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In war zones and economically deprived regions, because of extreme resource restrictions, a single provider may be the

sole person in charge of providing emergency care to a group of patients. An important question the provider faces under

such circumstances is whether or not to perform triage and how to prioritize the patients. By choosing to triage a particular

patient, the provider can determine the health condition and thus the urgency of the patient but that will come at the

expense of delaying the actual service (stabilization or initial treatment) for that patient as well as all the other patients.

Motivated by this problem, which also arises in other service contexts, we consider a service system where finitely many

patients, all available at time zero, belong to one of the two possible triage classes, where each class is characterized by

its waiting cost and expected service time. Patients’ class identities are initially unknown, but the service provider has

the option to spend time on triage to determine the class of a patient. Our objective is to identify policies that balance

the time spent on triage with the time spent on service by minimizing the total expected cost. We provide a complete

characterization of the optimal dynamic policy and show that the optimal dynamic policy that specifies when to perform

triage is determined by a switching curve and we provide a mathematical expression for this curve. One insight that comes

out of this characterization is that the server should start with performing triage when there are sufficiently many patients

and never perform triage when there are few patients. Finally, we carry out a numerical study in which we demonstrate

how one can use our mathematical results to develop policies that can be used in mass-casualty triage and prioritization

and find that there are substantial benefits to using one of these policies instead of the simpler benchmarks.
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History:

1. Introduction
Patient triage and prioritization decisions in daily emergencies as well as mass-casualty events primarily

aim to make the best use of limited medical resources in an effort to save the lives of as many people as

possible andmore broadlymitigate the events’ negative impact on patients’ health. These decisions are highly

important regardless of whether they are made in response to daily emergencies or a mass-casualty event,

the number of patients seeking treatment, the size of the event, or more generally how limited resources are.

However, typically, different factors are at play and different considerations arise depending on the degree to
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which resources are limited. This paper is concerned with patient triage and prioritization decisions under

extremely resource-restricted conditions. Specifically, we focus on settings in which demand for skilled

medical providers far surpasses the available supply in close vicinity. In most cases, such conditions are

temporary and caused by incidents such as an armed attack, bombing, or an accident, but they might also be

chronic as a result of economic deprivation in a region.

A typical emergency response effort to a mass-casualty event in an urban area may involve a team

of medical personnel having a range of capabilities and responsibilities ranging from patient triage to

resuscitation, transportation, and on-site treatment and surgery. Under such conditions, because different

individuals have different skill sets and the number of providers on the scene is relatively large, patient

triage and patient treatment can be done by separate groups of individuals in parallel. However, in case

of incidents that occur at geographically isolated locations, battlefields, or military missions that result in

multiple life-threatening injuries, a single physician, nurse, or paramedic might find himself/herself as the

only person having the skills to deliver proper treatment - at least temporarily - to the injured (Mabry and

McManus 2008, Mabry et al. 2012, Ünlü et al. 2013). Similarly, in economically deprived areas where in

some cases healthcare services are delivered through mobile clinics, a single person or a team can be in

charge of both prioritizing and carrying out a full medical examination of the patients who show up at the

clinic in the morning (Gove et al. 1999, Razzak and Kellermann 2002, Molyneux et al. 2006, Stillman and

Strong 2008, World Health Organization 2008). In such settings, in addition to the typical decision of which

patient to prioritize, there is also the question of how to balance the time spent on triage and the time spent

on treatment or stabilization.

Patient triage and prioritization problem, particularly in the case of mass-casualty events, is so complex

that mathematical formulations that aim to be highly detailed and realistic representations are not likely to

lead to implementable solutions. The difficulty arises not only from the numerous factors such decisions

would have to consider - and thus the mathematical optimization problem would have to incorporate - but

also from the fact that reliable estimation of model parameters would be impossible especially considering

the lack of available data. Therefore, our main goal in this article is to develop a stylized formulation that

captures the essential features of the problem mentioned above and analyze this formulation so as to provide

insights that can be helpful in making decisions in practice. In the last part of the paper, we demonstrate

how one can design practical policies using our analytical characterization of the optimal policy as well as

prior work in mass-casualty triage.

Our model can broadly be described as follows: there are some finite number of patients all of whom are

in urgent need of attention from a single medical provider (e.g., a paramedic, nurse, or physician). While

all patients are in critical condition, some are in more serious condition than the others and thus need to
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be served more urgently. In attending to the patients, the provider has various options available. She does

not know which patients are in more serious condition. So, she can randomly choose a patient and serve.

Alternatively, for each patient she can choose to spend some time on triage to determine the triage class, and

thus the urgency level, of the patient. Once a classification is made, she can continue with the service of the

patient or move on to another patient who may or may not have already been classified. In parallel with most

existing mass-casualty triage protocols such as START (Lerner et al. 2008), which put critical patients in

one of two classes, we assume that there are two triage classes named immediate (patients with severe and

immediately life-threatening injuries) and delayed (patients with severe but not immediately life-threatening

injuries). Our objective is to determine the actions the provider should take depending on the number and

the composition of the patients waiting for attention.

A key issue when formulating this problem is deciding on what the objective function should be. For

mass-casualty events, the objective of maximizing the number of survivors is largely accepted in practice

but the question is how exactly that objective can be appropriately captured in a mathematical formulation

without rendering it analytically intractable. We discuss our modeling approach in detail in Section 3, but

here it suffices to state that our approach mainly rests on the idea that the decline in a patients’ survival

probability with the passage of time without treatment can be seen as the “waiting cost” for that patient

and thus the minimization of the expected total waiting cost can be interpreted as the minimization of the

expected number of deaths. It is also important to note that for our analytical results, we assume that for each

patient the system incurs a delay cost that depends on the triage class of the patient and increases linearly

with time. In fact, the only work available to date on survival probabilities for trauma patients (Sacco et al.

2005, 2007, Navin et al. 2009) strongly suggests that survival probabilities do not decrease linearly with

time. Nevertheless, as we demonstrate in Section 6 of the paper, our analysis based on this assumption can

be used to construct policies that perform well even under realistic conditions, where the assumption is

violated.

We review the relevant literature in Section 2 and formally describe our model in Section 3. In Section

4, we provide a complete characterization of the optimal dynamic policy, which allows making decisions

based on up-to-date system state, i.e., the number of untriaged patients and the numbers of patients already

classified as immediate and delayed all waiting to receive treatment. Under conditions that are most likely to

hold in practice, we show that whenever triage identifies an immediate patient, that patient should be served

right away; otherwise, the patient should wait until there are no more unclassified or immediate patients. This

finding, which essentially deals with the question of how to prioritize when patients are already classified, is

not surprising and consistent with the extensive literature which establish the optimality of the cµ-rule under

a variety of settings. The more interesting question, which is also the focus of this paper, is when to perform
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and when to skip triage. As it turns out, this decision depends on the number of unclassified patients and the

number of patients classified as delayed. In particular, we find that there is a switching curve that separates

the states in which triage should be performed from the others and we provide a closed-form expression

for the curve. One interesting insight that comes out of this characterization is that spending time on triage

helps if there are sufficiently many patients but not when there are relatively few. Being overwhelmed with

the volume of patients in need of treatment, there could be a temptation to skip triage and quickly move on

to more detailed examination and treatment of the patients in the hopes of saving time. However, our results

indicate that this could be a short-sighted decision.

In Section 5, we devise two policies which are simpler alternatives to the optimal policy. The two policies

are the No-Triage policy, which serves all patients in random order without spending any time in triage

and the Triage-Prioritize-Class-1 policy, which performs triage on all patients but serves the triaged patient

right away if the patient is classified as class-1, i.e., immediate. We identify conditions under which one is

superior to the other and use both policies as benchmark heuristics later in our computational study.

In Section 6, we show how our analytical results can help devise policies that are likely to perform well in

practice. To do that, we first introduce a new mathematical model, which explicitly considers the possibility

that the patients might die waiting for treatment and survival probability functions are chosen in line with

the work of Sacco et al. (2005, 2007) and Navin et al. (2009). Then, we describe how our analytical results

can be used to construct heuristic policies for this more realistic setting and report the results of a numerical

study in which we found that some of these policies perform consistently well across different scenarios.

Finally, in Section 7, we provide our concluding remarks and point to some future research directions. Proofs

of all the analytical results are provided in the online companion.

2. Discussion of the Relevant Literature
Our model and analysis are closely related to the classical job scheduling literature where jobs in our

context can be seen as the patients and servers or processors can be seen as the medical providers (e.g.,

paramedics, nurses, or physicians) who provide triage and treatment services on the scene. A simplified

version of our formulation in which class identities of all jobs are known has been studied extensively in

the literature. Specifically, when jobs incur linear waiting costs and the cost rate and the expected service

time of class-i jobs are respectively given by ci and 1/µi, the optimal policy under a variety of conditions

is the well-known cµ-rule: a job of class- j has priority over a job of class-k if and only if cj µj > ck µk .

Starting with Smith (1956), this body of work includes Cox and Smith (1961), Klimov (1974), Harrison

(1975), Pinedo (1983), Nain (1989), Argon and Ziya (2009) and Budhiraja et al. (2014) among others. Under

convex delay costs, the asymptotic optimality of a generalized version of the cµ-rule, called Gcµ-rule, was

established by Van Mieghem (1995) and further studied by Mandelbaum and Stolyar (2004). Our work
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mainly differs from these articles in that we assume that the class identity of a job is initially unknown and

can only be determined through a process called triage, which keeps the server occupied for a certain period

of time.

Some of the recent work has considered the job scheduling problem within the context of mass-casualty

triage by consideringmodelswhere either jobsmay renege (patients dying)whilewaiting or considering time-

dependent reward functions, which correspond to time-dependent survival probabilities. Specifically, Argon

et al. (2008) consider a single-server two-classmodel where patients renege from the systemwith exponential

rates that depend on the patient’s triage class. They provide a partial characterization of the optimal policy

and propose heuristic methods. Uzun Jacobson et al. (2012) consider a more general formulation in which the

“reward” obtained through service, which can be seen as the probability that the service will be successful,

depends on patient class (though not the time of the service). The authors provide partial characterizations

of the optimal policy when there is a single server and propose heuristic methods that can be used even

in multiple-server settings. Mills et al. (2013) consider a deterministic fluid model in which there is no

reneging but the “reward” for service (survival probability after service) changes with time. Under some

realistic conditions, the paper provides a mathematical characterization of the optimal policy and then uses

it to propose a prioritization policy that can be implemented in practice.

A number of articles in the literature (e.g., Shumsky and Pinker 2003, Wang et al. 2010, Alizamir et al.

2012, Dobson and Sainathan 2011, Dobson et al. 2013) investigate diagnostic systems which, similar to the

triage in our formulation, include a process that reveals some information about the jobs based on which

further action is taken. Shumsky and Pinker (2003) consider a two-level service system where the first level

acts as a gatekeeper, who first makes an initial diagnosis on arriving customers and then depending on this

diagnosis may or may not refer the customers to a specialist. Differing significantly from our focus in this

paper, the main objective of Shumsky and Pinker (2003) is to design an incentive mechanism that helps

overcome the information asymmetry caused by the gatekeeper being the sole observer of the complexity of

the job that each customer presents and the gatekeeper’s own treatment ability. One similarity with our work

is that, in the model of Shumsky and Pinker (2003), just as in our model there are two levels of service (triage

or serve without triage). However, unlike Shumsky and Pinker (2003), in our formulation, a single server is

in charge of both levels of service and the first level of service (triage) is not mandatory. Wang et al. (2010)

study a model where patients may or may not choose to call a diagnostic service center depending on their

expectation on the diagnostic accuracy and waiting time. The authors investigate how capacity (staffing) and

diagnostic quality decisions should be made.

Alizamir et al. (2012) consider a model where a single server classifies each arriving customer into one

of two classes based on the results of a series of independent tests. If the classification is correct, the server
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receives a reward; otherwise, there is a penalty. Customers who find the server busy join a queue and incurs

a waiting cost during their stay in the system. By performing more tests, the server increases the likelihood

that a correct classification will be made; however, this increases the waiting time of the customers in the

queue. The objective of the paper is to dynamically determine the number of tests to be carried out based on

the system state. The fundamental difference between our model and that of Alizamir et al. (2012) is that in

our model the diagnostic process is assumed to be simpler as it consists of a single test and thus the number

of tests is not a decision variable. However, unlike Alizamir et al. (2012), we explicitly model the service

process that comes after classification and capture the trade-off between the time spent on service and time

spent on diagnosis.

Dobson and Sainathan (2011) compare two models: the base model and the prioritized model. In the

prioritized model, jobs are first sorted by a pool of homogeneous sorters and then served by another pool

of homogeneous processors while there is no sorting in the base model. The authors compare the optimal

waiting cost of the prioritized model with that of the base model and identify conditions under which

prioritization is beneficial. The work of Dobson and Sainathan (2011) is close to ours in that it also aims

to study the trade-off between service capacity allocated to classification and actual service. However,

while Dobson and Sainathan (2011) are interested in optimal static design questions by comparing two

alternative systems in a multiple-server setting, our goal is to investigate and characterize optimal dynamic

decisions for a single-server system. Dobson et al. (2013) study a model in which an investigator collects

information from a new customer to decide what work needs to be done in the second step by another server.

Once the second step is finished the customer joins another queue to receive service from the investigator

again and then leaves the system. The investigator needs to prioritize between the old and new customers.

As we describe in the following section, the models they study are also significantly different from the one

we analyze in this paper.

A stream of papers in organizational learning and knowledge management (e.g., March 1991, Gupta et al.

2006, Posen and Levinthal 2012) study what is commonly referred to as “the exploration versus exploitation

problem” in which, somewhat similar to our formulation, the main question centers around the allocation

of resources to the exploration of new knowledge and the exploitation of existing knowledge. However,

unlike in our model, in these papers, exploration typically does not cause delay in exploitation and the two

can proceed simultaneously. Furthermore, to the best of our knowledge, none of these papers consider the

specific setting we consider in our paper in which patients are classified into two groups and their findings

do not have any direct implications for our work.

Finally, our work is relevant to a series of papers (e.g., Güneş and Akşin 2004, Gurvich et al. 2009,

Armony and Gurvich 2010), which study cross-selling within the context of call centers. As in the case of
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triage and prioritization we consider in this paper, cross-selling also requires careful balancing of time spent

on cross-selling and time spent on actual service. However, the main decision in cross-selling involves when

and which customers should be extended offers and unlike in our case, does not generate information that

can be used for service prioritization.

3. The Model
Before we present our mathematical model in detail, we first provide a short discussion on some of the

important features of the mass-casualty patient triage problem, explain to what extent the proposed model

will successfully capture these features, and give an overview of how the analysis of this model will be used

despite its limitations.

3.1. The mass-casualty triage problem and our modeling approach

A widely accepted utilitarian objective in case of mass-casualty events is to maximize the number of

survivors. Obviously, passage of time without treatment has a negative effect on the survival chances of

each patient and thus it makes sense to talk about the “cost” of waiting. But, what exactly is this cost? To

understand this, it is very important that we distinguish between the two different ways waiting can affect a

patient’s probability of survival. First, one consequence of a patient waiting for treatment could simply be

that the patient might die by the time it is that patient’s turn for treatment. Clearly, the longer the patient waits,

the higher the chances that the patient will die before treatment. However, even if the patient lives by that

time, the probability of survival is not the same as it would be without waiting. The overall deterioration of

the patient as a result of waiting decreases the chances of a successful operation and the eventual survival of

the patient. This is the second way that waiting affects a patient’s probability of survival. While the survival

probability decreases with time either way, from modeling point of view, one important difference is that if

a patient dies before treatment, that patient no longer needs service.

Thus, in order to fully capture the effect of waiting on the patients, it would be reasonable to consider a

model where (i) each patient has a remaining life time (patience time) at the end of which the patient dies

(abandons the system) if s/he is not provided the necessary treatment by that time and (ii) if the patient is

alive when this patient’s turn for treatment comes, s/he dies with some probability that increases with the

waiting time of the patient. Assuming that each life lost (either before or after treatment) would have a cost

of one unit, the objective would be to minimize the expected number of deaths or equivalently the expected

total cost. While developing such a model is straightforward its analysis is extremely difficult partially due to

the fact that even under some restrictive assumptions such as deterministic triage and service times, which

help incorporate the passage of time in the system state in a relatively convenient way, the resulting transition

probability structure is too dense to permit clean analytical characterizations (see the formulation in Section
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6.1). In fact, as one can see from the analysis of Uzun Jacobson et al. (2012), where the impact of waiting is

captured through abandonments alone (ignoring the effect of the passage of time on the success of service)

and the only question is how to prioritize patients who have already gone through triage, the optimal policy

has a complex structure, which only permits highly limited analytical characterizations. Therefore, in this

paper, we follow an alternative approach according to which we simplify the formulation in a way that

makes mathematical analysis possible but then investigate whether the results of this study would be useful

in practice by using the more complex and realistic formulation as a test bed.

Specifically, in our mathematical model we assume that the system incurs a fixed cost for each unit of

time a patient waits. This fixed per unit time cost depends on the triage class of the patient but it does not

change with time. Furthermore, patients do not renege from the system while waiting for their treatment.

In this model, waiting cost can be seen as capturing the two different ways waiting impacts patient survival

as explained above. Clearly, this would be an approximation not only because studies suggest that survival

probabilities are not linear functions of time but also because the problem would be structurally different

with and without reneging. Nevertheless, even though our mathematical model ignores the possibility of

reneging, this does not mean the fact that some of the patients died while waiting would be ignored when it

comes to practical implementation of the heuristic methods that are based on the analysis of this model. (In

other words, the methods would wisely not suggest treatment of dead patients.) And the non-linearity of the

survival probability functions might possibly be overcome by using linear approximations. Therefore, the

analysis of this simplified model has the potential to lead to methods that perform well. With this motivation,

we next describe our model in detail and present our analysis. Later, in Section 6.4, we provide the results

of a detailed numerical investigation, which shows that our analysis indeed leads to heuristic methods that

perform well even when the linear waiting cost assumption is relaxed and patients may possibly die and thus

renege from the system while waiting.

3.2. Model description

We consider a scenario in which an unexpected event triggers the sudden appearance of a number of patients

in need of treatment. More specifically, we assume that at time t = 0, there are N ≥ 2 patients waiting for

treatment. For reasons that will be clear shortly, we refer to these patients as class-0 patients. There will

be no new patient arrivals. There is a single provider, which we will refer to as the server for expositional

convenience and the treatment this server provides to the patients as the service.

The server does not have to triage the patients to serve them. In other words, each patient can be served

as a class-0 patient. However, she can choose to perform triage, at the end of which the patient is put in

one of two classes, class-1 or class-2. Following the terminology of the widely adopted mass-casualty triage

protocol START, class-1 patients can be seen as immediate patients and class-2 patients can be seen as
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delayed patients. We let αi ≥ 0 for i = 1,2 denote the probability that a class-0 patient is classified as class-i

as a result of triage, thus α1 + α2 = 1. Once a patient is classified, the server can either serve the patient

immediately or delay the service of the patient temporarily making note of the patient’s class information,

and moves on to another patient. Once the service of the patient is over, s/he leaves the system.

Let fi(t) denote the expected cost incurred if a class-i patient spends t time units in the system, i = 0,1,2.

For our mathematical analysis, we assume that dfi(t)/dt = ri ≥ 0 for t ≥ 0 and i = 0,1,2, which means that for

each unit of time a class-i patient spends waiting, in triage, or in service, the system incurs an expected cost of

ri. We relax this linear cost assumption later in our numerical study. Let τi denote the expected service time

for a class-i patient; and ci denote the total expected cost a class-i patient will incur while receiving service.

Note that we do not assume that ci = riτi so that we allow the service time and the waiting cost rate for a

random class-i patient to possibly depend on each other. Triage times are assumed to be independent of the

service times and patients’ class identities. This is a reasonable assumption for systems where, as in the case

of mass-casualty triage and prioritization, there is a predetermined procedure to be used for classification of

the patients. We use u to denote the expected time it takes to triage one patient. The objective is to minimize

the total expected cost of all the patients. Throughout the paper, we assume that the following two conditions

hold:

Assumption 1. (i) 0 ≤ τ̃ = τ0 −α1τ1 −α2τ2 < u; (ii) c̃ = c0 −α1c1 −α2c2 < r0u.

To understand what exactly these conditions imply, consider a single class-0 patient in need of service.

The first inequality of Assumption 1 (i) implies that knowing a patient’s triage class helps reduce the patient’s

expected service time but the second inequality implies that it takes longer for the server to first triage the

patient and serve afterwards than to serve the patient right away without triage. In other words, if the class

information were readily available that would help reduce the expected time it would take to serve the patient

but if triage is needed to obtain the class information the total expected time spent for the patient would be

longer. Assumption 1 (ii) implies that it is also more costly for the server to first triage the patient and serve

afterwards than to serve the patient right away without triage. This means that, for a single patient in isolation

(i.e., when N = 1), triage has no benefit. This is a realistic assumption in settings like mass-casualty triage

and prioritization, where triage merely serves as a sorting mechanism and does not involve any specialized

preprocessing that would somehow reduce the total triage plus service time or waiting cost for any individual

patient. (In our analysis, Assumption 1 helps in coming up with a clear characterization of the optimal choice

between performing triage and serving a class-0 patient without triage. Neither of the two conditions of

Assumption 1 by itself without the other is sufficient to determine the optimal action. However, if neither of

them holds, we can show that the optimal decision is to always triage class-0 patients.)

We also assume, without loss of generality, that r1/τ1 ≥ r2/τ2. Thus, the well-known cµ-rule implies that

if all patients are already classified as class-1 or class-2, the optimal decision is to prioritize class-1 patients.
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Note that prioritization of a single class over the other (the immediate patients over the delayed patients) is

also consistent with the widely adopted mass-casualty triage protocol START. It is important to note that

the assumption r1/τ1 ≥ r2/τ2 together with Assumption 1 also imply that r1/τ1 ≥ r0/τ0. Therefore, in our

analysis, it will be sufficient to consider two cases: r0/τ0 ≥ r2/τ2 and r0/τ0 < r2/τ2.

Our problem can be formulated as a Markov decision process where the decision epochs are time zero and

triage and service completion times. (We assume that service is non-preemptive.) The state of the system can

then be denoted by the triplet (i, k1, k2), where i represents the number of class-0 patients, and k1 and k2 denote

the number of patients that have been classified as class-1 and class-2 but not yet served, respectively. Since

we have N patients in total, the state space can be described as S = {(i, k1, k2) : i, k1, k2 ≥ 0, i + k1 + k2 ≤ N} .

Using a sample-path argument, it is straightforward to show that keeping the server idle is suboptimal.

This allows us to ignore idling as an admissible action. Then, in a given state s = (i, k1, k2), the available

actions for the server are SU: serve a class-0 patient without triage (only available if i ≥ 1); Tr: triage a

class-0 patient (only available if i ≥ 1); SC1: serve a class-1 patient (only available if k1 ≥ 1); and SC2:

serve a class-2 patient (only available if k2 ≥ 1). In general it is possible that there is more than one optimal

action for any given state. If that is the case, we choose the action that is listed earlier in the action set {SC1,

SU, Tr, SC2}. For instance, SC1 has precedence over all the other actions. While this assumption is not

crucial, it allows us to ensure that there is a unique optimal policy, which in turn simplifies the presentation

of the results.

We define a∗(s) for s ∈ S to be the optimal action in state s. We also let Vπ(i, k1, k2) denote the total

expected cost under policy π and V(i, k1, k2) =minπ {Vπ(i, k1, k2)} to be the total expected cost under an

optimal policy starting from state (i, k1, k2)with no service or triage in progress. We can write the optimality

equations as follows:

V(i, k1, k2) =min
{
α1V(i − 1, k1 + 1, k2)+α2V(i − 1, k1, k2 + 1)+ (ir0 + k1r1 + k2r2)u,

V(i − 1, k1, k2)+ c0 + [(i − 1)r0 + k1r1 + k2r2] τ0,

V(i, k1 − 1, k2)+ c1 + [ir0 + (k1 − 1)r1 + k2r2] τ1,

V(i, k1, k2 − 1)+ c2 + [ir0 + k1r1 + (k2 − 1)r2] τ2
}
, ∀ (i, k1, k2) ∈ S \ (0,0,0),

V(0,0,0) = 0, and V(s) =∞, ∀ s < S.

(1)

Finally, it is natural to assume that the initial state is (N,0,0) so that we start with N class-0 patients (and

no service or triage in progress) and consequently the objective is to determine the policy π that minimizes

Vπ(N,0,0). However, as it should be clear in our analysis, this assumption does not change our analysis in

any way and the results would go through regardless of the initial state.
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4. Complete Characterization of the Optimal Policy
If there was no option to triage and the decision only involved prioritizing among the three classes of patients,

we already know from the cµ-rule that patients would be prioritized according to their ri/τi values with
higher values of ri/τi indicating higher priorities. For our problem, as we explain in the following, this index

ordering is still highly relevant but, not surprisingly, insufficient to fully describe the optimal policy.

In order to provide a complete characterization of the optimal policy, it will be sufficient to consider two

separate cases: (i) r0/τ0 ≥ r2/τ2; (ii) r0/τ0 < r2/τ2. Per the cµ-rule, the ratio ri/τi can be seen as a measure

of the relative urgency or importance of class-i patients. Class-0 patients are those patients for whom we do

not have a clear idea about their urgency. The goal with triage is to gain some information on these patients

so that they can be identified as immediate (class-1) or delayed (class-2). Thus, it would be natural to assume

the urgency measure of a class-2 patient to be smaller than the urgency measure of a random patient we

do not know anything about, i.e., an untriaged class-0 patient. Therefore, at least for our main motivational

purposes, the more practically relevant setting is case (i). We start our analysis with that case. However, we

do provide a description for the other case later in this section for completeness.

Theorem 1. Suppose that r0/τ0 ≥ r2/τ2 and consider state (i, k1, k2) ∈ S:
(i) If k1 ≥ 1, then a∗(i, k1, k2) = SC1, i.e., as soon as the server identifies a class-1 patient, that patient

should be served next.

(ii) If i + k1 ≥ 1, then a∗(i, k1, k2) , SC2, i.e., it is optimal to serve a class-2 patient only when there are

no class-0 or class-1 patients.

(iii) There exists a linear function L(·) such that for any state (i,0, k2) ∈ S where i ≥ 1 and k2 ≥ 0, if

k2 ≥ L(i), then a∗(i,0, k2) = SU, i.e., the optimal action is to serve without triage; otherwise, a∗(i,0, k2) = Tr,
i.e., the optimal action is to perform triage. Furthermore,

L(i) = r0(ũ− u)
r2(u− τ̃)

i − r0ũ− c̃
r2(u− τ̃)

, (2)

where ũ = α1(r1τ0 − r0τ1)/r0 and c̃ and τ̃ are as defined in Assumption 1.

Parts (i) and (ii) of Theorem 1 clearly delineate the regions where serving patients classified as class-1

and class-2 are optimal. Specifically, SC1 has precedence over all other actions no matter what the current

state is. This means that as soon as a triage results in identification of a class-1 patient, the next action is to

serve that patient. On the other hand, SC2 is at the bottom of the priority list meaning that the service of

class-2 patients starts at the end when there are no more class-1 or class-0 patients waiting.

Part (iii) of Theorem 1 describes the optimal action when there are no class-1 patients, i.e., k1 = 0, but

there is at least one class-0 patient, i.e., i ≥ 1. Recall that in such a state, the server can choose to either

triage or directly serve a class-0 patient. (We know from part (ii) of the theorem that serving a class-2
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Figure 1 Visual description of the optimal policy when k1 = 0 and

N = 18, α1 = 0.2,u = 0.5, r0 = 8.4, r1 = 10, r2 = 2, τ0 = 2.4, τ1 = 2, τ2 = 4, c0 = 17.6, c1 = 20, c2 = 8.

patient, if there is one, is suboptimal.) It turns out that whether or not doing triage is optimal depends on the

system state. More specifically, there is a line that separates the states in which doing triage is optimal from

the states in which serving without triage is optimal. In Theorem 1 (iii), we not only prove this structural

property of the optimal policy but also provide a closed-form expression for this line. See Figure 1 for a

visual demonstration of the optimal policy structure for a specific example.

Theorem 1 provides interesting insights into the decision of when to do triage and when to skip it. Suppose

that initially at time zero, there are some N class-0 patients and no class-1 or class-2 patients as that would

be the case in the immediate aftermath of a mass-casualty event just before the start of patient triage and

treatment. This means that at time zero, in Figure 1, the system starts on the x-axis at i = N . If N is large,

meaning that there are too many patients waiting to be served and we have no information regarding which

ones are more important, one might be tempted to skip triage since performing triage will further lengthen

the waiting times, which are already likely to be too long. With too many patients to serve, spending time

on triage might seem like an unwise use of time. In contrast, when N is small, triage might not seem all that

harmful since waiting times are not going to be too long even with triage. As we explain in the following,

however, this reasoning is flawed.

Theorem 1 states that - as one can also easily verify referring to Figure 1 - when the number of class-0

patients is sufficiently large (initially more than or equal to 4 for the example whose solution is depicted in

the figure) it is optimal to start with triage and continue to do so as long as the number of class-0 patients

and the number of class-2 patients keep the state space under the line. (Note that if a class-1 patient is

identified, that patient is served right away.) Once the threshold line is passed, the optimal policy starts

serving patients without triage until there are no more class-0 patients waiting. Class-2 patients, who would
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have been identified as such earlier, are served at the end. If the number of class-0 patients is small (initially

less than 4 in the example), then the optimal policy is simply to serve all the patients without triage. Thus,

contrary to the argument above, precisely because there are too many patients, one cannot afford to skip

triage. Even if triage is skipped, service will take quite a long time anyway. Therefore, it makes sense to

spend some time at the beginning (specifically as long as the system state is to the right of the threshold line)

to perform triage in an effort to at least prevent the waiting times for immediate patients from getting too

long. On the other hand, when there are few patients, service of all patients, regardless of how urgent their

conditions are, will not take too much time. Therefore, the value of class information that will be obtained

through triage does not justify the additional waiting that all patients will have to endure.

It is also interesting to note that the optimal policy appears to prefer performing triage when the expected

fraction of class-1 patients is sufficiently high. To see that, first note that i+ k2 is the total number of unserved

patients in the system when the system state is (i,0, k2) and the expected fraction of class-1 patients is

α1i/(i + k2). When i is large in comparison with k2, this fraction is large and is close to α1 and triage is the

preferred option. However, when the fraction is small, then the optimal policy chooses to skip triage.

We now consider the opposite case, where r0/τ0 < r2/τ2. As we discussed above, this case is of somewhat

less practical interest since we view triage as a procedure that merely helps in obtaining information on

the patients and sorting them out with respect to their relative urgency. Nevertheless, analysis under this

condition might still be of interest if what we call triage is interpreted as some sort of preprocessing which

results in such a change in the urgency measure of the patients.

Theorem 2. Suppose that r0/τ0 < r2/τ2. Then, there exists an optimal policy under which (i) no patient

goes through triage; (ii) patients are served in accordance with the cµ-rule, i.e., a patient with a higher

value of ri/τi, i = 0,1,2 gets a higher priority.

Theorem 2 essentially says that under the condition we stated above, triage has no benefit and the

prioritization policy should simply follow the cµ-rule. One implication of this result is that if at time zero

there are N patients none of which are triaged then it is optimal to not perform triage on any one of the

patients and serve them all without triage.

5. Simpler Alternatives to the Optimal Policy
In the previous section, we provided a complete characterization of the optimal policy. While the optimal

policy is relatively simple, it is possible to devise even simpler policies, which may not be optimal but would

perform well under certain conditions. Such policies may be preferred over the optimal policies because of

their ease of implementation in practice. In this section, we will investigate some of these simpler alternatives

some of which will also serve as benchmark policies in our computational study.
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For ease of exposition, in this section we assume that at time zero, all N patients in the system are from

class-0. From Theorem 2, we already know that the policy of not triaging any patient is in fact the optimal

policy when r0/τ0 < r2/τ2. Therefore, we focus on the case where r0/τ0 ≥ r2/τ2.
An obvious candidate for a simple policy is to not triage any of the patients and serve them in random

order. Another possibility is to triage all the patients regardless of the system state. In this case, however,

one needs to specify when and how exactly triage information will be used. One can first complete triage

of all the patients and then move on to the service of the patients. In accordance with the cµ-rule, class-1

patients would have priority over class-2 patients. Alternatively, if triage identifies a patient from a particular

class, the server serves that patient before moving onto the triage of the rest of the patients. Patients from the

other class are served once the triage of all the patients are complete. In this case, intuitively it would make

sense to give priority to class-1 patients but in fact there are examples that show that it is not always better

than prioritizing class-2 patients. Therefore, it would be reasonable to consider the policy that prioritizes

class-2 as well. (Note that it is easy to show that there is no benefit to be gained from the triage of the last

unclassified patient regardless of which class has priority and whether or not the service is delayed until all

triage is complete. Therefore, in what follows “triage of all patients” means “triage of all patients except the

very last untriaged patient.”)

The following proposition helps eliminate some of the potential policies described above for further

consideration as they can be shown to be inferior to the others.

Proposition 1. (i) If all patients have to go through triage, it is strictly better for the server to serve

class-1 patients as soon as they are identified than to complete triage of all patients first and then move

on to the service of all the classified patients. (ii) It is strictly better for the server to skip triage and serve

patients in random order than to triage all the patients, serve class-2 patients as soon as they are identified,

and serve class-1 patients at the end.

Proposition 1(i) simply says that delaying the start of service until every single patient is classified does

not work well. This is because, once a patient which has a high priority is identified, there is no point in

delaying the service of that patient. We know for sure that no other patient will get a higher priority. Part

(ii) of the proposition says that skipping triage altogether and serving patients in a random order always

works better than triaging patients while serving class-2 patients as soon as they are identified. Interestingly,

there are examples that show that it might be better to prioritize class-2 patients over class-1 patients but

that can only happen if skipping triage altogether and serving patients in random order is superior to any

prioritization policy with triage. Thus, we can focus our attention to the following two simple policies:

No-Triage Policy (NT): Patients are served in random order. No patient goes through triage.
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Triage-Prioritize-Class-1 Policy (TP1): Each patient, with the exception of the last one, goes through

triage in random order. If a patient is classified as class-1, s/he is served right away; otherwise, s/he is put

aside to be served later. When the triage of N − 1 patients is completed, the remaining untriaged patient is

served followed by all class-2 patients.

We denote the total expected cost under policies NT and TP1 by VNT and VTP1, respectively. Because of

the relatively simple structure of the two policies, we can come up with closed-form expressions for VNT

and VTP1. We refer the reader to the online companion for the expressions as well as their derivations. The

following proposition identifies the conditions under which one policy is superior to the other.

Proposition 2. Suppose that r0/τ0 ≥ r2/τ2 and the initial system state is (N,0,0). Then, VTP1 ≤ VNT if

and only if u ≤ β where

β =max

{
N
2 α2(r0τ2 − r2τ0)+ c̃− r0τ̃

N
2 (α2r2 + r0)+α1r1

+ τ̃,0

}
. (3)

Proposition 2 confirms the intuition that when the expected triage time is sufficiently short, i.e., the service

provider does not need to spend a long time to obtain information and classify class-0 patients, the benefit

obtained through triage could offset the additional cost incurred as a result of triage and TP1 outperforms

NT . More specifically, the proposition gives a precise description of what we mean by the triage time being

sufficiently short.

One important question is whether there are certain conditions under which either TP1 or NT is in fact

optimal. When r0/τ0 < r2/τ2, we know that NT is optimal but how about when r0/τ0 ≥ r2/τ2? It would

be natural to expect that when the expected triage time is sufficiently short (it might help to think of the

limiting case where it is zero) it would be optimal for all patients to go through triage and conversely when

the expected triage time is sufficiently long it would be optimal for none of the patients to go through triage.

Indeed, we can prove that is the case. The following proposition formalizes this result and clearly describes

what would qualify as sufficiently short and what would qualify as sufficiently long. Let

u1 =min

{
ũ, ũ− r0ũ− c̃

Nr0

}
, u2 =min

{
r0ũ+ c̃

2r0
,
r0ũ+ c̃+ (N − 2)r2τ̃

2r0 + (N − 2)r2

}
.

Proposition 3. Suppose that r0/τ0 ≥ r2/τ2 and the initial system state is (N,0,0). Then,
(i) Policy NT is optimal if and only if u ≥ u1;

(ii) Policy TP1 is optimal if and only if u ≤ u2;

(iii) furthermore, u1 is non-decreasing and u2 is non-increasing in N .

When the expected triage time is as long as described in Proposition 3(i), the information that one would

get through triage is simply not worth it. Hence, the optimal policy is to serve all the patients directly without

triage. When the expected triage time is as short as described in Proposition 3(ii), one can “afford” to triage
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all the patients; however, in line with Theorem 1, if a class-1 patient is identified as a result of triage, that

patient should be served first before moving on to the triage of the remaining patients. When the expected

triage time is between u1 and u2, then neither NT nor TP1 is optimal. The optimal policy is state-dependent

as characterized by Theorem 1. Note that Proposition 3 can be seen as a strengthened version of Proposition

2 since the former provides necessary and sufficient conditions for TP1 and NT to be optimal whereas the

latter delineates the region where one performs better than the other. While neither of the results implies the

other, the two are in agreement (as expected) on the relationship between the expected triage time and the

performances of the two policies.

Part (iii) of Proposition 3 provides an interesting insight into the effect of N , the initial number of patients,

on the optimal policy. We can see that as N increases, the parameter region in which NT is optimal and the

parameter region in which TP1 is optimal both shrink (or at least they do not get larger). This suggests that

simple policies like NT and TP1 are more likely to be good choices when there are relatively few patients

initially in the system.

6. Non-linear Waiting Costs with Reneging Patients: A Numerical Study on
Mass-Casualty Triage

Our analysis so far in this paper has been based on two crucial assumptions that may be questionable in

the context of patient triage particularly in the case of mass-casualty events. The first assumption is that

the “waiting cost” that the system incurs for each patient is a linear function of the patient’s waiting time.

In mass-casualty patient triage, waiting cost of a patient can be seen as the decline in the probability that

the patient will survive the service (operation) s/he will have to go through assuming that s/he is still alive

by the time of the service. With this interpretation, the linear waiting cost assumption may not adequately

capture the reality. The second assumption is that no patient dies (or reneges) while waiting for her/his turn

for the service, which might not be true as well. The objective of this section is to investigate whether we

can use our analysis (more specifically, our optimal policy characterization) to develop policies that can be

used under more realistic conditions, where waiting costs (changes in survival probabilities) are not linear

in time and patients might die while waiting.

In the following, we first introduce themathematical frameworkwewill use to investigate the performances

of the policies we will be proposing. This more realistic (at least in certain respects) framework still needs to

abide by certain assumptions so that the “optimal” policy can be computed and therefore the performances

of our policies can be properly assessed. Then, we describe how we can use our analytical results, more

specifically Theorem 1, to develop heuristic methods and devise three new policies. It is important to note

that these policies are not custom-designed for the mathematical framework we will be introducing and can

be easily implemented as long as some key model parameters are properly estimated. We then describe the
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specific mass-casualty scenario we consider in the numerical study and present our findings regarding how

these policies perform in comparison with the optimal policy and some of the benchmark policies.

6.1. Description of the model with non-linear waiting costs and reneging

Let Xi denote the lifetime (time until reneging) without treatment for a random class-i patient and assume

that for i = 1,2, Xi is an independent random variable with Gi(t) ≡ P{Xi ≤ t}. If a patient’s lifetime ends

before the patient is taken into service, then the patient reneges, s/he no longer needs service, and the system

incurs a cost of one unit. Let αi(t) for i = 1,2 denote the probability of labeling a random class-0 patient as

class-i if the patient goes through triage at time t. Note that this probability is time-dependent (unlike the

model in Section 3) because the remaining lifetime distributions for class-1 and class-2 patients are different.

By letting αi = αi(0) for i = 1,2 denote the probability that a random class-0 patient which goes through

triage at time zero would be classified as class-i, we have for any t ≥ 0,

αi(t) = P{Z = i |X0 > t} = P{Z = i, X0 > t}
P{X0 > t} =

P{X0 > t |Z = i}P{Z = i}∑2
i=1 P{X0 > t |Z = i}P{Z = i}

, i = 1,2,

where Z denotes the class identity of a random class-0 patient after the patient is triaged. Then,

α1(t) =
P{X1 > t |Z = 1}P{Z = 1}∑2
i=1 P{Xi > t |Z = i}P{Z = i}

=
α1Ḡ1(t)

α1Ḡ1(t)+α2Ḡ2(t)
, α2(t) = 1−α1(t), (4)

where Ḡi(t) ≡ 1−Gi(t). Let pi(t,∆t) denote the probability that a class-i patient survives for another ∆t time

units given that s/he has survived the first t time units. Then,

pi(t,∆t) = P{Xi > t +∆t |Xi > t} = P{Xi > t +∆t}
P{Xi > t} =

Ḡi(t +∆t)
Ḡi(t)

, i = 1,2.

p0(t,∆t) = α1(t)p1(t,∆t)+α2(t)p2(t,∆t) = α1Ḡ1(t +∆t)+α2Ḡ2(t +∆t)
α1Ḡ1(t)+α2Ḡ2(t)

.

We assume that service times and triage times are deterministic, do not depend on the class of the patient,

and are denoted by τ and u, respectively. Note that deterministic triage and service times allow us to compute

the optimal policy and make comparisons with the performances of our policies.

Recall that in our model described in Section 3, we used fi(t) to denote the expected cost the system will

incur for a class-i patient who spends t time units waiting. Here, we assume that each death patient incurs a

cost of 1 and thus fi(t) corresponds to the probability that a class-i patient who has survived by time t and

is taken into service at time t will not have a successful service and eventually die due to the injuries caused

by the mass-casualty event. Let b(k; n, p) denote the probability of getting exactly k successes in n Bernoulli

trials each of which yields success with probability p, i.e.,

b(k; n, p) =
(
n
k

)
pk(1− p)n−k . (5)
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When i ≥ 1, k1 ≥ 1 and k2 ≥ 1, all four possible actions (triage, serve class-0, serve class-1, serve class-2)

are available and the optimality equation for this case can be written as

V(i, k1, k2, t) =min

{
i−1∑
i′=0

b(i′; i − 1, p0(t,u))
k1∑

k′1=0

b(k ′1; k1, p1(t,u))
k2∑

k′2=0

b(k ′2; k2, p2(t,u))
(
α1(t)V(i′, k ′1 + 1, k ′2, t + u)

+α2(t)V(i′, k ′1, k ′2 + 1, t + u)+ (i + k1 + k2 − i′− k ′1 − k ′2 − 1)
)
,

i−1∑
i′=0

b(i′; i − 1, p0(t, τ))
k1∑

k′1=0

b(k ′1; k1, p1(t, τ))
k2∑

k′2=0

b(k ′2; k2, p2(t, τ))
(
V(i′, k ′1, k ′2, t + τ)

+(i + k1 + k2 − i′− k ′1 − k ′2 − 1+ f0(t))
)
,

i∑
i′=0

b(i′; i, p0(t, τ))
k1−1∑
k′1=0

b(k ′1; k1 − 1, p1(t, τ))
k2∑

k′2=0

b(k ′2; k2, p2(t, τ))
(
V(i′, k ′1, k ′2, t + τ)

+(i + k1 + k2 − i′− k ′1 − k ′2 − 1+ f1(t))
)
,

i∑
i′=0

b(i′; i, p0(t, τ))
k1∑

k′1=0

b(k ′1; k1, p1(t, τ))
k2−1∑
k′2=0

b(k ′2; k2 − 1, p2(t, τ))
(
V(i′, k ′1, k ′2, t + τ)

+(i + k1 + k2 − i′− k ′1 − k ′2 − 1+ f2(t))
)}
, (6)

where the four terms inside the minimum from the first to the last respectively corresponds to the actions

triage, serve class-0, serve class-1, and serve class-2. For all other states, where at least one of i, k1, or k2

is zero, the optimality equations can similarly be written.

6.2. Heuristic policies

We propose three different policies all based on our analytical results provided in Section 4. For all three

policies, we first fit least-squares lines to the death probability functions fi(t) (which correspond to the cost
functions in Section 3) for the immediate and delayed patients. When fitting the least-squares lines, we

assume that the cost function is defined over the interval [t0, t0 +maxi=0,1,2 N(τi + u)], where t0 is the time

when the response effort starts and t0 +maxi=0,1,2 N(τi + u) is the maximum expected time by which all

the patients in the system are served and i = 0,1,2 respectively corresponds to unclassified, immediate, and

delayed patients. All three policies rely on the idea of using these least-squares lines as approximations for

the actual cost functions and making use of the analytical characterizations of the optimal policy under the

assumption of linear delay costs (Theorems 1 and 2).

(i) Dynamic Threshold Policy (DTP): For any given state, this policy prescribes taking the action that

is optimal under the assumption that waiting costs for the immediate and delayed patients are given by
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the least-squares lines that are fit to the “actual” waiting cost functions, i.e., death probability functions.

Specifically, this policy takes actions in accordance with Theorems 1 and 2, where all the parameters and the

threshold function L(·) are computed using the slopes of the fitted lines in place of the linear cost parameters

r1 and r2. We call this policy Dynamic Threshold Policy because, unlike the other two policies described

below, the threshold on the number of unclassified patients, which determines whether or not triage should

be performed, changes with the number of patients classified as delayed.

(ii) Static Threshold Policy 1 (STP-1): Similar to DTP, this policy also bases its actions on Theorems 1

and 2 assuming linear costs with slopes given by the slopes of the least-squares lines. However, the only

exception is that this policy uses a static threshold value on the number of unclassified patients in order to

determine whether or not triage should be carried out. Specifically, L1, the threshold for the policy STP-1 is

given by

L1 =
r0ũ− c̃+ Nr2(u− τ̃)
r0(ũ− u)+ r2(u− τ̃)

. (7)

Note that L1 is not a function of k2, which means that it does not change with the number of patients

classified as delayed.

(iii) Static Threshold Policy 2 (STP-2): As in the case of DTP and STP-1, this policy also bases its actions

on Theorems 1 and 2 assuming linear costs with slopes given by the slopes of the least-squares lines. The

exception is again in the way the threshold value is calculated. Specifically, for STP-2, the threshold L2 has

the expression

L2 =
r0ũ− c̃

r0(ũ− u) . (8)
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Figure 2 Visual description of the three heuristic policies

Figure 2 provides a visual demonstration of how these three policies differ from each other. In the figure,

L, which is the threshold line for DTP, directly comes from (2) and depends on the number of unclassified
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(class-0) and delayed (class-2) patients. The main motivation behind developing policies STP-1 and STP-2 as

alternatives toDTP is to investigate whether simpler policies, which have vertical threshold lines and thereby

make decisions based on the number of untriaged patients alone, can also perform well. The threshold line

for STP-1, L1, is defined as the vertical line that passes through the intersection of L and the right edge of

the state space described by the line i + k2 = N , and the threshold line for STP-2, L2, is the vertical line that

passes through the x-intercept of L. This is how we obtain the expressions for L1 and L2 given by (7) and

(8). From Figure 2, we can see that STP-1 triages fewer patients than DTP and STP-2 triages more patients

than DTP.

6.3. Description of a mass-casualty scenario

We consider a battlefield mass-casualty scenario in which as a result of an unexpected attack or bombing, a

single paramedic is suddenly presented with a number of military-age casualties all in urgent need of some

basic on-site treatment for survival until resources are available for transporting them to nearby treatment

facilities for higher-level care. While there are different triage systems that are used in responding to these

types of events, most put patients into one of four classes typically named as expectant, immediate, delayed,

and minimal. Expectant patients are those who have no chance of survival and minimal patients are those

who do not have any serious life-threatening injuries. Thus, treatment priority is given to immediate and

delayed patients and the success of the response effort is ultimately determined by the way the patients in

these two groups are triaged, prioritized, and treated.

While data are typically available for emergency responses to daily events, data in the case of mass-

casualty events particularly in case of triage and treatment in battlefields, are severely limited. To the best

of our knowledge, there is no work that investigated how long it takes to triage and treat casualties in

such environments. This poses a challenge to test our policies through a numerical study. To overcome this

challenge at least to the extent possible, we consulted with David A. Masneri, who is an assistant professor of

emergency medicine at Wake Forest University, has 12 years of army experience as a physician and special

operations medic, and has augmented several special mission units as an emergency medicine physician.

Prof. Masneri provided us with his best educated estimates for the expected triage time and expected time

for stabilization stressing that he was not aware of any studies on these times and that his responses were

based on his experience and opinion only. (Stabilization here corresponds to service in our mathematical

model.) It is also important to note that the estimates are based on the assumption that there is no longer fire

exchange while triage and stabilization are performed. As a result of this consultation, we set the triage time

in our study to 30 seconds and we varied the stabilization time for the patients from 4 to 8 minutes.

There are also scarcely any data that would allow highly reliable estimation of the death probability

functions f1(t) and f2(t). The only available work to date that has attempted to make such estimation -
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partially relying on medical expert opinion - are Sacco et al. (2005, 2007) and Navin et al. (2009). In

particular, Navin et al. (2009) provides on-site survival probability estimates for military-age victims with

penetrating injuries (a type of trauma that is highly common in armed combat). We use these estimates,

which are in fact provided at a more granular level than we need, to construct the death probability functions

f1(t) and f2(t) we use in our study. For details on how we obtain these functions, see Section 7 in the online

appendix. The estimates we obtain for f1(t) and f2(t) are plotted in Figure 3. Note that we can see from

these plots that depending on the interval [t0, t0 +maxi=0,1,2 N(τi +u)], over which the least-square lines are

fit for the heuristic policies we described in Section 6.2, the slopes of the fitted lines can be quite different.

In particular, the ratio of the approximated cµ values for class-1 and class-2 patients, h1/τ1
h2/τ2 , where hi is the

slope of the fitted line for fi(t) gets smaller as t0, the time at which the response effort starts, increases.

We will investigate how such a change in t0, which essentially implies decreasing urgency of class-1 with

respect to class-2, impacts the performances of our heuristic policies in Section 6.4.
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Figure 3 Probability of death over time for penetrating wound in a battlefield. The “immediate” category corresponds

to “class-1” and the “delayed” category corresponds to “class-2” in our framework.

To model the lifetimes, following Uzun Jacobson et al. (2012) and Hougaard (2012), we use Weibull

distribution, i.e., we let Gi(t) = 1− e−(t/βi )
θi where θi and βi are shape and scale parameters, respectively,

for class-i patients (i = 1,2). As in Uzun Jacobson et al. (2012), we use the time when fi(t) reaches some

threshold η as the mean lifetime (starting from time zero) for class-i patients and varied η from 0.90 to

0.99. In this paper, we only present the results for η = 0.90 (corresponding to mean life times of 60.96 and

423.61 minutes for classes 1 and 2, respectively) and η = 0.95 (corresponding to mean life times of 92.95

and 434.62 minutes for classes 1 and 2, respectively) since the results do not depend significantly on this

choice. Following Uzun Jacobson et al. (2012) we let θ1 = θ2 = 1.5 and the scale parameters are computed
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using βi = mi/Γ(1 + 1/θi), i = 1,2 where mi denotes the mean lifetime for class-i patients and Γ(·) is the
incomplete gamma function.

Two parameters that are difficult to predict in advance are N , the total number of casualties, and α1, the

probability of a random casualty to be classified as immediate. In our study, we considered a range of values

for both N and α1 with N taking values from the set {5,10,15,20,25} and α1 taking values from the set

{0.1,0.3,0.5,0.7,0.9}. Soon after the event that triggers the mass-casualty situation takes place and response

effort starts, the total number of casualties can be determined with a considerable degree of accuracy,

however α1 may remain difficult to estimate. To investigate how our policies would perform in the case of

such uncertainty, we also carried out a numerical study with a focus on the sensitivity of the performance of

our policies to the reliability of the estimates for α1.

6.4. Results of the numerical study

In this section, we compare the performances of the three heuristic policies we proposed in Section 6.2 and

the two best benchmark policies analyzed in Section 5 (NT and TP1) with the performance of the optimal

policy for (6). The performance measure of interest is the mortality rate, which is defined as the percentage

of the total number of casualties who do not survive. For N = 5,10,15,20,25, Tables 1, 2, 3, 4, 5 respectively

report the expected percentage increase that would be observed in the mortality rate by using one of the

policies stated above instead of the optimal policy.

Table 1 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 5

η = 0.90 η = 0.95
Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

α1 = 0.10 2.61% 1.73% 1.73% 1.73% 1.73% 1.96% 1.39% 1.39% 1.39% 1.39%
α1 = 0.30 3.94% 1.79% 1.79% 1.79% 1.79% 3.21% 1.20% 1.20% 1.20% 1.20%

τ = 4 α1 = 0.50 2.51% 2.30% 2.30% 2.30% 2.30% 2.06% 1.51% 1.51% 1.51% 1.51%
α1 = 0.70 0.66% 2.68% 2.68% 2.68% 2.68% 0.54% 1.87% 1.87% 1.87% 1.87%
α1 = 0.90 0.00% 3.61% 3.78% 3.78% 3.78% 0.00% 2.87% 3.06% 3.06% 3.06%
α1 = 0.10 3.35% 2.22% 2.22% 2.22% 2.22% 2.85% 1.63% 1.63% 1.63% 1.63%
α1 = 0.30 5.32% 2.87% 2.87% 2.87% 2.87% 4.75% 1.96% 1.96% 1.96% 1.96%

τ = 6 α1 = 0.50 3.65% 3.35% 3.35% 3.35% 3.35% 3.25% 2.30% 2.30% 2.30% 2.30%
α1 = 0.70 1.38% 3.32% 3.32% 3.32% 3.32% 1.22% 2.40% 2.40% 2.40% 2.40%
α1 = 0.90 0.00% 3.19% 0.00% 0.00% 0.00% 0.00% 2.64% 0.00% 0.00% 0.00%
α1 = 0.10 3.13% 2.87% 2.87% 2.87% 2.87% 3.17% 2.05% 2.05% 2.05% 2.05%
α1 = 0.30 5.26% 3.89% 3.89% 3.89% 3.89% 5.34% 2.74% 2.74% 2.74% 2.74%

τ = 8 α1 = 0.50 3.80% 4.37% 4.37% 4.37% 4.37% 3.74% 3.09% 3.09% 3.09% 3.09%
α1 = 0.70 1.60% 3.93% 3.93% 3.93% 3.93% 1.55% 2.92% 2.92% 2.92% 2.92%
α1 = 0.90 0.00% 2.96% 2.09% 2.09% 2.09% 0.00% 2.49% 1.71% 1.71% 1.71%

We can see that two of the policies we propose, DTP and STP-1, perform well in all the scenarios with

the percentage increase in the mortality rate (when compared with the optimal policy) mostly staying below

six percent. There are only three scenarios in which the percentage difference exceeds six percent under
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Table 2 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 10

η = 0.90 η = 0.95
Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

α1 = 0.10 4.91% 9.44% 2.18% 9.44% 3.63% 3.76% 9.45% 1.32% 9.45% 2.33%
α1 = 0.30 9.25% 9.16% 4.83% 9.16% 7.16% 7.48% 8.05% 3.28% 8.05% 5.16%

τ = 4 α1 = 0.50 7.35% 8.68% 4.04% 8.68% 4.93% 6.06% 7.47% 2.66% 7.47% 3.36%
α1 = 0.70 4.42% 6.46% 3.02% 6.46% 1.80% 3.93% 5.85% 2.20% 5.85% 1.03%
α1 = 0.90 2.79% 4.17% 2.79% 2.79% 2.79% 3.07% 4.28% 3.07% 3.07% 3.07%
α1 = 0.10 2.70% 9.93% 1.52% 9.93% 1.78% 2.96% 9.14% 1.50% 9.14% 1.93%
α1 = 0.30 7.22% 11.42% 4.54% 11.42% 5.73% 7.13% 10.06% 4.09% 10.06% 5.46%

τ = 6 α1 = 0.50 6.89% 10.74% 4.96% 10.74% 5.10% 6.52% 9.65% 4.18% 9.65% 4.55%
α1 = 0.70 4.61% 7.52% 4.10% 7.52% 2.64% 4.31% 6.93% 3.39% 6.93% 2.14%
α1 = 0.90 2.15% 3.41% 0.15% 0.15% 0.15% 2.30% 3.46% 0.15% 0.15% 0.15%
α1 = 0.10 0.93% 11.18% 1.13% 11.18% 0.17% 1.78% 9.40% 1.37% 9.40% 0.95%
α1 = 0.30 4.45% 13.54% 3.59% 13.54% 3.26% 6.28% 12.34% 4.53% 12.34% 4.97%

τ = 8 α1 = 0.50 5.24% 12.21% 4.86% 12.21% 3.81% 6.41% 11.60% 5.16% 11.60% 4.83%
α1 = 0.70 4.01% 8.19% 4.49% 8.19% 2.41% 4.42% 7.88% 4.25% 7.88% 2.67%
α1 = 0.90 1.89% 3.28% 1.80% 2.52% 0.17% 2.01% 3.24% 1.67% 2.46% 0.14%

Table 3 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 15

η = 0.90 η = 0.95
Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

α1 = 0.10 1.72% 16.29% 1.27% 16.29% 1.01% 1.59% 16.25% 1.08% 16.25% 0.79%
α1 = 0.30 7.83% 15.48% 5.79% 15.48% 6.61% 6.84% 15.03% 4.82% 15.03% 5.46%

τ = 4 α1 = 0.50 7.64% 12.91% 5.97% 12.91% 6.13% 6.61% 12.58% 4.88% 12.58% 4.91%
α1 = 0.70 4.77% 8.29% 4.22% 8.29% 3.06% 4.15% 8.15% 3.47% 8.15% 2.25%
α1 = 0.90 1.86% 3.56% 1.86% 1.86% 1.86% 2.06% 3.91% 2.06% 2.06% 2.06%
α1 = 0.10 0.55% 16.60% 1.27% 16.60% 0.02% 1.07% 15.00% 1.42% 15.00% 0.48%
α1 = 0.30 5.35% 17.75% 4.96% 17.75% 4.49% 6.96% 17.69% 6.11% 17.69% 5.98%

τ = 6 α1 = 0.50 6.76% 14.74% 6.39% 14.74% 5.66% 7.62% 15.07% 6.85% 15.07% 6.40%
α1 = 0.70 4.86% 9.19% 5.13% 9.19% 3.60% 4.99% 9.32% 4.97% 9.32% 3.60%
α1 = 0.90 1.65% 3.17% 1.65% 1.65% 1.65% 1.67% 3.26% 1.67% 1.67% 1.67%
α1 = 0.10 0.46% 17.47% 1.70% 17.47% 0.00% 0.54% 14.68% 1.37% 14.68% 0.05%
α1 = 0.30 2.43% 18.76% 3.43% 18.76% 1.72% 5.95% 19.24% 6.17% 19.24% 5.16%

τ = 8 α1 = 0.50 4.67% 15.61% 5.65% 15.61% 3.78% 7.59% 16.72% 7.74% 16.72% 6.60%
α1 = 0.70 4.09% 9.70% 5.16% 9.70% 3.07% 5.31% 10.23% 5.78% 10.23% 4.19%
α1 = 0.90 1.58% 3.21% 0.99% 2.05% 0.45% 1.70% 3.26% 1.06% 2.08% 0.48%

DTP. More importantly, both DTP and STP-1 but particularly DTP perform similarly or better than the

benchmark heuristics NT and TP1. More specifically, they perform at least as good as or better than TP1

in all the scenarios and DTP performs similarly or better than NT in all the scenarios except when N , the

number of patients is small. Out of the 150 different scenarios considered, NT outperforms DTP in only 12

scenarios and these are all scenarios where there are few patients, i.e., N = 5. Note however that having few

patients does not guarantee a good performance by NT. It appears that for NT to perform better than the

other policies, not only the number of patients needs to be small but also α1, the overall percentage of class-1

patients, needs to be high. On the other hand, when N is large, i.e., N = 25, one noteworthy but unsurprising

observation is that the performances of our heuristic policies are similar to that of NT with exactly same
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Table 4 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 20

η = 0.90 η = 0.95
Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

α1 = 0.10 0.52% 20.82% 1.06% 20.82% 0.05% 0.68% 20.30% 1.07% 20.30% 0.15%
α1 = 0.30 6.01% 17.95% 5.25% 17.95% 5.19% 6.08% 18.50% 5.27% 18.50% 5.15%

τ = 4 α1 = 0.50 7.07% 14.05% 6.25% 14.05% 6.00% 6.78% 14.67% 5.93% 14.67% 5.57%
α1 = 0.70 4.57% 8.48% 4.34% 8.48% 3.33% 4.22% 8.77% 3.93% 8.77% 2.83%
α1 = 0.90 1.40% 3.05% 1.40% 1.40% 1.40% 1.53% 3.43% 1.53% 1.53% 1.53%
α1 = 0.10 0.37% 19.92% 1.25% 19.92% 0.00% 0.40% 17.78% 1.01% 17.78% 0.00%
α1 = 0.30 2.98% 18.60% 3.54% 18.60% 2.39% 5.22% 19.16% 5.35% 19.16% 4.55%

τ = 6 α1 = 0.50 5.56% 15.04% 5.89% 15.04% 4.78% 7.46% 16.36% 7.39% 16.36% 6.58%
α1 = 0.70 4.54% 9.23% 5.02% 9.23% 3.62% 5.18% 9.88% 5.41% 9.88% 4.16%
α1 = 0.90 1.40% 2.90% 1.40% 1.40% 1.40% 1.40% 3.00% 1.40% 1.40% 1.40%
α1 = 0.10 0.33% 18.94% 0.79% 16.32% 0.00% 0.35% 16.78% 0.58% 14.18% 0.00%
α1 = 0.30 1.07% 19.26% 2.23% 19.26% 0.58% 4.05% 19.51% 4.61% 19.51% 3.51%

τ = 8 α1 = 0.50 3.25% 15.31% 4.46% 15.31% 2.62% 7.17% 17.34% 7.61% 17.34% 6.47%
α1 = 0.70 3.63% 9.58% 4.62% 9.58% 2.89% 5.48% 10.64% 5.93% 10.64% 4.66%
α1 = 0.90 1.38% 3.00% 1.38% 1.38% 1.38% 1.56% 3.11% 1.56% 1.56% 1.56%

Table 5 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 25

η = 0.90 η = 0.95
Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP

α1 = 0.10 0.35% 23.10% 1.03% 23.10% 0.00% 0.39% 22.20% 0.92% 22.20% 0.00%
α1 = 0.30 3.94% 17.71% 3.79% 17.71% 3.33% 4.50% 18.59% 4.27% 18.59% 3.81%

τ = 4 α1 = 0.50 5.88% 13.49% 5.49% 13.49% 5.07% 6.07% 14.54% 5.64% 14.54% 5.15%
α1 = 0.90 1.14% 2.68% 1.14% 1.14% 1.14% 4.00% 8.59% 3.90% 8.19% 2.91%
α1 = 0.70 4.12% 8.06% 4.05% 7.71% 3.15% 1.22% 3.02% 1.22% 1.22% 1.22%
α1 = 0.10 0.29% 20.60% 0.65% 18.20% 0.00% 0.31% 18.88% 0.50% 16.44% 0.00%
α1 = 0.30 1.44% 17.92% 2.05% 17.92% 0.99% 3.34% 18.12% 3.57% 18.12% 2.84%

τ = 6 α1 = 0.50 4.01% 13.89% 4.50% 13.89% 3.41% 6.41% 15.58% 6.51% 15.58% 5.74%
α1 = 0.70 3.93% 8.65% 4.26% 8.29% 3.21% 4.89% 9.55% 5.00% 9.15% 4.09%
α1 = 0.90 1.21% 2.63% 1.21% 1.21% 1.21% 1.22% 2.74% 1.22% 1.22% 1.22%
α1 = 0.10 0.26% 18.62% 0.26% 0.26% 0.26% 0.27% 17.17% 0.27% 0.27% 0.27%
α1 = 0.30 0.92% 19.07% 0.92% 0.92% 0.92% 2.55% 18.17% 2.55% 2.55% 2.55%

τ = 8 α1 = 0.50 1.99% 14.11% 1.99% 1.99% 1.99% 5.97% 16.11% 5.97% 5.97% 5.97%
α1 = 0.70 2.93% 8.89% 2.93% 2.93% 2.93% 5.12% 10.16% 5.12% 5.12% 5.12%
α1 = 0.90 1.19% 2.75% 1.19% 1.19% 1.19% 1.43% 2.90% 1.43% 1.43% 1.43%

performances observed when the mean service time τ is large. This is because when there are many patients

and it takes a long time to serve each patient, serving all the patients is expected to continue for such a long

time that the slopes of the linear approximations of the two survival probability functions end up being very

close to each other, which in turn significantly reduces the potential benefits of triage and prioritization.

If we take a closer look at the comparison between the performances of DTP and STP-1, we can make

a number of interesting observations. First, when the number of patients is small (N = 5), in almost all the

scenarios, all three policies we propose reduce to TP1, the policy of performing triage on all the patients.

When the number of patients is larger, however, the policies are no longer identical. In fact, the performance

of TP1 gets significantly worse than DTP and STP-1 with the percentage difference with respect to the
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optimal policy being as high as 23% in some scenarios. When it comes to the comparison of DTP and

STP-1, DTP appears to have a better performance overall but STP-1 still outperforms DTP in certain cases.

Although there are some exceptions, generally, we observe the superior performance of STP-1 when the

number of patients and the mean service times are small.

Overall, these numerical results suggest that when there are few patients in need of treatment, skipping

triage altogether might be reasonable if the patients are more likely to be immediate than delayed. In all the

other cases, i.e., when the number of patients is not small or patients are not more likely to be immediate,

we see significant benefits in performing triage. However, putting all the patients through triage also does

not work well. In fact, in majority of the scenarios, it is much more preferable to skip triage altogether than

performing triage on all the patients. Therefore, whether or not triage should be done on a patient should

be determined carefully. Two of the policies we propose, which make this decision dynamically depending

on the number of remaining patients, appear to work quite well. Of these two policies, DTP, the policy that

makes decisions based on both the number of unclassified patients and the number of patients classified as

delayed, appears to work better overall. Policy STP-1, which is only described by a single threshold on the

number of unclassified patients, also performs quite well. This good performance of STP-1 is important to

highlight since simpler policies would have higher chances of being adopted in practice.

The numerical results reported so far were obtained under the assumption that the patients start being

served or triaged right after the incident that caused the injuries, i.e., t0 = 0. It is, however, possible that there

could be some delays in starting the response effort due to various practical obstacles. This is important

for comparison purposes because such a delay would imply that patients would have already “progressed”

in their death probability curves and the relevant portion of these curves, which are plotted in Figure 3,

would not start at time zero but at some t0 > 0. We next investigate how our results would change if t0 were

not zero. Specifically, we consider two cases: t0 = 10 minutes and t0 = 30 minutes and we set N = 10. The

results are provided in Table 6. We can observe from the table that our policies DTP and STP-1 continue

to perform better than the simpler benchmark policies even when the response effort is delayed. It is worth

noting however that the performance difference when compared with No-Triage policy is somewhat smaller.

This is most likely a result of the fact when the starting time of the response effort is shifted, the slopes of

the linear lines fitted to the death probability curves are closer to each other, which decreases the importance

of classifying the patients. In fact, we observed that when t0 is set to even a larger value which is greater

than 60 minutes, the policies we propose DTP, STP-1, and STP-2 all reduce to the No-Triage policy. In this

case, the differences between the two classes are so small that it is not worth spending time to triage and

prioritize patients. But perhaps more importantly, in practice, if the response effort starts that late, even “the

best” policy could result in little benefit as the probabilities of eventual death for all the patients would have

increased substantially.
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Table 6 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 10 and

η = 0.90 and when the response operation starts at t0
t0 = 10 t0 = 30

Heuristics NT TP1 STP-1 STP-2 DTP NT TP1 STP-1 STP-2 DTP
α1 = 0.10 3.52% 10.03% 1.44% 10.03% 2.52% 2.72% 11.48% 1.33% 11.48% 2.06%
α1 = 0.30 7.17% 9.71% 4.09% 9.71% 5.76% 6.44% 11.91% 4.81% 11.91% 5.82%

τ = 4 α1 = 0.50 6.22% 9.45% 4.28% 9.45% 4.63% 5.61% 10.98% 5.18% 10.98% 4.99%
α1 = 0.70 3.94% 7.06% 3.55% 7.06% 2.23% 3.42% 7.81% 4.20% 7.13% 2.81%
α1 = 0.90 1.80% 3.55% 1.80% 1.80% 1.80% 0.96% 3.27% 0.96% 0.96% 0.96%
α1 = 0.10 1.92% 11.06% 1.14% 11.06% 1.14% 1.78% 13.06% 1.36% 13.06% 1.19%
α1 = 0.30 6.22% 12.91% 4.60% 12.91% 5.16% 5.96% 15.36% 5.47% 15.36% 5.42%

τ = 6 α1 = 0.50 6.07% 11.74% 5.30% 11.74% 4.87% 5.79% 13.42% 6.24% 13.42% 5.27%
α1 = 0.70 4.15% 8.12% 4.60% 8.12% 2.85% 3.80% 8.94% 5.05% 8.94% 3.29%
α1 = 0.90 1.65% 3.34% 1.65% 1.65% 1.65% 1.18% 3.41% 1.18% 1.18% 1.18%
α1 = 0.10 0.78% 12.83% 1.21% 12.83% 0.10% 0.67% 14.61% 1.05% 14.61% 0.11%
α1 = 0.30 4.06% 15.41% 4.07% 15.41% 3.18% 4.05% 17.82% 4.98% 17.82% 3.56%

τ = 8 α1 = 0.50 4.76% 13.38% 5.35% 13.38% 3.77% 4.73% 15.10% 6.35% 15.10% 4.27%
α1 = 0.70 3.63% 8.81% 4.96% 8.81% 2.56% 3.45% 9.66% 5.34% 9.66% 2.99%
α1 = 0.90 1.55% 3.37% 1.41% 2.32% 0.41% 1.22% 3.52% 1.22% 1.22% 1.22%

Next, we investigate the sensitivity of our results to the predicted value of α1, the probability of a random

casualty to be of the immediate class. It is reasonable to expect this probability to change from incident to

incident and it can be difficult to estimate. Therefore, it is important to investigate how badly our policies

would perform if the policies were determined assuming a particular value of α1 when in fact it is equal to

something else. For this study, we repeated the scenarios we studied above. In these scenarios, the predicted

value for α1 was αp
1 ∈ {0.1,0.3,0.5,0.7,0.9}. To investigate the sensitivity, we assumed that the true value

of α1 was not actually equal to the predicted value αp
1 , but was a random variable uniformly distributed in

the interval (αp
1 − ε, α

p
1 + ε) where ε =min(αp

1 ,1−α
p
1 ) × 30%.

Table 7 reports the results for the percentage difference between the mortality rate under the optimal policy

and that under each policy we investigate when N = 10. The 95% confidence intervals given in the table are

based on 100 replications. We can observe that DTP and STP-1 collectively continue to perform well and

better than the two benchmark policies. The mean percentage difference (with respect to the performance of

the optimal policy) under both policies is less than 6% in all the scenarios except for one.

7. Conclusion
In emergency medicine, patient triage has largely been accepted as essential for a successful response effort.

Especially in the chaotic scene that typically follows mass-casualty events, patient triage and prioritization

helps in identifying those whowouldmost benefit from emergency care and allocating resources accordingly.

When the resources are extremely limited, however, to the extent that there is a single medic providing care

on the scene, the wisdom of sticking with triage is questionable. Triage would certainly still help identify

who should ideally be prioritized but it is not clear whether delaying the actual treatment of the patients is
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Table 7 Percentage increase in mortality rate by using heuristic policies over the optimal policy when N = 10 and

η = 0.90, 95% confidence interval based on 100 replications
η = 0.90

Heuristics NT TP1 STP-1 STP-2 DTP
α
p
1 = 0.10 4.45± 0.17 9.89± 0.07 1.93± 0.10 9.89± 0.07 3.22± 0.15
α
p
1 = 0.30 8.57± 0.02 9.45± 0.01 4.66± 0.01 9.45± 0.01 6.81± 0.02

τ = 4 α
p
1 = 0.50 6.91± 0.11 8.97± 0.06 4.15± 0.04 8.97± 0.06 4.93± 0.12
α
p
1 = 0.70 4.01± 0.04 6.80± 0.04 3.12± 0.01 6.80± 0.04 1.91± 0.04
α
p
1 = 0.90 2.21± 0.00 4.35± 0.00 2.21± 0.00 2.21± 0.00 2.21± 0.00
α
p
1 = 0.10 2.47± 0.11 10.21± 0.02 1.37± 0.06 10.21± 0.02 1.51± 0.11
α
p
1 = 0.30 6.79± 0.06 11.49± 0.03 4.40± 0.06 11.49± 0.03 5.45± 0.05

τ = 6 α
p
1 = 0.50 6.61± 0.06 10.87± 0.09 5.00± 0.01 10.87± 0.09 5.07± 0.07
α
p
1 = 0.70 4.39± 0.04 7.73± 0.06 4.24± 0.02 7.73± 0.06 2.73± 0.04
α
p
1 = 0.90 1.84± 0.00 3.60± 0.01 0.19± 0.00 0.19± 0.00 0.19± 0.00
α
p
1 = 0.10 0.97± 0.03 11.47± 0.01 1.19± 0.01 11.47± 0.01 0.14± 0.03
α
p
1 = 0.30 4.23± 0.08 13.49± 0.03 3.55± 0.08 13.49± 0.03 3.13± 0.07

τ = 8 α
p
1 = 0.50 5.03± 0.01 12.21± 0.12 4.84± 0.03 12.21± 0.12 3.76± 0.02
α
p
1 = 0.70 3.87± 0.03 8.30± 0.07 4.57± 0.02 8.30± 0.07 2.48± 0.03
α
p
1 = 0.90 1.72± 0.00 3.43± 0.01 1.90± 0.00 2.64± 0.01 0.23± 0.00

worth that. This has been the central question of investigation in this paper and our results strongly indicate

that performing triage no matter what the conditions are could indeed make things worse.

Our findings suggest that when there are relatively few patients on the scene and patients are more likely to

be immediate than delayed, it might be better to skip triage. Given that No-Triage policy performs relatively

close to the optimal policy and better than the simple dynamic policies we propose and that it is in general

difficult to determine the “optimal” dynamic policy in practice, skipping triage may be advisable. Here, it is

important to make it clear that the relatively quick triage at the very basic level with the sole goal of leaving

minor and expectant patients out of consideration should continue but the more lengthy process of further

classifying patients as immediate or delayed could be skipped.

When the number of patients is not small, our results suggest that neither skipping triage completely

nor performing triage on all the patients works well. However, there are significant benefits to performing

triage or skipping it depending on the system state (number of patients that are untriaged and triaged as

low priority) and some of the relatively simple state-dependent policies we propose can help capture some

of these benefits. These proposed policies are tested within a mathematical framework, which permits

computation of the optimal policy and thereby a proper assessment of the performances of these policies.

However, it is important to note that the policies are not custom designed for this specific framework and

can be easily implemented in practice once the model parameters are properly estimated. Even though there

are not much publicly available data on emergency response to mass-casualty events, the estimation should

still be largely straightforward as most of the parameters such as mean service and triage times require data

that are relatively easy to collect. The only exception to this is the survival probability functions, which are
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not only unknown but also difficult to estimate. Very few papers have dealt with the estimation of these

functions (and remaining lifetime distributions) even though they are crucial not only in developing better

quantitative methods for patient triage and prioritization but also for having better qualitative insights into

the effects of delays on patient survival in the aftermath of mass-casualty events. Thus, estimation of survival

probability functions along with remaining lifetime probability distributions is a highly important avenue

for future research.

One cause for concern when it comes to using the state-dependent policies we propose in practice could

be that whether it would be reasonable to expect that a paramedic on the scene would take the time to

determine the policy to use. It could indeed be an unreasonable expectation depending on the nature of the

event. However, the policy does not need to be determined on the scene after the event occurs. Such analysis

can be done beforehand, and simpler guidelines based on our heuristic methods and mathematical analysis

can be identified. During training, medics can be provided with these guidelines, which tell them what to do

depending on the scene conditions such as the number of casualties they will need to take care of.

Finally, it is important to note that the main features of the decision problem we analyzed in this paper

are relevant to many service systems in practice in addition to mass-casualty triage and prioritization. Some

examples are search and rescue operations (Grissom et al. 2006, Genswein et al. 2008), internal maintenance

and repair operations (Taghipour et al. 2011), prioritization of sales leads in marketing particularly in

business-to-business settings (Lichtenthal et al. 1989, Wilson 2003, D’Haen and den Poel 2013), where

time is invested to assess the likelihood of existing leads to be successfully converted to actual sales,

and intelligence (particularly human intelligence) collection management (Department of the Army 2006,

Kaplan 2010, 2012, Ni et al. 2013), where agents make some initial investigation of existing ambiguous

cues, which might possibly be pointing to potential terrorist activities, and prioritize them prior to more

in-depth investigation. In fact, the decision problem at its core, that of balancing the time spent on acquiring

more information with the time spent on acting on the available information, is not even unique to services.

In our daily lives, we constantly prioritize our tasks by assessing the relative value of prioritizing one task

over the other given the available information. In short, our mathematical analysis in this paper is more

broadly relevant outside the context of mass-casualty triage and our results provide broader insights into

making prioritization decisions in a large class of practical settings.
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