of

15%. In summary, our work shows that ED physicians may batch their admissions in order
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to be more productive; however, this comes at a cost of longer boarding times for the

batched patients.

8.1. Implications for Theory

The causes and consequences of batching behavior by workers is a relatively understudied

area. By examining when batching occurs, and the trade-off it causes between wait time

and worker productivity, our paper makes several contributions to the literature.

Worker behavior and productivity: First, we add to the literature on worker

behavior by showing that physicians are likely to batch their admissions toward the end of

their shifts. Although we do not rigorously study its mechanism(s), our post-hoc analysis

suggests that batching may be caused in part by postponing admissions to attend to other

patients, or as suggested in Chan (2018), a byproduct of speeding up toward end of shifts.

However, we do not find a change in the actual probability of a patient being admitted as a

function of hour in shift (results not shown for brevity), which is aligned with the findings

of Batt et al. (2019). In addition, Ibanez et al. (2017) shows the detrimental effect of server

batching on average task completion time when workers actively search to find similar

tasks to complete together. In contrast, we find that batching admissions may actually

be beneficial for physicians’ shift-level productivity, albeit at the cost of longer boarding

times for the batched patients. That said, as Dobson et al. (2012) analytically shows, there

may be an upper bound to how much batching is beneficial for improving throughput

times. For example, if physicians in our study ED batch too much by postponing too many

admissions, then we could observe a drop in productivity as a result of ED overcrowding

and too much multi-tasking (KC 2014).

Behavioral queueing: Second, we contribute to the literature on the behavior of

servers in a queuing system (Delasay et al. 2019, 2016, Schultz et al. 1998, 2003). Interest-

ingly, Pang and Whitt (2012) calls for an empirical study of queueing systems with batched

arrivals. Our work empirically demonstrates that servers in the first stage of a two-tier

queuing system may batch their referrals to the second stage, which, in turn, systematically

increases wait times. Relatedly, prior studies of the causes of hospital boarding focus on

capacity-related causes, which may be costly to increase; or process-driven causes, which

may be difficult to change. In contrast, we illustrate that the behavioral modification of
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reducing admission batching is an effective lever for reducing boarding times. We highlight

that batching increases pre-allocation delay, partly because it increases arrival CV of the

second stage. This is important since most models of hospital operations assume time-

homogeneous or -non-homogeneous Poisson arrivals for tractability, and do not capture

the impact of CV variations due to server behavior, or the effect(s) of batching.

Queuing models with batched arrivals: Finally, the batching behavior of physi-

cians allows us to study queues with batched arrivals, empirically. To our knowledge, most

papers in this area are analytical, and their results have not been tested in an empirical

setting. In our counterfactual analysis, we compare our empirical results to the approxi-

mation presented in Yao (1985) and show that (i) our findings are in the same order as

the prediction of queueing models; and (ii) by eliminating batching, pre-allocation delay

may be reduced significantly.

8.2. Implications for Practice

Emergency department (ED) overcrowding is a worldwide problem, and its solution boils

down to improving patient flow in the hospital. (See Morley et al. (2018) for a thorough

review.) As such, our study offers important implications for hospital managers and ED

practitioners.

First, we show that common behaviors such as batching admissions in the ED may cause

unintended inefficiencies such as longer boarding times, the key cause of ED overcrowding

(ACEP 2018). To our knowledge, prior studies have only focused on the capacity-related

causes of ED boarding, and have not investigated the behaviors that may exacerbate

boarding times. While adding inpatient bed capacity is costly, managers may improve the

ED flow by employing levers to encourage staff to change their behavior. That said, we

also show that batching admissions is associated with a decrease in average throughput

time, and an increase in the number of patients served, at a shift-level. This suggests that

the impact of batching admissions on ED overcrowding is ultimately a trade-off between

increased boarding times for batched patients and improved physician productivity. Inter-

estingly, our post-hoc analysis shows that the net effect of batching on ED LOS is positive

(i.e. longer LOS), which implies that overall, batching is detrimental to ED overcrowding

in our setting.
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Second, we quantify the impact of batching admissions on pre-allocation delay. The

impact of batching admissions on pre-allocation delay is equivalent to the increase caused

by an occupancy increase of 1.2% (see Table 4). Considering that our study setting has an

average monthly maximum occupancy of 188.2 medical beds, the waiting cost of batching

admissions is equivalent to having an average of 2.3 fewer beds. Noteworthy is that redoing

our analysis with boarding time – the addition of pre- and post-allocation delay – as the

dependent variable in our analysis yields similar results. (This is shown in the robustness

section of the electronic companion.) Interestingly, Bair et al. (2010) shows that adding

two additional inpatient beds decreases the proportion of overcrowded days by 6.6%, and

retrieves one additional left-without-being-seen (LWOBS) patient per day using a discrete-

event simulation model on a hospital similar in size to our study setting. Hence, reducing

batching may therefore help our study hospital achieve its goal of reducing its score on the

national ED crowding scale (NEDOCS) and the rate of LWOBS patients.

Another implication of our work is that workers may inadvertently cause delays in

downstream stages due to behaviors that seemingly increase their productivity. This is

important from a performance assessment perspective. Many organizations use a “rela-

tive performance feedback” with the goal of improving individual worker productivity by

means of generating competition and sharing best practices among workers (Song et al.

2018). Incorporating metrics such as boarding time into this feedback could create incen-

tives for workers to become more consciously aware of the downstream consequences of

their practice styles.

8.3. Limitations and Future Work

This paper has several limitations that may be remedied by future work. First, like many

empirical studies, our data is limited to one setting. Other papers may extend or replicate

our findings in other industries or organizations. Second, our data does not allow us to

concretely tease out the mechanisms of batching admissions. Admissions batching could

be in part the result of other upstream care processes such as lab, radiology, consulting,

or even nurse batching. For example, Shi et al. (2014) observes that physicians make their

rounds in the ICU every morning, after which a batch of bed requests are submitted to

transfer some patients to the general ward units. Although our post-hoc analysis hints

that postponing certain tasks at various points in the shift may be a reason batches form,
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future research could study batch formation in greater detail, which would lead to a bet-

ter understanding of the productivity/wait time trade-off associated with batching. Third,

other studies may extend this paper by exploring other behaviors or biases that systemat-

ically add variance to either processing times or interarrival times in a multi-stage queue.

Fourth, our counterfactual analysis does not consider time-varying arrival rates. Specifi-

cally, in many aspects our ED setting is similar in context to the models presented in Daw

and Pender (2019) and Pang and Whitt (2012). Both of these papers model a time-varying

infinite-server queue with batched arrivals. Although infinite-server queuing models are

helpful in healthcare settings to provide insights on capacity planning and understanding

sources of variations (Worthington et al. 2020), but we cannot infer waiting times from such

models as by design, queue length is zero with infinite servers. Future queueing models may

provide approximations for the dynamics of time-varying queues with batched arrivals,

and finite servers. Finally, our work empirically demonstrates that batching increases CV

on a system-level. Future modelling papers may incorporate changes in CV as a result of

worker behavior in stochastic models of inpatient operations, capacity-planning, or even,

in determining optimal shift schedules (e.g. Bhulai et al. 2008).

8.4. Conclusion

Batching behavior by discretionary workers is an understudied area. Using data from an

ED, a two-tier queuing system, we show that batching by workers in the first stage might

increase wait times for the second stage. On the other hand, we find that batching may

be beneficial for workers’ shift-level productivity. Therefore, the wait-time/productivity

trade-off in batching exists, and must be considered. In our setting, ultimately, we find

that the net effect of batching on overall shift-level ED LOS is positive (i.e. longer LOS),

and also, batched patients suffer from an increased boarding time, which, in turn, suggests

a lower quality of care.

Endnotes

1. Our data shows that this rule is violated ∼ 18% of the time. One possible reason could be

related to mental heuristics of decision makers when routing patients in the ED (e.g. Ding et al.

2019). Since physicians sign up for patients only after they are roomed, and do not interact with
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patients prior to this, we do not believe that these violations drive any part of our results. We show

the robustness of our results to removing these patients in section EC.1.6

2. In our data, a basic decision tree model shows that just by looking at age, comorbidities, acuity

level and the specific tests performed (e.g. ultra-sound, x-ray, etc.) one is able to predict which

patient will be admitted with ∼ 85% and ∼ 80% accuracy in a balanced training and test data set,

respectively.

3. Either the “test order time” or “test result received” timestamps are missing from most of the

data.

4. We find no evidence that points to any selection bias in the observations that are missing

timestamps throughout the data cleaning process.

5. Our main result holds even we do not Winsorize inter-bed-request time.

6. Note that we did not log-transform average throughput time because its distribution was not

heavily skewed due to the central limit theorem
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Electronic Companion

EC.1. Robustness Checks

In this section, we test the robustness of our results to some of the key assumptions.

EC.1.1. Robustness check for hypothesis 2

We rerun the model in equation 2, where the dependent variable is boarding time, and

post-allocation delay, and compare with the main results. We also rerun the same model

and include medical, surgical, medical ICU, surgical ICU, and observation units in our

sample. Results are given in table EC.1.

Table EC.1 Impact of batching admissions on pre-allocation delay, post-allocation delay, and boarding

Dep. Variable:
(a) (main)

Pre

(b)

Post

(c)

Boarding

(d)

Pre

(e)

Post

(f)

Boarding

BCH 0.0455** 0.0231* 0.0324** 0.0262 0.0273* 0.0287**

(0.0168) (0.0110) (0.0087) (0.0152) (0.0059) (0.0045)

Occ 0.0376** -0.0009 0.0182** 0.0217* 0.0025 0.0108*

(0.0016) (0.0009) (0.0008) (0.0058) (0.0012) (0.0029)

Units Medical Medical Medical All units All units All units

N 25,565 25,115 25,549 42,560 41,690 42,538

R2 0.2172 0.0697 0.2174 0.2473 0.0662 0.2614

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. All dependent variables are log-transformed. Error terms
clustered by unit type in models (d)–(f).

The impact of batching on pre-allocation delay is not significant at a 5% or 10% level

when we include all units in our sample. This is most likely due to the differences in the

bed assignment procedure across units. Excluding the observation unit (Obs) results in a

significant result at a 10% level, and further excluding the surgical unit (Sur) results in a

significant result at a 5% level. Table EC.2 shows this.

EC.1.2. Robustness check for hypothesis 3

We conduct several robustness checks for hypothesis 3 and rerun the model shown in equa-

tion 5. First, we use the number of batched admissions during the shift (NBCH) as the

independent variable instead of a binary indicator, SB. The idea is to utilize a non-binary

measure of batching, and evaluate the marginal effect of each batched admission. Second,
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Table EC.2 Impact of batching admissions on pre-allocation delay, post-allocation delay, and boarding after excluding

observation, and observation and surgery units, respectively

Dep. Variable:
(a)

Pre

(b)

Post

(c)

Boarding

(d)

Pre

(e)

Post

(f)

Boarding

BCH 0.0343ˆ 0.0276* 0.0319** 0.0394* 0.0314ˆ 0.0335**

(0.0115) (0.0073) (0.0031) (0.0081) (0.0101) (0.0014)

Occ 0.0308** 0.0022 0.0153** 0.0311* 0.0032 0.0158*

(0.0040) (0.0025) (0.0018) (0.0054) (0.0036) (0.0021)

Units Ex. Obs Ex. Obs Ex. Obs Ex. Obs & Sur Ex. Obs & Sur Ex. Obs & Sur

N 37,888 37,171 37,866 30,793 30,221 30,775

R2 0.2185 0.0574 0.2143 0.2195 0.0584 0.2138

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. All dependent variables are log-transformed. Error terms
clustered by unit type.

we use time to admission as the dependent variable of equation 5. Note that this also

replicates the post-hoc result as described in section EC.2.3 on a shift-level. Specifically, in

section EC.2.3 we find that batched patients suffer a longer time to admission. By exten-

sion, the average time to admission should be longer in shifts with batching in comparison

with shifts with no batching. As a final robustness check, we rerun the model in equa-

tion 5 with time to discharge as the dependent variable. The idea is to test whether the

decrease in shift throughput time is due to a decrease in discharge time. In other words,

since throughput time is lower in shifts with batched admissions (hypothesis 3B) while

batched admissions take longer, then the average time to discharge must be lower in shifts

with batching. In short, faster discharges must be the underlying reason for higher shift

productivity.

Summary statistics and correlations of shift with batching, number of batched admissions

during shift, time to admit and time to discharge are provided in table EC.3.

Table EC.3 Summary statistics and correlation table for shift with batching, number of batched admissions

during shift, time to admit and time to discharge

mean SD min max 1 2 3

1 Shift with batching 0.37 0.48 0 1 1
2 Number of batched admissions 0.96 1.43 0 11 0.87* 1
3 Time to admita 2.58 0.93 0.10 8.05 0.04* 0.04* 1
4 Time to dischargea 2.87 0.81 0.21 11.53 0.10* 0.10* 0.11*

Note: *p < 0.05, N = 7,619. aunit is hours

The results are provided in table EC.4. In model (a) the coefficients of number batches in

shift is significant in the hypothesized direction. Namely, average throughput time is lower
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in shifts with batching, while the number of patients served is higher. Also, models (b) and

(c) show that shift with batching is positively associated with time to admit (β = 0.0742 ,

p < 0.01), and negatively associated with time to discharge (β =−0.0424 , p < 0.05). This

further lends support to hypothesis 3.

Table EC.4 Robustness of hypothesis 3

Model (a) Model (b) Model (c)

Dep. Variable: Npts STT Time to admit Time to discharge

Shift with Batching 0.0742** -0.0424*

(0.0202) (0.0171)

Num. Batched 0.8469** -0.0182**

(0.0407) (0.0050)

Shift Length 1.9977** 0.2231** 0.2025** 0.2000**

(0.1963) (0.0194) (0.0458) (0.0326)

Num. ED Tests -2.0350** 0.3042** 0.2076** 0.4364**

(0.1755) (0.0204) (0.0429) (0.0253)

Num. Roomed in Shift 0.0863** 0.0008ˆ -0.0016 0.0015*

(0.0066) (0.0003) (0.0010) (0.0006)

ESI Score 1.0572* 0.0061 0.5142** -0.3361**

(0.5058) (0.0495) (0.0788) (0.0630)

N 7060 7060 7060 6986

R2 0.3541 0.2013 0.1047 0.2121

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Regressions done on a CEM-matched sample. In model (c),
physician shifts with average time to discharge of over 5.5 hours were removed (top 1%). Covariate balance in all models is similar (or identical)
to that shown in table 6

EC.1.3. Robustness check for the mediating effect of CV in hypothesis 2

As discussed in section 6.2.3, we calculated the individual CV experienced by each patient

by grouping the latest 5 admissions, including the focal patient, and calculating the CV

of inter-bed-request times on those observations. We test the robustness of our results to

using a different number of observations. Fig. EC.1 shows the results of redoing the analysis

with each CV definition. The x-axis is the number of observations used in calculating CV,

and the y-axis shows the regression coefficients with their 95% confidence intervals for the

indirect, direct, and total effect of batching on pre-allocation delay.

It is evident that the impact of batching on pre-allocation delay through the increase of

CV (indirect effect) is positive and significant at the 5% level, except for when 6 obser-

vations are used to calculate CV. In that instance, the indirect effect is significant on a
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10% level. Taken in total, we argue that the results are fairly robust to the number of

observations chosen to calculate CV.

Figure EC.1 (Color online) Mediation coefficients with their 95% confidence intervals
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As a second robustness check, we do not Winsorize the top 1% of inter-bed-request

times, and redo our mediation analysis. We redo the mediation analysis as described in

section 6.2.3. The result of our analysis, before and after Winsorizing the inter-bed-request

times is shown in table EC.5. We observe that our results are robust to not Winsorising

inter-bed-request times, as indicated by the positive and significant results in columns (d)

and (e). The mediation level is a× b= 0.0715×0.0461 = 0.0033 (p < 0.05), and c′ = 0.0422,

(p < 0.05). The mediation level of CV is therefore derived from a×b
a×b+c′

= 7.3%. This result

is close to the 8.8% mediation level calculated in the main body of the paper, when CV is

calculated after Winsorizing the top 1% of inter-bed-request times.

While our main results are robust to using un-Winsorized inter-bed-request times, we

believe that the better approach to calculating patient-level CV is in fact to Winsorize the

top 1% of inter-bed-request times to eliminate the effect of very long intervals between bed

requests (e.g. shift changes or less busy ED) from influencing the variation that ultimately

influences pre-allocation delay (Wilcox 2011).
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Table EC.5 Mediation results with and without Winsorizing inter-bed-request times when calculating CV

With Winsorizing (main results) No Winsorizing

(a) (b) (c) (d) (e)
Dep. Variable: LPAD CV LPAD CV LPAD

Batch 0.0455** 0.0713** 0.0416* 0.0715** 0.0422 *

(0.0168) (0.0049) (0.0169) (0.005) (0.0169)

CV 0.0555* 0.0461*

(0.0228) (0.0221)

N 25,565 25,565 25,565 25,565 25,565
R2 0.2172 0.0173 0.2174 0.0157 0.2173

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.

EC.1.4. Batching defined on disposition times (not admissions) in hypotheses 1 & 3

In this section we redo the analysis of hypotheses 1 and 3 with a new definition of batching

which is based on disposition times, as opposed to admission times. In other words, we

include discharged patients in the new definition of batching.

Following the same method described in section 5.2, we use a GMM to decipher the

underlying latent distributions of the log inter-disposition-time distribution (i.e. time

between successive disposition decisions in a physician-shift). We find that the threshold

for batching is 6.8 minutes, and 31% of the dispositions are completed in a batch.

Hypothesis 1: We re-estimate equation 1, where BCH is replaced with the new

definition. The results of our estimation are shown in table EC.6, similar in format to that

of table 3.

Table EC.6 Robustness check for hypothesis 1: Batching dispositions towards end of shifts

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(a) (b) (c)

TLS -0.1834** -0.1772** 0.1128**

(0.0068) (0.0182) (0.0118)

Controls NO All controls All controls

N 31,563 30,791 42,413

R2 0.0230 0.0501 0.0458

LL -20399.2 -19363.5 -25724.4

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Standard errors clustered by physician. Drop in
N in model (b) is due to missing values in controls. Model (c) includes all observations (both TLS < 0 and TLS ≥ 0).
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The coefficient of TLS in model (b) (i.e. sample of patients admitted during the shift) is

β1 =−0.1772 (p < 0.01). The negative coefficient lends additional support for hypothesis

1.

Hypothesis 3: To check the robustness of our results to the new definition of batch-

ing (i.e. batching disposition decisions and not admissions), we follow the CEM-matching

procedure as described in section 6.3, and rerun the analysis in a similar manner. How-

ever, there are three differences. First, since batching is defined on all patients – whether

they are discharged or admitted – we should not expect the average disposition time to

necessarily decrease. Specifically, since disposition decisions may be delayed, it is plausible

that more patients are served, but the average disposition time is also longer. As a result,

hypothesis 3B may not hold (which is not unexpected). Second, we match the shifts with

and without batching on the number of “admitted” patients in the shift, and control for it

in equation 5 because we want to make sure that our results are not driven by the number

of admitted patients in a physician-shift. Third, our sample is defined based on the shifts

with at least two patients seen in the shift instead of two admissions in the shift. This

leaves us a sample size of 10,548 out of 10,659 physician shifts (see Fig. 2).

The CEM-matching results, and analysis outcomes are provided in tables EC.7 and EC.8,

respectively. Table EC.7 demonstrates that prior to matching there were some imbalances

in shifts with and without batching; however, after matching we have generated a bal-

anced sample since all normative differences between covariates in shifts with and without

batching are below a threshold of 0.2 (Batt et al. 2019).

The coefficient on SB is positive and significant in column (b) of table EC.8, which

provides support for hypothesis 3A. However, hypothesis 3B is not supported in the new

definition of shift with batching which is based on batching all dispositions, since the

coefficient on SB in both columns (c) and (d) are positive. However, as discussed above, this

only shows that batched dispositions are delayed, and does not imply lower productivity

or contradictory results.

EC.1.5. Robustness to using at least 3 admissions to define an admission batch

We originally used at least two back-to-back admissions to define a batch. We check the

robustness of our results to increasing the batch size to at least three. In other words,

we define a batch of admissions when at least three patients are admitted within a short
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Table EC.7 Covariate balance in full and matched samples, when batching is defined on all disposition decisions

Sample
Full sample CEM-matched sample

No weights CEM-weighted

Variable SB=0 SB=1 Norm. Diff. SB=0 SB=1 Norm. Diff.

Mean age 47.53 47.46 0.01 47.95 47.50 0.01

Shift length 7.92 8.22 0.17 8.33 8.31 0.00
Mean number of ED tests 1.96 1.95 0.01 1.91 1.90 0.01

Number of patients roomed 128.3 123.8 0.08 133.7 133.6 0.00
Mean ESI 3.19 3.10 0.10 3.15 3.16 0.00

Mean Charlson Score 1.46 1.45 0.01 1.54 1.43 0.05

Mean number of ICU visits 0.06 0.05 0.05 0.05 0.04 0.06
hours since last shift 86.50 71.04 0.08 61.79 60.43 0.01

hours to next shift 86.29 71.70 0.09 64.65 59.44 0.04

Morning shift 0.61 0.47 0.21 0.55 0.54 0.00
Afternoon shift 0.33 0.37 0.06 0.38 0.38 0.00

Overnight shift 0.06 0.16 0.24 0.08 0.08 0.00

Weekend shift 0.12 0.22 0.19 0.10 0.16 0.09
Waiting room census 102.4 107.2 0.05 111.28 114.73 0.02

N 1162 9386 951 5164

Table EC.8 Hypothesis 3: Impact of batching disposition decisions on physician productivity

Dep. Variable: Number of Patients Seen Average Throughput Time

(a)

unweighted OLS

(b)

weighted CEM-matched

(c)

unweighted OLS

(d)

weighted CEM-matched

SB 2.5517** 2.7215** 0.0886** 0.0419ˆ

(0.1543) (0.2072) (0.0174) (0.0247)

Shift Length 1.1120** 1.0563** 0.0948** 0.0570**

(0.0906) (0.1137) (0.0257) (0.0206)

Mean Num. of ED tests -3.1307** -2.8130** 0.3889** 0.4454**

(0.1270) (0.1742) (0.0157) (0.0230)

Num. Patients admitted 1.2067** 1.2356** -0.0177** -0.0146*

(0.0255) (0.0404) (0.0034) (0.0058)

N 10,548 6,115 10,545 6,115

R2 0.6101 0.5816 0.6350 0.6898

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Controls included in all models.

interval (9.1 minutes) of each other. By this definition, 5.8% of the patient admissions

are done in a batch. In the remainder of the section, we show the robustness of our main

results to the new definition.

Hypothesis 1 Table EC.9 shows the main results for hypothesis 1.

The coefficient of TLS in column (b) (i.e. sample of patients admitted during the shift)

is β1 =−0.1700 (p < 0.01), which provides support for hypothesis 1.

Hypothesis 2 Table EC.10 shows the main results for hypothesis 2. We observe that

the coefficient of interest is β1 = 0.0929 (p < 0.01), which provides support for our second

hypothesis under the new definition of batching.
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Table EC.9 Robustness check for hypothesis 1: Batch defined based on at least three patients

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(a) (b) (c)

TLS -0.1798** -0.1700** 0.1080**

(0.0165) (0.0435) (0.0121)

Controls NO All controls All controls

N 31,563 30,298 41,828

R2 0.0150 0.0748 0.0645

LL -7557.1 -6919.9 -8765.8

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Standard errors clustered by physician. Drop in
N in model (b) is due to missing values in controls. Model (c) includes all observations (both TLS < 0 and TLS ≥ 0).

Table EC.10 Hypothesis 2: Batch defined based on at least three patients

Dep. Variable: ln(Pre-allocation Delay)

(a) (b)

BCH 0.0361 0.0929**

(0.0302) (0.0273)

Occ 0.0376**

(0.0016)

Controls NO YES

N 25,565 25,565

R2 0.0000 0.2173

F 1.43 45.46

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is
because we removed observations with missing values in controls.

Hypothesis 3 Following the method described in section 6.3, we first use CEM-

matching to generate a balanced sample of shifts with and without batching, then run our

analysis on the matched sample to test hypotheses 3A and 3B. The results for covariate

balance before and after CEM-matching are shown in table EC.11, and the results for the

impact of batching on physician productivity are given in table EC.12.

We observe that the sample is balanced as expected after CEM-matching, and the results

in table EC.12 are consistent with the main results of the paper. In short, both hypotheses

3A and 3B are robust defining a batch based on at least three admissions.

EC.1.6. Robustness to removing patients who were not roomed on a

first-come-first-serve basis

We check the robustness of our results to removing the subset of patients who were not

roomed on a first-come-first-serve (FCFS) basis from our sample.
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Table EC.11 Covariate balance in full and matched samples when batch size is at least 3

Sample
Full sample CEM-matched sample

No weights CEM-weighted

Variable SB=0 SB=1 Norm. Diff. SB=0 SB=1 Norm. Diff.

Mean age 49.36 51.14 0.23 50.34 51.19 0.02

Shift length 7.92 7.93 0.02 7.94 7.94 0.00
Mean number of ED tests 2.40 2.59 0.27 2.58 2.58 0.00

Number of patients roomed 112.1 116.6 0.09 116.8 116.7 0.00
Mean ESI 2.80 2.72 0.24 2.74 2.72 0.01

Mean Charlson Score 1.71 1.83 0.14 1.78 1.84 0.03

Mean number of ICU visits 0.07 0.08 0.09 0.08 0.08 0.00
hours since last shift 71.66 68.47 0.02 67.60 67.05 0.00

hours to next shift 71.45 74.12 0.02 66.21 69.31 0.02

Morning shift 0.41 0.36 0.07 0.36 0.36 0.00
Afternoon shift 0.38 0.50 0.17 0.51 0.51 0.00

Overnight shift 0.21 0.14 0.14 0.14 0.14 0.00

Weekend shift 0.23 0.26 0.04 0.21 0.26 0.08
Waiting room census 99.26 106.8 0.07 111.4 106.6 0.03

N 6428 675 5257 659

Table EC.12 Hypothesis 3: Impact of batching on physician productivity when batch size is at least 3

Dep. Variable: Number of Patients Seen Average Throughput Time

(a)

unweighted OLS

(b)

weighted CEM-matched

(c)

unweighted OLS

(d)

weighted CEM-matched

SB 2.4621** 2.2363** -0.0361* -0.0494**

(0.1965) (0.1977) (0.0177) (0.0173)

Shift Length 1.7761** 1.9884** 0.2063** 0.1926**

(0.2072) (0.3874) (0.0150) (0.0277)

Mean Num. of ED tests -1.8985** -2.1652** 0.3034** 0.3038**

(0.1643) (0.1922) (0.0155) (0.0262)

Num. Roomed in Shift 0.0794** 0.0893** 0.0004 0.0017**

(0.0062) (0.0076) (0.0004) (0.0006)

N 7,103 5,916 7,103 5,916

R2 0.3269 0.3506 0.2100 0.1877

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Controls included in all models.

As described in section 3 patients arriving by ambulance are typically roomed right away,

and self-arrivals are roomed on FCFS basis by their ESI score. However, this general rule is

violated about 18% of the time, as shown in table EC.13. Moreover, table EC.14 provides a

summary of what percentage of FCFS (and not FCFS patients) are admitted. By redoing

our analysis without these patients, we build confidence that our results are not driven by

a set of events or decisions prior to a patient being roomed.

Hypothesis 1 We re-estimate equation 1 without after removing the non-FCFS

patients. The results of our estimation are shown in table EC.15, similar in format to that

of table 3.
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Table EC.13 Breakdown of patients roomed on a FCFS basis by mode of ED transportation

Transport FCFS (%) not FCFS (%) Total

Ambulance 93.18 6.82 69,986
Self arrival 77.19 22.81 173,437
Other 89.33 10.67 9,913

Total 82.07 17.93 253,336

Table EC.14 Breakdown of admissions by whether patient was roomed on FCFS basis

Discharged (%) Admitted (%) Total

FCFS 76.78 23.22 203,555
not FCFS 88.24 11.76 36,317

Total 78.51 21.49 239,872

Table EC.15 Robustness check for hypothesis 1: Removing non-FCFS patients

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(a) (b) (c)

TLS -0.1526** -0.2079** 0.0885**

(0.0096) (0.0195) (0.0106)

Controls NO All controls All controls

N 29,082 28,119 38,680

R2 0.0143 0.0424 0.0370

LL -14515.8 -13732.2 -17745.9

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Standard errors clustered by physician. Drop in
N in model (b) is due to missing values in controls. Model (c) includes all observations (both TLS < 0 and TLS ≥ 0).

The coefficient of TLS in model (b) (i.e. sample of patients admitted during the shift) is

β1 =−0.2079 (p < 0.01). The negative coefficient lends additional support for hypothesis

1.

Hypothesis 2 Table EC.16 shows the main results for hypothesis 2. We observe that

the coefficient of interest is β1 = 0.0494 (p < 0.01), which provides support for our second

hypothesis after removing the non-FCFS patients.

Hypothesis 3 We first remove the non-FCFS patients from our original patient-level

sample, then collapse our data set on a physician-shift level as described in section 5.1.

Next, following the method described in section 6.3, we first use CEM-matching to generate

a balanced sample of shifts with and without batching, then run our analysis on the

matched sample to test hypotheses 3A and 3B. The results for covariate balance before and

after CEM-matching are shown in table EC.17, and the results for the impact of batching

on physician productivity are given in table EC.18.
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Table EC.16 Hypothesis 2: Removing non-FCFS patients

Dep. Variable: ln(Pre-allocation Delay)

(a) (b)

BCH -0.0033 0.0494**

(0.0195) (0.0176)

Occ 0.0374**

(0.0016)

Controls NO YES

N 23,417 23,417

R2 0.0000 0.2198

F 0.02 42.29

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is
because we removed observations with missing values in controls.

We observe that the sample is balanced as expected after CEM-matching, and the results

in table EC.18 are consistent with the main results of the paper. In short, both hypotheses

3A and 3B are robust defining a batch based on at least three admissions.

Table EC.17 Covariate balance in full and matched samples; non-FCFS patients excluded from sample from which
physician-shift sample is derived

Sample
Full sample CEM-matched sample

No weights CEM-weighted

Variable SB=0 SB=1 Norm. Diff. SB=0 SB=1 Norm. Diff.

Mean age 49.29 51.09 0.21 50.30 51.06 0.02

Shift length 7.91 7.94 0.04 7.95 7.94 0.00
Mean number of ED tests 2.36 2.60 0.31 2.58 2.59 0.00

Number of patients roomed 111.6 114.4 0.05 114.3 114.4 0.00

Mean ESI 2.81 2.72 0.26 2.73 2.72 0.01
Mean Charlson Score 1.70 1.86 0.16 1.80 1.86 0.03

Mean number of ICU visits 0.07 0.09 0.14 0.08 0.09 0.02

hours since last shift 70.73 71.61 0.01 63.47 65.23 0.02
hours to next shift 71.60 71.88 0.00 66.62 66.35 0.00

Morning shift 0.43 0.36 0.11 0.35 0.35 0.00

Afternoon shift 0.35 0.48 0.19 0.48 0.48 0.00
Overnight shift 0.22 0.17 0.10 0.17 0.17 0.00

Weekend shift 0.22 0.25 0.04 0.21 0.25 0.07
Waiting room census 95.28 105.97 0.10 106.5 . 106.1 0.00

N 4684 2817 4267 2703
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Table EC.18 Hypothesis 3: Impact of batching on physician productivity, excluding non-FCFS patients

Dep. Variable: Number of Patients Seen Average Throughput Time

(a)

unweighted OLS

(b)

weighted CEM-matched

(c)

unweighted OLS

(d)

weighted CEM-matched

SB 2.2707** 2.1137** -0.0238ˆ -0.0296*

(0.1131) (0.1149) (0.0139) (0.0138)

Shift Length 1.8324** 2.0092** 0.2301** 0.2177**

(0.1830) (0.2139) (0.0172) (0.0169)

Mean Num. of ED tests -1.6998** -1.8426** 0.2777** 0.2645**

(0.1282) (0.1435) (0.0160) (0.0211)

Num. Roomed in Shift 0.0777** 0.0853** 0.0002 0.0014**

(0.0059) (0.0067) (0.0004) (0.0005)

N 7,501 6,970 7,501 6,970

R2 0.3345 0.3420 . 0.2093 0.1731

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Controls included in all models.
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EC.2. Post-hoc: Impact of Batching Admissions on ED Length of Stay

As mentioned in section 7.2.1, we explore the overall effect of batching admissions on ED

length of stay (LOS), defined as the time from when the patient is roomed until they depart

the ED. We study this effect on a patient-level and shift-level separately, as discussed

below.

EC.2.1. Patient-level: Impact of batching on LOS (sample of admitted patients)

We first study whether batching increases ED LOS on a patient-level. The question is

whether patients admitted in a batch experience a longer ED LOS. To do so, we must

also consider the heterogeneous effect of batching on ED LOS, depending on whether

the patient was batched before or after the primary physician’s shift had ended because

arguably, if batching occurs after the shift then part of its impact on LOS could be because

the patient was cosigned or handed-off. Table EC.19 provides summary statistics for ED

LOS, calculated for patients admitted during and after the shift, respectively.

Table EC.19 Summary statistics for ED length of stay for admitted patients

mean sd min p50 p99 max Count

During Shift 6.31 2.96 0.42 5.74 16.46 22.82 31,474
After Shift 9.41 4.03 0.67 8.66 21.33 23.26 11,645

Total 7.15 3.56 0.42 6.40 19.18 23.26 43,119

Note: Unit is hours. top 1% of ED LOS excluded to eliminate outliers.

We rerun equation 2, with log-transformed ED LOS as the dependent variable. To further

explore the heterogeneous effect of batching on patients admitted before and after the shift,

we add a binary control if the patient was admitted after the primary physician’s shift

ended (AFTER), and also include an interaction term between batching and AFTER.

The results are given in table EC.20.

Prior to adding the after-shift and interaction controls (models 1 and 3), batching appears

to lower ED LOS since the coefficient of batching BCH is negative. However, after adding

the interaction terms (models 2 and 4), it is clear that patients admitted in a batch during

the shift experienced a longer LOS (β = 0.0197 in model 2, β = 0.0276 in model 4), but

experienced a shorter LOS when batched after the shift since the interaction coefficients

of BCH ×AFTER are greater than BCH.
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Table EC.20 Post-hoc results: Patient-level analysis

Dep. Variable: log(ED LOS)

Sample Admitted to medical units Admitted to All units
(1) (2) (3) (4)

BCH -0.0322** 0.0197** -0.0315** 0.0276*

(0.0063) (0.0069) (0.0060) (0.0080)

AFTER 0.3943** 0.4375**

(0.0063) (0.0363)

BCH ×AFTER -0.1186** -0.1382**

(0.0150) (0.0150)

N 25,513 25,513 42,388 42,388
R2 0.1723 0.2826 0.2381 0.3538

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Controls included in all models. Errors clustered
by unit type in models 3 and 4

EC.2.2. Shift-level: Impact of batching on shift-level average LOS

We study the overall impact of batching admissions on shift-level performance. For this,

we find the average ED LOS of patients treated in each physician shift, similar to the defi-

nition of shift throughput time, mentioned in section 5.3. However, the difference between

the calculation of average shift throughput time and ED LOS is that when calculating

average shift throughput time, we excluded after-shift patients to focus on the behavior of

an individual physician. In contrast, in calculating average LOS, we include all patients,

regardless of when they left the ED. This is an important distinction for two reasons: first,

unlike a disposition decision, the actual LOS of patients may go well beyond an individual

shift due to boarding times or other reasons related to the discharge process of the patients

(which is outside of the scope of this paper); second, the LOS of patients is ultimately what

matters when assessing ED overcrowding because regardless of where in their treatment

process they are, patients present in the ED occupy resources, and contribute to crowding.

We conduct a similar analysis to section 6.3. Namely, the key independent variable in

our analysis is a binary variable, shift with batching (SB), but the dependent variable in

this case is average ED LOS (LOS). Also, to account for the possibility that average ED

LOS in a shift may be impacted by the patients who were either admitted or discharged

after the shift had ended, we further control for the fraction of patients in the shift whose

disposition occurred after the shift, FRACafter, in the model shown in equation 5. Table

EC.21 shows the summary statistics and correlations between LOS, FRACafter, and SB.
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Table EC.21 Summary statistics and correlations between LOS, FRACafter, and SB

mean sd min max (1) (2)

1 LOSa 4.13 1.68 0.02 10.53 1
2 FRACafter 0.21 0.16 0 1 0.72* 1
3 SB 0.35 0.48 0 1 0.22* 0.01

Note: aUnit is hours.

The results of the model as described above are provided in table EC.22. Recall that

we use CEM-matching to match shifts with and without batching on patient and shift

characteristics. The results for the regression run on a weighted CEM-matched sample in

table EC.22. We see that the coefficient on SB is positive and significant (β = 0.0878,

p < 0.01). The coefficient suggests that the average LOS on shifts with batching is ∼ 0.09

hours (∼ 5.4 minutes) longer than shifts without batching. We conclude that batching

increases the average LOS on a shift-level.

Table EC.22 Post-hoc results: Shift-level analysis

Dep. Variable: LOS

SB 0.0878**

(0.0193)

FRACafter 2.8342**

(0.1053)

N 6,968
R2 0.4634

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. All
controls from section 6.3 included. Errors clustered by physician

EC.2.3. Potential Batch Formation Mechanism

We explore a potential batch-forming mechanism during the shift, and also provide a

possible rationale for why batching may occur after the assigned shift has ended. For this,

we focus on the time it takes to admit patients. If batching admissions is a byproduct of

physicians speeding up towards end of shifts, then patients who are batched during a shift

should experience a shorter time to admission. At the end of the shift, a few remaining

patients might have lingering issues, such as pending lab reports or consults, who are

later admitted by a resident and cosigned by the primary physician, or handed off to a

second physician. In the latter case, most likely the primary physician would have had

completed the majority of the diagnosis tasks, and considering the cultural disincentive
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to hand off patients, had provided detailed notes regarding the patient’s conditions to the

second physician (who is not credited with the patient’s care) in an effort to facilitate their

work as much as possible. Hence, the admission decision process for such patients is easier,

and the second physician is able to admit multiple patients in a short period of time.

Consequently, we expect that patients who are batched after the shift experience a shorter

time to admission compared to unbatched after-shift admissions due to the expedited

decision process.

To test this theory, we run the regression in equation EC.1 on a patient-level, with robust

standard errors:

ln(AdmitT ime) = β0+β1BCH +β2AFTER+β3BCH ×AFTER+γXi+ ϵi (EC.1)

where ln(AdmitT ime) is the log-transformed time it takes to to admit a patient, and

AFTER is a binary variable equal to 1 if a patient is admitted after the shift, and 0

otherwise. γX includes date/time, ward, medical and patient controls, and the admitting

physician. Recall from section 6.2 that assignment of patients to the batched or unbatched

groups is as good as random. Hence, coefficient β1 captures the impact of batching during

the shift on time to admission, and β1 + β3 captures the impact of batching after shift.

The results are given in table EC.23. We find that β1 = 0.0578 (p < 0.05), equivalent to an

average of 9.1 minutes increase, and β1+β3 =−0.1618 (p < 0.01), equivalent to an average

of 52.2 minutes decrease, in time to admission for patients admitted during and after the

physician shift, respectively.

This evidence suggests that patients who were batched after the shift were expedited, as

expected, but those batched during the shift were delayed. Our physician partner suggests

that the delay may be due to postponing tasks at various points in the shift. Specifically,

many times physicians order tests, but postpone the task of reviewing them in order to

attend to other patients who have not yet been diagnosed. This behavior may result in

delaying the admission of some patients to attend to a higher number of patients.

We also find that β2 = 0.9090 (p < 0.01), suggesting that the average time to admission is

longer when patients are admitted after the shift has ended. This effect may most likely be

attributed to the fact that patients with pending issues are either handed off or cosigned,

and therefore, on average, they experience a longer time to admission.
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Table EC.23 Results for equation EC.1

Dep. Variable: ln(AdmitTime)

BCH 0.0578*

(0.0150)

AFTER 0.9090**

(0.0616)

BCH ×AFTER -0.2196**

(0.0105)

Controls YES

N 42,256

R2 0.4096

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses.
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EC.3. Additional Summary Statistics, Tables and Figures

Table EC.24 Summary statistics of number of patients visits and bed requests per patient

Variable mean sd min p1 p50 p99 max

Number of visits 2.20 3.24 1 1 1 14 163

Bed requests 0.47 1.29 0 0 0 5 44
Bed requests if admitted at least once 1.74 1.98 1 1 1 10 44

Note. Statistics given from 108,931 unique patient visits, out of which 29,574 patients were admitted at least once

Table EC.25 Correlations between tests for admitted patients

(1) (2) (3) (4) (5) (6) (7)

(1) CT 1.00

(2) EKG 0.08* 1.00
(3) Imaging 0.34* 0.22* 1.00

(4) Other Imaging 0.05* 0.03* 0.06* 1.00
(5) Ultrasound -0.00 -0.10* 0.16* 0.03* 1.00

(6) Lab 0.07* 0.14* 0.11* 0.00 0.04* 1.00

(7) X-ray -0.03* 0.33* 0.62* -0.06 -0.12* 0.08* 1.00

*p < 0.05

Figure EC.2 Number of bed requests per patient across all individual visits
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Table EC.26 Units to which Patients are Admitted from the ED

Unit Count Percentage mean boarding time (min)

Medical Units 27,490 55.85 248.09
Surgical Units 7,669 15.58 227.09
Observation Units 6,269 12.74 132.03
Medical ICUs 4,126 8.38 180.39
Surgical ICUs 1,611 3.27 180.74
Operating Room 1,277 2.59 127.27
Pediatrics Unit 598 1.21 140.20
Labor and Delivery 119 0.24 122.86
Pediatric ICU 63 0.13 112.19

Total 49,222 100.00

Our raw data does not include labor and delivery and pediatrics patients, and we exclude them from our analysis. This explains
the very small number of admissions to these units.

Figure EC.3 Goodness of fit plots for GMM.
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Note. GMM was applied to approximated the log-transformed inter-bed-request times. Also note that:

(i) the deviations from the 45◦line in the Q-Q plots are not in the vicinity of the critical batching threshold;

(ii) the large deviation in Q-Q plot on the bottom right is because the original data is truncated at 720 minutes

(∼ 6.5 log minutes) (see Fig. 3), and the model does not fit well at large log(inter-bed-request times); and since

the approximated log-transformed data was transformed back using the exponent function to make this plot,

the large values are grossly exaggerated. To illustrate this, note that the CDF plots fit well, and that the bump

in the bottom left Q-Q plot between ∼ 5.5 – ∼ 6.5 on the x-axis, is the same deviation seen in the bottom right

Q-Q plot.
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Table EC.27 Summary statistics for admitted vs. not admitted ED patients

Variable Not Admitted Admitted Total

Insurance class 237,121
Commercial 78.46% 21.54% 57,807
Medicaid 82.54% 17.46% 119,994
Medicare 63.07% 36.93% 36,106
Free Care & Other 91.29% 8.71% 23,214

Race 239,874
Black / African American 81.13% 18.87% 176,195
Non-Black 74.93% 25.07% 63,679

ESI Score 237,959
1 16.97% 83.03% 2,157
2 50.73% 49.27% 47,679
3 80.29% 19.71% 114,487
4 98.63% 1.37% 66,228
5 99.65% 0.35% 7,408

Gender 239,873
Male 78.73% 21.27% 120,231
Female 80.24% 19.76% 119,617
Unspecified 96.00 4.00 25

Year 239,874
2016 79.00% 21.00% 63,592
2017 79.29% 20.71% 110,428
2018 80.27% 19.73% 65,854

Day of Week 239,874
Sunday 79.00% 21.00% 29,258
Monday 79.19% 20.81% 37,797
Tuesday 79.57% 20.43% 36,600
Wednesday 79.91% 20.09% 35,832
Thursday 79.17% 20.83% 34,862
Friday 79.29% 20.71% 34,961
Saturday 80.27% 19.73% 30,564

Week 239,874
1 78.21% 21.79% 4,020
2 78.87% 21.13% 4,255
3 79.54% 20.46% 4,287
4 79.98% 20.02% 4,311
5 79.21% 20.79% 4,329
6 79.83% 20.17% 4,397
7 79.94% 20.06% 4,348
8 80.35% 19.65% 4,452
9 79.36% 20.64% 4,224
10 77.65% 22.35% 4,019

Continued on next page

a All percentages are based on a total of 239,874 ED patients.
b Total count less than 239,874 are due to missing values.
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Table EC.27 Summary statistics for admitted vs. not admitted ED patients (Cont.)

Variable Not Admitted Admitted Total

11 78.83% 21.17% 4,016
12 79.66% 20.34% 4,287
13 79.88% 20.12% 4,250
14 79.23% 20.77% 4,286
15 80.03% 19.97% 4,367
16 80.17% 19.83% 4,373
17 80.21% 19.79% 4,376
18 80.08% 19.92% 4,263
19 80.86% 19.14% 4,363
20 80.39% 19.61% 4,371
21 79.43% 20.57% 4,361
22 80.25% 19.75% 4,992
23 80.64% 19.36% 6,508
24 80.32% 19.68% 6,621
25 80.69% 19.31% 6,443
26 81.08% 18.92% 6,475
27 78.83% 21.17% 6,268
28 79.50% 20.50% 6,595
29 78.51% 21.49% 6,367
30 79.62% 20.38% 6,260
31 78.74% 21.26% 4,789
32 78.88% 21.12% 4,294
33 78.10% 21.90% 4,232
34 80.18% 19.82% 4,268
35 77.70% 22.30% 4,183
36 79.76% 20.24% 4,263
37 78.93% 21.07% 4,277
38 78.33% 21.67% 4,274
39 79.29% 20.71% 4,244
40 79.78% 20.22% 4,278
41 78.15% 21.85% 4,242
42 78.68% 21.32% 4,227
43 80.28% 19.72% 4,213
44 79.05% 20.95% 4,038
45 79.62% 20.38% 4,190
46 79.30% 20.70% 4,223
47 78.84% 21.16% 3,928
48 78.72% 21.28% 4,290
49 79.49% 20.51% 4,183
50 79.84% 20.16% 4,017
51 78.63% 21.37% 3,944
52 79.25% 20.75% 4,722

a All percentages are based on a total of 239,874 ED patients.
b Total count less than 239,874 are due to missing values.
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Table EC.28 Summary statistics for patient controls

Variable Percent Total

Insurance class 44,362
Medicaid 42.43% 18,821
Medicare 28.38% 12,590
Commercial 25.17% 11,168
Free Care & Other 4.02% 1,783

Race 44,716
Black / African American 67.48% 30,173
Non-Black 32.52% 14,543

Gender 44,716
Male 52.41% 23,434
Female 47.59% 21,281
Unspecified 0.00% 1

Note. N = 44,716

Figure EC.4 Histogram of boarding time in minutes
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Table EC.29 Covariate balance between batched and unbatched admissions

Variable Batched Unbatched Standardized Difference

Occupancy Level 85.71 85.09 0.07

Day of week
Sunday 0.12 0.13 0.03
Monday 0.15 0.16 0.02
Tuesday 0.15 0.16 0.02
Wednesday 0.15 0.12 0.06
Thursday 0.15 0.15 0.00
Friday 0.16 0.15 0.01
Saturday 0.12 0.13 0.01

Year
2016 0.29 0.28 0.01
2017 0.47 0.48 0.02
2018 0.25 0.23 0.02

Week
1 0.02 0.02 0.01
2 0.02 0.02 0.01
3 0.02 0.02 0.00
4 0.02 0.02 0.01
5 0.02 0.02 0.01
6 0.02 0.02 0.00
7 0.02 0.02 0.01
8 0.02 0.02 0.01
9 0.02 0.02 0.03
10 0.02 0.02 0.01
11 0.02 0.01 0.02
12 0.02 0.02 0.00
13 0.02 0.02 0.01
14 0.02 0.02 0.01
15 0.01 0.01 0.01
16 0.01 0.01 0.01
17 0.01 0.02 0.01
18 0.02 0.02 0.00
19 0.02 0.01 0.03
20 0.02 0.02 0.02
21 0.02 0.02 0.01
22 0.02 0.02 0.01
23 0.03 0.03 0.01
24 0.03 0.03 0.01
25 0.03 0.03 0.01
26 0.03 0.03 0.01
27 0.02 0.03 0.02
28 0.03 0.02 0.02
29 0.03 0.03 0.00
30 0.03 0.02 0.01
31 0.02 0.02 0.01
32 0.02 0.02 0.01
33 0.02 0.01 0.04

Continued on next page

Note. Calculated for admissions to medical units
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Table EC.29 Covariate balance between batched and unbatched admissions (Cont.)

Variable Batched Unbatched Standardized Difference

34 0.02 0.02 0.01
35 0.02 0.02 0.00
36 0.02 0.02 0.02
37 0.02 0.02 0.03
38 0.02 0.02 0.00
39 0.02 0.02 0.01
40 0.02 0.02 0.01
41 0.02 0.02 0.03
42 0.02 0.02 0.00
43 0.02 0.02 0.01
44 0.02 0.01 0.02
45 0.02 0.02 0.02
46 0.02 0.02 0.01
47 0.02 0.02 0.01
48 0.02 0.02 0.04
49 0.02 0.02 0.01
50 0.02 0.02 0.01
51 0.02 0.02 0.01
52 0.02 0.02 0.00

Admitting Department ID
Dept.1 0.15 0.16 0.02
Dept.2 0.07 0.07 0.00
Dept.3 0.09 0.09 0.00
Dept.4 0.10 0.09 0.01
Dept.5 0.04 0.04 0.00
Dept.6 0.20 0.19 0.02
Dept.7 0.21 0.21 0.01
Dept.8 0.11 0.11 0.00
Dept.9 0.03 0.03 0.01

Number of admissions in past 6 hours 1.23 1.28 0.02
AGE 58.46 59.16 0.03

ESI Score
1 0.01 0.01 0.01
2 0.48 0.50 0.02
3 0.48 0.48 0.01
4 0.02 0.01 0.04
5 0.00 0.00 0.01

Number of ED tests 3.60 3.63 0.02

Hospital Service
Cardiac ICU 0.00 0.00 0.02
Cardiology 0.06 0.06 0.01
Cardiology; General 0.00 0.00 0.01
Cardiothoracic Surgery 0.00 0.00 0.01
Dental 0.00 0.00 0.01
Emergency Medicine 0.00 0.00 0.00
Family Medicine 0.18 0.20 0.03
General Medicine 0.41 0.39 0.02

Continued on next page

Note. Calculated for admissions to medical units
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Table EC.29 Covariate balance between batched and unbatched admissions (Cont.)

Variable Batched Unbatched Standardized Difference

General Surgery 0.04 0.04 0.00
Geriatrics 0.07 0.07 0.01
Gynecology 0.00 0.00 0.00
Hematology/Oncology 0.04 0.04 0.00
Observation 0.01 0.01 0.02
Infectious Disease 0.05 0.04 0.02
Internal Medicine 0.02 0.02 0.00
Medical ICU 0.00 0.00 0.01
Neurology 0.04 0.04 0.01
Neurosurgery 0.00 0.00 0.01
Orthopedic Surgery 0.00 0.00 0.01
Orthopedics 0.01 0.00 0.01
Otolaryngology/ENT 0.00 0.00 0.01
Pulmonology 0.00 0.00 0.02
Renal 0.05 0.05 0.00
Stroke Neurology 0.00 0.00 0.00
Trauma 0.00 0.00 0.00
Urology 0.00 0.00 0.01
Vascular Surgery 0.00 0.00 0.02

Visit class
Inpatient 0.65 0.63 0.03
Observation 0.35 0.37 0.03

Insurance class
Commercial 0.24 0.25 0.01
Free Care & Other 0.04 0.03 0.01
Medicaid 0.41 0.42 0.01
Medicare 0.31 0.30 0.01

Race
Black 0.32 0.32 0.00
Non-Black 0.68 0.68 0.00

Male 1.53 1.53 0.01
Charlson Comorbidity Index 3.05 3.07 0.00
Number of ICU Visits 0.05 0.04 0.01

Physician ID
1 0.03 0.03 0.00
2 0.03 0.03 0.01
3 0.03 0.03 0.02
4 0.00 0.00 0.01
5 0.02 0.02 0.00
6 0.00 0.00 0.01
7 0.00 0.00 0.04
8 0.02 0.02 0.00
9 0.01 0.01 0.01
10 0.01 0.02 0.02
11 0.00 0.00 0.03
12 0.04 0.03 0.06
13 0.00 0.00 0.03

Continued on next page

Note. Calculated for admissions to medical units

Electronic copy available at: https://ssrn.com/abstract=3819868



ec26 e-companion to Feizi et al.: Impact of Admission Batching on Boarding Time and Productivity

Table EC.29 Covariate balance between batched and unbatched admissions (Cont.)

Variable Batched Unbatched Standardized Difference

14 0.04 0.05 0.04
15 0.00 0.00 0.01
16 0.03 0.03 0.01
17 0.00 0.00 0.05
18 0.02 0.01 0.03
19 0.02 0.03 0.01
20 0.00 0.00 0.00
21 0.02 0.02 0.00
22 0.01 0.01 0.00
23 0.01 0.01 0.02
24 0.03 0.03 0.00
25 0.03 0.03 0.00
26 0.03 0.03 0.00
27 0.02 0.03 0.01
28 0.01 0.01 0.02
29 0.01 0.01 0.02
30 0.03 0.03 0.01
31 0.03 0.03 0.02
32 0.03 0.03 0.00
33 0.04 0.03 0.01
34 0.02 0.02 0.03
35 0.04 0.03 0.01
36 0.04 0.03 0.01
37 0.00 0.00 0.01
38 0.02 0.02 0.00
39 0.03 0.04 0.02
40 0.04 0.03 0.01
41 0.00 0.00 0.03
42 0.01 0.02 0.02
43 0.04 0.04 0.02
44 0.02 0.02 0.04
45 0.03 0.04 0.02
46 0.01 0.01 0.02
47 0.03 0.03 0.01
48 0.03 0.02 0.02
49 0.02 0.02 0.01
50 0.02 0.02 0.01
51 0.00 0.00 0.01

Number of Observations 20,864 4,701

Note. Calculated for admissions to medical units
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EC.4. Complete Regression Results

Table EC.30 Complete regression results for equation 1, used to test hypothesis 1

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

TLS -0.1543** -0.2060** 0.0889**

(0.0093) (0.0183) (0.0104)

Hour

1 1.2463** 0.1985
(0.2607) (0.1784)

2 0.9672** 0.1291

(0.2319) (0.1856)
3 0.7746** 0.2018

(0.2121) (0.1713)

4 0.5516ˆ 0.2977
(0.3084) (0.2284)

5 0.3660 0.3253ˆ

(0.2600) (0.1874)
6 0.2466 0.4739*

(0.2613) (0.1857)
7 -0.0561 0.1377

(0.3552) (0.1867)

8 -0.2596 -0.4993
(0.4567) (0.3578)

9 0.2981 -0.2991

(0.3123) (0.2167)
10 0.4808 -0.2060

(0.3008) (0.2105)

11 0.6620* 0.2239
(0.2794) (0.1730)

12 0.7238** 0.5602**

(0.2616) (0.1623)
13 0.7050** 0.7972**

(0.2567) (0.1526)
14 0.5534* 0.9209**

(0.2682) (0.1548)

15 0.2022 0.6039**

(0.2589) (0.1533)

16 0.4187ˆ 0.4392**

(0.2203) (0.1372)
17 0.8551** 0.2385

(0.2490) (0.1597)
18 0.9774** 0.4176**

(0.2087) (0.1545)

19 0.8755** 0.5834**

(0.2108) (0.1516)
20 0.6663** 0.6093**

(0.1947) (0.1179)

21 0.5346** 0.7928**

(0.1999) (0.1443)
22 0.3945* 0.9477**

(0.1950) (0.1258)
23 0.2570 0.8532**

(0.1960) (0.1361)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

Day of Week
Monday -0.1864* -0.0862

(0.0808) (0.0743)
Tuesday -0.1848* -0.0842

(0.0743) (0.0761)

Wednesday -0.3602** -0.2559**

(0.0976) (0.0759)

Thursday -0.1446ˆ -0.0820

(0.0759) (0.0664)
Friday -0.1195 -0.0571

(0.0796) (0.0746)

Saturday -0.1226 -0.0178
(0.0856) (0.0780)

Year

2017 -0.0392 -0.0127
(0.0591) (0.0624)

2018 -0.1726* -0.1254

(0.0781) (0.0777)
Week

2 -0.0592 -0.0542
(0.1582) (0.1430)

3 -0.0161 -0.0445

(0.1751) (0.1542)
4 -0.1866 -0.1748

(0.1710) (0.1621)

5 -0.2103 -0.1225
(0.1988) (0.1703)

6 -0.1420 -0.0684

(0.1811) (0.1400)
7 -0.1315 -0.1453

(0.1930) (0.1536)

8 -0.0792 -0.0899
(0.1814) (0.1586)

9 0.0485 0.0574
(0.1615) (0.1565)

10 0.0444 0.0600

(0.1792) (0.1597)
11 -0.3597ˆ -0.2793

(0.1990) (0.1883)

12 -0.2226 -0.1446
(0.1715) (0.1583)

13 -0.2016 -0.1591
(0.1910) (0.1826)

14 -0.3329ˆ -0.1982

(0.1838) (0.1620)

15 -0.1847 -0.1925
(0.1766) (0.1741)

16 -0.2179 -0.1916
(0.2134) (0.1669)

17 -0.1025 -0.1069

(0.2015) (0.1709)
18 -0.0980 -0.0965

(0.1992) (0.1684)

19 -0.4215* -0.4831**

(0.2065) (0.1819)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

20 0.1898 0.0533
(0.1514) (0.1642)

21 0.0688 0.0273
(0.1829) (0.1713)

22 -0.0632 -0.1018

(0.1831) (0.1474)
23 0.0136 -0.0699

(0.1942) (0.1597)

24 -0.2726 -0.3071ˆ
(0.1822) (0.1673)

25 -0.1658 -0.2457

(0.1826) (0.1787)
26 -0.2703* -0.1757

(0.1362) (0.1361)

27 0.0206 0.0265
(0.1638) (0.1445)

28 -0.2121 -0.2468ˆ
(0.1678) (0.1449)

29 0.0158 -0.0191

(0.1462) (0.1539)
30 -0.3794** -0.2821*

(0.1400) (0.1312)

31 -0.1452 -0.1638
(0.1592) (0.1276)

32 -0.4184* -0.2904ˆ

(0.2105) (0.1658)
33 -0.6168** -0.5677**

(0.2137) (0.1802)

34 -0.1753 -0.2204
(0.1937) (0.1701)

35 0.0362 0.0240

(0.1717) (0.1521)
36 -0.0175 -0.0062

(0.1538) (0.1285)
37 0.1409 0.1716

(0.1900) (0.1549)

38 -0.1175 -0.1004
(0.2215) (0.2007)

39 0.0727 0.0818

(0.1834) (0.1766)
40 -0.2820 -0.2837ˆ

(0.1857) (0.1705)
41 0.0048 0.1070

(0.1418) (0.1543)

42 -0.2864 -0.1973

(0.2181) (0.1964)
43 -0.2016 -0.1508

(0.1998) (0.1702)
44 -0.2283 -0.3200ˆ

(0.1927) (0.1784)

45 -0.3163 -0.2675
(0.2059) (0.1782)

46 -0.1484 -0.2280

(0.1825) (0.1741)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

47 -0.2838 -0.2337
(0.2176) (0.1728)

48 0.1455 0.1055
(0.1729) (0.1555)

49 -0.2319 -0.1422

(0.2001) (0.1665)
50 -0.3388 -0.1216

(0.2254) (0.1753)

51 -0.1604 -0.1002
(0.1888) (0.1843)

52 -0.0452 -0.1105

(0.1867) (0.1659)
Department ID

Dept. 2 -0.0165 -0.0263

(0.1104) (0.0966)
Dept. 3 -0.0007 -0.0670

(0.0849) (0.0754)

Dept. 4 -0.0647 -0.0731
(0.0888) (0.0809)

Dept. 5 0.1605ˆ 0.1276
(0.0943) (0.0859)

Dept. 6 -0.2067* -0.2177*

(0.0992) (0.0880)
Dept. 7 0.0258 0.0074

(0.1062) (0.0927)

Dept. 12 0.0951 0.0905
(0.1233) (0.1152)

Dept. 13 -0.0136 0.0618

(0.1313) (0.1222)
Dept. 14 -0.1646 -0.1714

(0.1548) (0.1265)

Dept. 16 -0.0905 -0.0257
(0.1858) (0.1460)

Dept. 17 0.0694 0.1927ˆ
(0.1120) (0.1026)

Dept. 18 -0.2859 -0.1055

(0.2516) (0.1909)
Dept. 19 0.0088 0.0466

(0.1487) (0.1253)

Dept. 23 0.0258 0.1597
(0.2362) (0.2199)

Dept. 24 -0.0033 -0.0697

(0.1834) (0.1625)
Dept. 25 0.0110 -0.0314

(0.1472) (0.1236)
Dept. 26 0.1287 0.0980

(0.1879) (0.1490)

Dept. 27 -0.1740 -0.1653
(0.1696) (0.1554)

Dept. 28 0.0911 0.0711

(0.0766) (0.0692)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

Dept. 29 0.0695 0.1124
(0.0802) (0.0727)

Dept. 30 0.0573 0.1314
(0.0876) (0.0818)

Dept. 31 0.0118 0.0739

(0.0934) (0.0803)
Dept. 36 0.0279 0.0657

(0.1095) (0.0861)

Dept. 40 0.1007 0.1634
(0.1425) (0.1235)

N6h 0.0079 0.0106

(0.0126) (0.0102)
AGE 0.0029** 0.0021*

(0.0011) (0.0009)

ESI Score
2 0.0785 0.0586

(0.0754) (0.0624)
3 0.0443 0.0240

(0.0824) (0.0701)

4 -0.0721 -0.1585
(0.1784) (0.1396)

5 0.2335 -0.1127

(0.6803) (0.6367)
Number of ED tests 0.0370** 0.0316**

(0.0141) (0.0109)

Hospital Service
Bariatric Surgery -0.1852 0.2541

(1.0045) (0.7841)

CHF 0.8384 0.7922
(0.9321) (0.9483)

Cardiac ICU 0.4366 0.4171

(0.3400) (0.3091)
Cardiology 0.5841ˆ 0.5885*

(0.2994) (0.2575)
Cardiology; General 0.8302* 0.7820*

(0.3758) (0.3181)

Cardiothoracic Surgery 0.0999 0.0969
(0.3802) (0.2984)

Critical Care Medicine 0.2162 -0.0323

(0.7582) (0.7206)
Critical Care Surgery 0.0000 -0.7656

(.) (1.2645)
Dental 0.8470** 0.6536*

(0.3051) (0.2767)

Emergency Medicine 0.6819 0.3665
(0.4668) (0.3947)

Family Medicine 0.6347* 0.6208**

(0.2639) (0.2410)

General Medicine 0.5133ˆ 0.4469ˆ
(0.2682) (0.2494)

General Surgery 0.6978** 0.5861*

(0.2553) (0.2424)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

Geriatrics 0.5168ˆ 0.4146
(0.2870) (0.2560)

Gynecology 0.8486** 0.6628*

(0.2964) (0.2772)

Hematology/Oncology 0.6180* 0.5341*

(0.2941) (0.2568)
Hospice 0.7933 0.5093

(0.8419) (0.9093)

Hospitalist 0.4965ˆ 0.4149ˆ
(0.2774) (0.2492)

Infectious Disease 0.3994 0.3189

(0.2851) (0.2609)
Internal Medicine 0.6431* 0.6352*

(0.2869) (0.2519)

Maternal-Fetal Medicine 1.7383** 1.6031**

(0.5088) (0.4237)

Medical ICU 0.5903ˆ 0.4432

(0.3078) (0.2788)
Neuro ICU 0.8720 0.7034

(0.8414) (0.7600)
Neurology 0.4546ˆ 0.4305ˆ

(0.2730) (0.2428)

Neurosurgery 0.3100 0.4401ˆ
(0.3177) (0.2383)

OMFS 1.5546* 1.2206*

(0.7516) (0.5400)
Obstetrics 0.0000 0.2244

(.) (1.1226)

Orthopedic Surgery -1.0531 -0.3786
(1.0763) (0.7677)

Orthopedics 0.5385 0.4996

(0.3423) (0.3210)
Otolaryngology/ENT 0.4409 0.3502

(0.4151) (0.3772)
Plastic Surgery 0.7233 0.4249

(0.8206) (0.7747)

Pulmonology 0.8279** 0.7407*

(0.3145) (0.2926)

Renal 0.6058* 0.5359*

(0.2841) (0.2586)
Stroke Neurology 0.5772 0.4297

(0.4970) (0.4410)
Surgical Oncology 0.9189 0.3025

(0.7896) (0.8159)

Transplant 0.6150 0.8073ˆ

(0.5950) (0.4550)
Trauma 0.5550 0.5715ˆ

(0.3801) (0.3265)
Urology 0.3228 0.3613

(0.3316) (0.2400)

Visit class
Emergency 0.9747 1.8124

(2.0928) (2.4969)

Inpatient -0.3989 0.2030
(0.5958) (0.4856)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

Observation -0.3133 0.3073
(0.5890) (0.4806)

Charlson Comorbidity Index -0.0040 -0.0002
(0.0065) (0.0055)

Num. ICU visits 0.0603 0.0385

(0.0445) (0.0426)
Insurance class

Commercial -0.0211 -0.0122

(0.0396) (0.0340)
Free Care & Other -0.0789 -0.0778

(0.0819) (0.0724)

Medicaid 0.0501 0.0587ˆ
(0.0386) (0.0350)

Race

Black 0.0090 0.0115
(0.0309) (0.0265)

Male 0.0541 0.0508ˆ

(0.0330) (0.0297)
Patient order 0.0123** 0.0251**

(0.0027) (0.0028)
Shift length -0.2673** -0.3385**

(0.0973) (0.0586)

Hours b/w shifts -0.0002 -0.0003
(0.0002) (0.0002)

Hours to next shift -0.0000 -0.0001

(0.0002) (0.0002)
Shift time

7am – 3pm 0.5964** 0.5023**

(0.1700) (0.1432)
3pm – 11pm 0.9361** 0.6041**

(0.1340) (0.1077)

11pm – 7am 0.9413** 0.7567**

(0.2588) (0.1769)

8am – 4pm 0.4052* 0.2731ˆ
(0.1625) (0.1464)

4pm – 12am 0.8430** 0.3596**

(0.1594) (0.1247)
8am – 8pm 1.3682** 1.7676**

(0.2849) (0.5649)

Nroomed 0.0040* 0.0021
(0.0016) (0.0015)

Physician ID
2 0.0549** 0.2001**

(0.0191) (0.0167)

3 0.1861** 0.1960**

(0.0196) (0.0165)
4 1.7484** 0.5578*

(0.3069) (0.2689)

5 -0.0628* 0.0460ˆ
(0.0285) (0.0260)

6 2.0896** 1.3054**

(0.1196) (0.1004)
8 0.2589** 0.2084**

(0.0295) (0.0221)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.

Electronic copy available at: https://ssrn.com/abstract=3819868



ec34 e-companion to Feizi et al.: Impact of Admission Batching on Boarding Time and Productivity

Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

10 0.2460** 0.2759**

(0.0571) (0.0510)

11 0.6118** 0.5808**

(0.0505) (0.0475)
14 -0.2585** -0.0620

(0.0832) (0.0727)
16 0.3313** 0.3577**

(0.0226) (0.0213)

17 0.1817ˆ 0.5334**

(0.0950) (0.1007)

18 0.2128** 0.1865**

(0.0216) (0.0172)
20 -0.1606** -0.1164**

(0.0313) (0.0285)

23 0.2319** 0.2563**

(0.0187) (0.0163)

24 0.5902** 0.7754**

(0.2228) (0.2013)
25 -0.0209 -0.0075

(0.0305) (0.0232)

26 0.1640* 0.2050**

(0.0695) (0.0653)

28 -0.2725** -0.1125**

(0.0360) (0.0359)

30 0.0418* 0.0332ˆ

(0.0202) (0.0177)
31 0.3308 0.2063

(0.2154) (0.1823)

33 -0.0846** 0.0698**

(0.0205) (0.0179)

34 0.0343 0.1127**

(0.0214) (0.0185)
35 0.1587** 0.3020**

(0.0317) (0.0289)

37 -0.2690** 0.0130
(0.0638) (0.0568)

38 0.0569 0.2610**

(0.0891) (0.0767)
39 0.1241** 0.1994**

(0.0257) (0.0223)
41 0.1720** 0.2474**

(0.0147) (0.0142)

42 -0.0566** 0.1048**

(0.0195) (0.0140)

43 0.0088 0.2086**

(0.0756) (0.0638)
44 0.1755 -0.2741

(0.2282) (0.2344)
45 -0.2202** -0.0959**

(0.0254) (0.0212)

46 -0.0563** 0.0666**

(0.0175) (0.0141)
47 0.0031 0.0770**

(0.0161) (0.0148)

Continued on next page

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.30 Complete regression results for equation 1, used to test hypothesis 1 (Cont.)

Dep. Variable: ln( Prob(BCH)

1−Prob(BCH)
)

(1) (2) (3)

48 -0.4449** 0.0197
(0.0824) (0.0743)

49 -0.1100** 0.1197**

(0.0298) (0.0284)
50 0.0854** 0.1607**

(0.0206) (0.0176)
51 -0.0159 -0.0099

(0.0161) (0.0135)

52 0.5347 0.2776
(0.4157) (0.3524)

53 0.4096** 0.4048**

(0.0507) (0.0428)
54 0.3406** 0.3740**

(0.0227) (0.0202)

55 -0.3417** -0.1871**

(0.0197) (0.0160)

57 0.2629** 0.3044**

(0.0180) (0.0155)
58 0.0422 0.0988

(0.0683) (0.0634)

59 0.0869** 0.1364**

(0.0196) (0.0193)

60 -0.1241** -0.1172**

(0.0211) (0.0156)

61 0.1031** 0.2697**

(0.0266) (0.0230)
63 0.1872** 0.1545**

(0.0290) (0.0280)

66 0.6413** 0.7386**

(0.0593) (0.0547)

Waiting Room Census -0.0003 0.0001

(0.0004) (0.0004)
constant -0.9545** -0.5113 -0.7238

(0.0396) (1.6647) (1.2311)

N 31,563 30,466 42,034
R2 0.0146 0.0423 0.0374

**p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. Slight drop in N is because we removed observations with
missing values in controls.
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Table EC.31 Complete regression results for equation 2, used to test hypothesis 2

Dep. Var ln(Pre-allocation Delay)

Coefficient Robust Std. Err. P > |t|

Batched 0.0455124 0.0168445 0.007
Occupancy Level 0.0375958 0.0015731 0.000

Day of Week

Monday 0.4050379 0.0260696 0.000
Tuesday 0.5468499 0.0262246 0.000

Wednesday 0.5559771 0.0261306 0.000

Thursday 0.5225916 0.0264449 0.000
Friday 0.4261117 0.0260542 0.000

Saturday 0.1196312 0.0274652 0.000
Year

2017 0.2337013 0.0180774 0.000

2018 0.2753042 0.0258205 0.000
Week

2 0.5171903 0.0690266 0.000

3 0.2591884 0.0741493 0.000
4 0.4697640 0.0719630 0.000

5 0.3795603 0.0706094 0.000

6 0.3621223 0.0712532 0.000
7 0.4092073 0.0706700 0.000

8 0.4655966 0.0685935 0.000

9 0.3684871 0.0719108 0.000
10 0.3226328 0.0695479 0.000

11 0.1560167 0.0734296 0.034
12 0.4221708 0.0744392 0.000

13 0.2941115 0.0724340 0.000

14 0.3606874 0.0720997 0.000
15 0.4117799 0.0791758 0.000

16 0.4363444 0.0738206 0.000

17 0.3689570 0.0784630 0.000
18 0.8341249 0.0802166 0.000

19 0.5822762 0.0722076 0.000

20 0.2299459 0.0687625 0.001
21 0.1486223 0.0697309 0.033

22 0.1948489 0.0696075 0.005

23 0.2150848 0.0653020 0.001
24 0.1432892 0.0655662 0.029

25 0.1795884 0.0646749 0.005
26 0.1042187 0.0660294 0.114

27 0.0865263 0.0668576 0.196

28 0.3549980 0.0683001 0.000
29 0.3980474 0.0680497 0.000

30 0.2864453 0.0698006 0.000
31 0.0344705 0.0696865 0.621
32 0.1700022 0.0691368 0.014

33 0.4006781 0.0717460 0.000

34 0.2532105 0.0731904 0.001
35 0.2777397 0.0693387 0.000

36 0.1809084 0.0707244 0.011
37 0.3114307 0.0696271 0.000
38 0.5710913 0.0699150 0.000

39 0.3656532 0.0706912 0.000
40 0.2893295 0.0701674 0.000

41 0.3893246 0.0716134 0.000

42 0.3303540 0.0717387 0.000
43 0.5383705 0.0742510 0.000

44 0.2664092 0.0715232 0.000

45 0.0706203 0.0727157 0.331
46 0.1701430 0.0717117 0.018

Continued on next page
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Table EC.31 Complete regression results for equation 2, used to test hypothesis 2 (Cont.)

Dep. Var ln(Pre-allocation Delay)

Coefficient Robust Std. Err. P > |t|

47 0.0943117 0.0737511 0.201
48 0.1934601 0.0717965 0.007

49 0.3110722 0.0742228 0.000

50 0.3247829 0.0725798 0.000
51 0.5688549 0.0717654 0.000

52 0.2167284 0.0694747 0.002

Department ID
Dept. 1 0.0359207 0.0540696 0.506

Dept. 2 0.1142687 0.0572238 0.046
Dept. 3 0.0848557 0.0572394 0.138

Dept. 4 0.1499802 0.0542510 0.006

Dept. 12 -0.2387147 0.0562848 0.000
Dept. 20 -0.0241518 0.0464875 0.603

Dept. 21 -0.0336879 0.0463571 0.467

Dept. 22 -0.1134339 0.0480944 0.018
Num. of Admissions in past 6 hours -0.0201715 0.005957 0.001

Age 0.0002979 0.0004770 0.532

ESI Score
2 -0.0349296 0.0735937 0.635

3 -0.0323837 0.0739038 0.661

4 -0.0069392 0.0855733 0.935
5 -0.5166008 0.2375281 0.030

Num. of ED tests 0.0148143 .0054292 0.006

Hospital Service

Cardiac ICU -0.1103303 0.1756113 0.530
Cardiology -0.3914569 0.1312502 0.003

Cardiology; General -0.3866919 0.1761999 0.028

Cardiothoracic Surgery -0.0850190 0.1927435 0.659
Dental 0.0231749 0.2150668 0.914

Emergency Medicine 0.4838410 0.2025703 0.017

Family Medicine 0.0200381 0.1278584 0.875
General Medicine 0.1852439 0.1271949 0.145

General Surgery -0.1686033 0.1329164 0.205

Geriatrics 0.0532234 0.1302948 0.683
Gynecology -0.0514182 0.2070660 0.804

Hematology/Oncology -0.4046328 0.1323596 0.002
Observation 0.0329188 0.1503661 0.827

Infectious Disease 0.1173184 0.1315358 0.372

Internal Medicine 0.0547566 0.1368525 0.689
Medical ICU 0.1031926 0.1732824 0.552

Neurology -0.4298684 0.1337625 0.001

Neurosurgery -0.1591677 0.2277216 0.485
Orthopedic Surgery -0.5662670 0.2459593 0.021
Orthopedics -0.5009076 0.1622067 0.002

Otolaryngology/ENT 0.4413316 0.2396370 0.066
Pulmonology 0.0197978 0.2076717 0.924

Renal -0.2568958 0.1304578 0.049

Stroke Neurology -0.1281449 0.2230440 0.566
Trauma -0.1427615 0.2608363 0.584
Urology 0.0103598 0.2174762 0.962

Visit Class Name
Inpatient 0.0510353 0.0141169 0.000

Charlson Comorbidity Index 0.0030246 0.0025537 0.236
Number of ICU Visits -0.0395745 0.0290723 0.173
Insurance Class Name

Commercial -0.0114853 0.0180586 0.525

Continued on next page
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Table EC.31 Complete regression results for equation 2, used to test hypothesis 2 (Cont.)

Dep. Var ln(Pre-allocation Delay)

Coefficient Robust Std. Err. P > |t|

Free Care & Other -0.0794205 0.0372689 0.033
Medicaid 0.0115673 0.0175949 0.511

Black -0.0281309 0.0141837 0.047

Male -0.0100987 0.0134276 0.452
Physician ID

1 0.1395322 0.0524224 0.008

2 0.1317901 0.0545735 0.016
3 0.2618873 0.2732732 0.338

4 0.1676608 0.0581254 0.004
5 0.295919 0.1854214 0.111

6 0.3181683 0.1757103 0.070

7 0.1213606 0.0598760 0.043
8 0.0176113 0.0780007 0.821

9 0.1614573 0.0696570 0.020

10 0.5421596 0.2034469 0.008
11 0.0436492 0.0548474 0.426

12 0.3015158 0.1514488 0.047

13 0.1174845 0.0485626 0.016
14 -0.0455473 0.2132563 0.831

15 0.0369851 0.0543032 0.496

16 0.0964749 0.1509075 0.523
17 0.0934891 0.0605623 0.123

18 0.1054678 0.0549612 0.055
19 0.1795399 0.1353920 0.185

20 -0.0082009 0.0575204 0.887

21 0.1870359 0.0648595 0.004
22 0.0241390 0.0753402 0.749

23 0.0976460 0.0525518 0.063

24 0.0666713 0.0527779 0.207
25 0.1255183 0.0544510 0.021

26 0.1479217 0.0581137 0.011

27 0.1099399 0.0726607 0.130
28 0.054959 0.0914371 0.548

29 0.1137645 0.0539406 0.035

30 0.085421 0.0536121 0.111
31 0.0895213 0.0521010 0.086

32 0.1118129 0.0586950 0.057
33 0.1665473 0.0576445 0.004

34 0.1664226 0.0501332 0.001

35 0.0379938 0.0501529 0.449
36 0.3213601 0.1571181 0.041

37 0.1242991 0.0632185 0.049
38 0.1361543 0.0503702 0.007
39 0.138068 0.0500657 0.006

40 -0.3680421 0.1930742 0.057

41 0.0925708 0.0658396 0.160
42 0.1636991 0.0494803 0.001

43 0.0512053 0.0579851 0.377
44 0.0766899 0.0525695 0.145
45 0.1887383 0.0659201 0.004

46 0.1015419 0.0510074 0.047
47 0.2004422 0.0518214 0.000

48 0.1414625 0.0587760 0.016

49 0.0471828 0.0609879 0.439
50 0.3048952 0.2413666 0.207

Hour

1 0.0071786 0.0644611 0.911
2 0.112472 0.0686990 0.102

Continued on next page
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Table EC.31 Complete regression results for equation 2, used to test hypothesis 2 (Cont.)

Dep. Var ln(Pre-allocation Delay)

Coefficient Robust Std. Err. P > |t|

3 0.1574426 0.0707528 0.026
4 0.1820054 0.0729789 0.013

5 0.5010637 0.0753983 0.000

6 0.7438274 0.0697244 0.000
7 0.8209719 0.0691315 0.000

8 0.7149861 0.0703279 0.000

9 0.7162758 0.0637654 0.000
10 0.6898545 0.0602885 0.000

11 0.683133 0.0566033 0.000
12 0.6911972 0.0553610 0.000

13 0.7058089 0.0543001 0.000

14 0.8291992 0.0526930 0.000
15 0.8687588 0.0520173 0.000

16 0.7330635 0.0541611 0.000

17 0.8185552 0.0521667 0.000
18 0.7479485 0.0515691 0.000

19 0.3485631 0.0529839 0.000

20 0.2008036 0.0538411 0.000
21 0.1297796 0.0542713 0.017

22 0.1168044 0.0539278 0.030

23 0.3387243 0.0544555 0.000
constant -4.3985290 0.2131756 0.000

Table EC.32 Mediating role of CV in relationship between batching and pre-allocation delay

(a) Seemingly unrelated regression results

Stage 1 Stage 2 Stage 3

Dep. Variable: LPAD CV LPAD

Batch 0.0455** 0.0713** 0.0416*

(0.0168) (0.0049) (0.0169)

CV 0.0555*

(0.0228)

N 25,565 25,565 25,565
R2 0.2172 0.0173 0.2174

**p < 0.01, *p < 0.05, ˆp < 0.1
Standard errors shown in parentheses.

(b) 5000-Sample bootstrap results

Effect Mean Bias-corrected 95% CI

Indirect 0.003954 (0.00074, 0.00748)
Direct 0.041559 (0.00879, 0.07422)
Total 0.045512 (0.01299, 0.07812)

Note. N = 25,565
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Table EC.33 Complete regression results for equation 5, used to test hypothesis 3

Dep. Variable: Number of Patients Seen Average Throughput Time

(1)

unweighted OLS

(2)

weighted CEM-matched

(3)

unweighted OLS

(4)

weighted CEM-matched

Shift with batching 2.2957** 2.1340** -0.0264ˆ -0.0431**

(0.1092) (0.1138) (0.0138) (0.0143)
Shift Length 1.8243** 2.0065** 0.2119** 0.2229**

(0.1824) (0.2059) (0.0149) (0.0195)
Physician ID

2 -2.8986** -2.8061** 0.3382** 0.2919**

(0.0389) (0.0444) (0.0033) (0.0039)
3 -2.3659** -2.3656** 0.4678** 0.4362**

(0.0567) (0.0656) (0.0058) (0.0066)

4 1.2553* 0.4487**

(0.5225) (0.0542)

5 -2.7150** -2.5731** 0.1824** 0.1825**

(0.0717) (0.0878) (0.0066) (0.0084)
6 -6.1945** -5.9445** 1.1664** 1.1646**

(0.1656) (0.2523) (0.0144) (0.0259)
7 -13.3225** -17.9131** -0.7869** -1.6447**

(0.6942) (0.9523) (0.0682) (0.0752)

8 -2.7643** -2.2212** 0.3864** 0.3616**

(0.0570) (0.0729) (0.0055) (0.0078)

10 -0.7015* -0.5153* 0.2546** 0.2284**

(0.2816) (0.2210) (0.0164) (0.0188)
11 0.7667** 0.9427** 0.1801** 0.1559**

(0.1689) (0.2567) (0.0130) (0.0274)

13 -9.7451** -0.9830**

(0.8758) (0.0807)

14 -3.0498** -3.2506** 0.3872** 0.3618**

(0.2517) (0.2712) (0.0266) (0.0294)
15 -16.8881** -0.9075**

(0.6033) (0.0574)

16 -1.6849** -1.6036** 0.4380** 0.3893**

(0.0542) (0.0533) (0.0065) (0.0064)

17 -1.9421** -2.6279** 0.0925** 0.1464**

(0.1447) (0.1632) (0.0130) (0.0209)
18 0.4653** 0.5070** 0.2749** 0.2524**

(0.0693) (0.0631) (0.0051) (0.0053)
19 -7.3594** -11.0391** -0.6118** -1.1223**

(0.5697) (1.0343) (0.0578) (0.0744)

20 -2.1656** -2.3574** 0.1613** 0.0633**

(0.0670) (0.0911) (0.0054) (0.0107)

23 -1.0857** -0.7093** 0.2281** 0.1908**

(0.0435) (0.0466) (0.0026) (0.0035)
24 -0.2019 9.3769** 0.1790** 0.6535**

(0.5013) (0.2569) (0.0534) (0.0340)

25 -1.9093** -1.8572** 0.1944** 0.0947**

(0.1170) (0.1168) (0.0076) (0.0101)

26 -1.3881** -0.8499** 0.3803** 0.2504**

(0.1422) (0.2353) (0.0123) (0.0247)
28 -2.1299** -2.1725** 0.1938** 0.1395**

(0.1016) (0.1015) (0.0070) (0.0098)
29 -10.0433** 0.0829ˆ

(0.5525) (0.0447)

30 -2.3239** -2.6982** 0.2413** 0.2042**

(0.0693) (0.0706) (0.0043) (0.0059)

Continued on next page

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. 90 out of 7,709 physician shifts had none of the
admissions occur during the shift, and were therefore removed from the sample. An additional 52 physician shifts were missing either hours
to next shift or hours since last shift, and hence were eliminated from the sample. Controls included in all models.
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Table EC.33 Complete regression results for equation 5, used to test hypothesis 3

Dep. Variable: Number of Patients Seen Average Throughput Time

(1)

unweighted OLS

(2)

weighted CEM-matched

(3)

unweighted OLS

(4)

weighted CEM-matched

31 0.7798* 0.8424** 0.0799* 0.0088

(0.2983) (0.2995) (0.0327) (0.0374)
33 -1.1798** -1.0589** 0.3761** 0.3426**

(0.0484) (0.0529) (0.0039) (0.0054)
34 -0.0731ˆ -0.2632** 0.0667** 0.0539**

(0.0414) (0.0376) (0.0020) (0.0034)

35 -3.3882** -3.3752** 0.3936** 0.3406**

(0.1152) (0.1366) (0.0099) (0.0133)

37 -0.2778ˆ 0.4599* 0.3615** 0.2743**

(0.1408) (0.2061) (0.0122) (0.0218)
38 -2.3009** -2.5728** 0.2563** 0.2497**

(0.2588) (0.2896) (0.0284) (0.0349)

39 -1.1187** -1.0972** 0.2191** 0.1962**

(0.0779) (0.0810) (0.0041) (0.0067)

41 -1.8247** -1.6736** 0.1385** 0.1153**

(0.0463) (0.0460) (0.0040) (0.0047)
42 -1.6707** -1.5411** 0.2471** 0.2159**

(0.0515) (0.0574) (0.0037) (0.0055)

43 -1.8840** -1.9355** 0.1756** 0.1661**

(0.2309) (0.2439) (0.0246) (0.0274)

44 -12.1244** -0.9476**

(0.6239) (0.0621)
45 -2.1663** -2.2050** 0.1859** 0.1490**

(0.0402) (0.0476) (0.0034) (0.0051)
46 -1.7057** -1.6322** 0.1887** 0.1546**

(0.0329) (0.0449) (0.0035) (0.0042)

47 -1.7819** -1.6195** 0.1462** 0.1203**

(0.0345) (0.0464) (0.0039) (0.0054)

48 -0.5737** 0.3336 0.0145 -0.0495*

(0.1213) (0.2378) (0.0098) (0.0233)
49 -3.8134** -3.9866** 0.5076** 0.4863**

(0.0543) (0.0544) (0.0049) (0.0053)

50 -0.3894** -0.6413** 0.1988** 0.1666**

(0.0578) (0.0567) (0.0057) (0.0059)

51 -0.9483** -1.0105** 0.1595** 0.1343**

(0.0293) (0.0380) (0.0027) (0.0039)
52 -9.7760** -14.2864** -0.9014** -1.5843**

(0.6540) (0.9885) (0.0596) (0.0712)

53 0.8553** 0.9069** 0.3044** 0.2641**

(0.1402) (0.2071) (0.0138) (0.0199)

54 -3.3594** -3.3010** 0.2033** 0.1823**

(0.0974) (0.1071) (0.0088) (0.0111)
55 -2.4659** -2.2969** 0.2737** 0.2199**

(0.0602) (0.0604) (0.0032) (0.0057)
57 -2.1799** -2.0768** 0.2362** 0.1969**

(0.0758) (0.0766) (0.0061) (0.0071)

58 -0.2918* -0.5807* 0.1232** 0.0414
(0.1397) (0.2358) (0.0124) (0.0275)

59 0.3408** 0.1531** 0.0316** 0.0281**

(0.0492) (0.0555) (0.0033) (0.0047)
60 -0.6506** -0.8393** 0.2050** 0.1939**

(0.0320) (0.0456) (0.0024) (0.0038)

Continued on next page

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. 90 out of 7,709 physician shifts had none of the
admissions occur during the shift, and were therefore removed from the sample. An additional 52 physician shifts were missing either hours
to next shift or hours since last shift, and hence were eliminated from the sample. Controls included in all models.
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Table EC.33 Complete regression results for equation 5, used to test hypothesis 3

Dep. Variable: Number of Patients Seen Average Throughput Time

(1)

unweighted OLS

(2)

weighted CEM-matched

(3)

unweighted OLS

(4)

weighted CEM-matched

61 -0.9954** -1.0197** 0.4829** 0.4248**

(0.0857) (0.0864) (0.0064) (0.0082)
63 1.9006** 2.3209** 0.1096** 0.0908**

(0.0561) (0.0610) (0.0042) (0.0052)
66 -1.0041** -1.5748** 0.0250* -0.0125

(0.1348) (0.1483) (0.0101) (0.0121)

Number of ED tests -1.8324** -1.9750** 0.3029** 0.3030**

(0.1472) (0.1730) (0.0164) (0.0202)

Num. of patients roomed in shift 0.0763** 0.0868** -0.0001 0.0008ˆ

(0.0058) (0.0067) (0.0004) (0.0004)
Waiting Room Census 0.0028* 0.0023* 0.0000 -0.0001

(0.0011) (0.0011) (0.0001) (0.0001)

AM shift -10.5251** -11.4706** -0.2781** -0.3329**

(0.5859) (0.6549) (0.0455) (0.0508)

PM shift -8.2957** -8.6763** -0.0591 -0.0697ˆ

(0.4831) (0.5253) (0.0357) (0.0408)
Mean age -0.0029 -0.0029 0.0036* 0.0034*

(0.0124) (0.0123) (0.0014) (0.0016)

Mean ESI Score 0.4809 0.9503ˆ -0.1433** 0.0086
(0.4280) (0.5093) (0.0398) (0.0498)

Mean Charlson Comorbidity Score 0.0592 0.0623 0.0160 0.0109
(0.1144) (0.1389) (0.0136) (0.0144)

Mean Num. of ICU visits -6.0397** -5.5455** -1.3957** -1.3012**

(0.6159) (0.6104) (0.1069) (0.1045)
Hours between shifts 0.0001 -0.0015 -0.0000 0.0001

(0.0007) (0.0011) (0.0000) (0.0001)

Hours to next shift -0.0001 -0.0002 -0.0001 0.0001
(0.0007) (0.0013) (0.0000) (0.0001)

Weekend shift 5.1890** 5.4741** 0.0498* 0.0310

(0.5638) (0.5898) (0.0194) (0.0255)
constant 8.1722** 5.2937* 0.4727** -0.0370

(2.0768) (2.1492) (0.1739) (0.1861)

N 7567.0000 7060.0000 7567.0000 7060.0000
R2 0.3369 0.3422 0.2328 0.2005

Note. **p < 0.01, *p < 0.05, ˆp < 0.1, robust standard errors shown in parentheses. 90 out of 7,709 physician shifts had none of the
admissions occur during the shift, and were therefore removed from the sample. An additional 52 physician shifts were missing either hours
to next shift or hours since last shift, and hence were eliminated from the sample. Controls included in all models.
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