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In service systems with heterogeneous customers, prioritization with respect to the relative importance of customers is

known to improve certain performance measures. However, in many applications, information necessary to determine the

importance level of a customer may not be available immediately but can be revealed only through some preliminary

investigation, which is sometimes called triage. This triage process is typically error-prone and may take substantial

amount of time, and hence, it is not always clear if and when it should be implemented for purposes of priority assignment.

To provide insights into this question, we study a stylized queueing model with a single server and two types of customers

with hidden type identities, which differ in their rates of service and waiting costs. By means of a Markov decision

formulation, we first show that the optimal dynamic policy on triage is characterized by a switching curve. The comparison

of two state-independent policies (no-triage and triage-all) shows that the information from triage is more beneficial when

the traffic intensity is neither too low nor too high. Our numerical results show that the system manager should consider

implementing a state-dependent triage policy when the probability of classifying a customer into the important class

and the mean triage time are of moderate size, when the difference between the importance levels of the two classes of

customers is large, and/or when the traffic intensity is high.
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1. Introduction
In many service systems, it is common practice to give priority to a group of customers for service in

order to improve key performance measures. Call centers, banks, and hospitals are just a few examples where

prioritization of customers is prevalent. For some of these service systems, where the customer base is widely

heterogeneous, it is not difficult to see why prioritization should work. For example, emergency departments

of hospitals typically receive patients with a large variety of ailments ranging from life-threatening conditions

such as heart attack to minor issues such as common cold, and thus, categorizing patients according to their
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urgency levels and prioritizing accordingly is crucial. Yet, there are many other systems where arriving

customers, at first glance, appear to be more or less homogeneous, and thus, it is not clear how prioritization

can be implemented or if it would be beneficial at all for them. For these systems, however, there may

be ways to put some effort into collecting information from arriving customers to differentiate them from

the rest of the population. But then a natural question arises: Is it worthwhile to spend additional time

collecting information on a customer before service so as to implement a priority policy, or is it better to

stick with a commonly used non-priority policy like first-come-first-served (FCFS)? Of course, the answer

to this question would be very much case dependent. In this paper, we aim to shed some light onto this

fundamental question by analyzing a stylized mathematical model that captures the trade-off between time

lost in identifying priority customers and opportunity lost by not prioritizing them. In particular, we would

like to obtain some general insights into conditions under which it is worthwhile spending time to collect

information to differentiate customers. We are also interested in the effects of system parameters on the

triage decisions such as the arrival rate and the time it takes to collect information.

There are several application areas where insights from such an analysis would be useful – especially

within the field of healthcare operations. Consider operations at a radiological service center where radiol-

ogists seated in front of computer workstations process jobs sequentially. Radiologists are medical doctors

specialized in interpreting diagnostic images by X-rays, ultrasound, computed tomography (CT), magnetic

resonance imaging (MRI), etc. In most cases, technicians are the ones who meet with patients and take these

diagnostic images – not the radiologists. Once the images are taken, they are sent to a radiologist’s queues

for interpretation. Each job in a radiologist’s queue corresponds to a collection of images taken for a patient.

As discussed in Ibanez et al. (2018), which uses data from one of the largest outsourced radiological services

(teleradiology) firms in the U.S., radiologists may at times use discretion to change the order of jobs in their

queue and deviate from FCFS if they believe that reordering jobs would increase their efficiency. However,

the authors acknowledge that radiologists spend extra time for a preliminary review of jobs before reordering

them and show by an empirical study that the benefits of reordering a queue may not always compensate

for the time spent searching and identifying priority jobs. Another similar application is from operations

in a genetic testing laboratory, where geneticists interpret patients’ test results that arrive continually and

queue up at their desks. According to our personal communication with a geneticist (Tolun 2018), similar

to radiologists, they also spend additional time on preliminary review of their jobs at times to reorder them

based on concerns about urgency and inefficiency.

This information/delay trade-off also arises in the daily operations of emergency departments (EDs) when

a physician makes a decision on which patient to treat next among all the patients who have been triaged by

nurses and are waiting to be seen by physicians. When a physician becomes available to see a new patient,
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she will login the ED information system and choose one from the list of patients in the waiting room based

on their urgency levels and wait times (see, e.g., Ding et al. 2019). A recent study (Li et al. 2020) finds

that when a large number of ED beds are occupied by admitted patients awaiting transfer to inpatient beds,

physicians start to prioritize patients who will likely be discharged after treatment at ED, to avoid further

blocking the ED. To do so, physicians first review details of patients waiting to be seen, including vital signs,

demographics, early test results, etc., through the ED information system. This process takes time, but it

helps predict the disposition of patients (i.e., admit or discharge) and make the prioritization decision to

achieve better system performance. Note that the information collection in this example refers to the process

of a physician reviewing medical information of patients and classifying them by their dispositions. It is not

the triage process done by triage nurses upon a patient’s arrival at the ED, which is undisputably necessary.

In this paper, to identify conditions under which spending additional time for classification and prioritiza-

tion is beneficial, we analyze a single-server queueing system where customers can be from one of two types

with the type of a customer determining the penalty incurred for each unit of time spent in the system. In this

model, customers arrive to the system according to a stationary Poisson process and their type information

is unknown upon arrival. The server has two options: either serve a customer directly without collecting any

information on its type or triage, i.e., investigate the type information of customers and classify them into

two classes accordingly, before serving them. (Our model allows for imperfect classification, i.e., the server

may make mistakes in classifying customers.) Based on this classification, the server can prioritize them for

service in accordance with the system’s objective, i.e., minimizing the long-run average cost. We provide

more specifics about our queueing model and discuss how we formulate the decision problem that the server

faces as a Markov decision process in Sections 3 and 4.

This information/delay trade-off has not received much attention in queueing and operations literature

except for papers by Sun et al. (2018) and Levi et al. (2019a,b), which we review in detail in Section 2 and

which do not consider arrivals of customers. To the best of our knowledge, this paper is the first to study

the information/delay trade-off by considering non-negligible triage times in a priority queue setting. On

the operations management literature, our results provide useful insights to managers who consider triage

for prioritizing certain groups of customers. For example, we obtain a simple expression for a lower bound

on the mean triage time such that if the expected time to triage a customer is higher than this bound, then

it is not worthwhile to triage at all and forego prioritization. In cases where triage is sufficiently fast and

hence worth implementing, we show that instead of performing triage on all customers, it is better to triage

incoming customers only when the number of unclassified customers is sufficiently large compared to the

total number of customers in the system. Both our numerical and theoretical analysis show that arrival rate

has an important effect on the triage decision, which differentiates our work from Sun et al. (2018) and
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Levi et al. (2019a,b) since their models do not have arrivals. More specifically, through the comparison of

two simple state-independent policies (no-triage and triage-all), we find that the information from triage is

more beneficial when the traffic intensity is neither too low nor too high and there is a good mix of type 1

and type 2 customers. Through extensive numerical studies, we found that as the traffic intensity increases,

the sub-optimality of state-independent policies increases especially for cases where the performance of the

no-triage policy is similar to that of triage-all policy. Hence, when traffic intensity is light, triage can be

bypassed.When traffic intensity is moderate to high, a more-complex state-dependent triage policy is needed

if the two state-independent policies do not differ much in performance; otherwise, the best state-independent

policy is fine.

The outline of the paper is as follows. We provide a review of the relevant literature in Section 2 and

details of our mathematical model in Section 3. Our analytical results are presented in Sections 4 and 5.

(Proofs of these results are deferred to the Appendix.) In Section 6, we investigate when and how much

state-dependent policies are better than state-independent ones through a numerical study. We also test the

robustness of our insights with respect to the preemption assumption. Section 7 concludes the paper with a

discussion on the most important managerial insights derived from this work.

2. Literature Review
Priority queues have been studied extensively under the assumption that types of all customers are known

perfectly. In particular, under linear waiting costs, an index policy, namely the 2` rule, has been shown to be

optimal by Smith (1956), Cox and Smith (1961), and Kakalik and Little (1971). According to the 2` rule, a

customer of type 9 has priority over a customer of type : if and only if 2 9` 9 > 2:`: , where 28 and `8 are the

cost and service rates of a type 8 customer, respectively. A 2`-type index policy is further shown to be optimal

under various settings, see, e.g., Klimov (1974), Harrison (1975), Tcha and Pliska (1977), Pinedo (1983) and

Budhiraja et al. (2014). For a comprehensive introduction on this topic, see Pinedo (2008). When the delay

cost is convex, a generalized version of the 2` rule is shown to be asymptotically optimal, see Van Mieghem

(1995) and Mandelbaum and Stolyar (2004). However, when the type identities of customers are not known

perfectly, the service provider may prioritize the incorrect customers. Argon and Ziya (2009) consider this

possibility and study the problem of priority assignment in a queueing system under the assumption that

the type information of each customer is imperfect but this information is readily available. Saghafian et al.

(2014) consider the possibility of misclassification in the context of patient prioritization in emergency

departments but they do not focus on the question of whether to triage or not.

The studies discussed above all make the assumption that the type information (perfect or not) is readily

available to the server upon a customer’s arrival or at decision epochs. There are few studies that assume

that the type information of customers are unknown but the server can choose to perform tests to obtain this
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information. Alizamir et al. (2013) consider a model where a single server classifies each arriving customer

into one of two classes based on the results of a series of independent tests and the decision is to determine

the number of tests to be performed to minimize the total cost of congestion and classification inaccuracy.

Wang et al. (2010) study the operations of diagnostic service centers, where the service corresponds to

performing diagnoses. The objective of this paper is to strike a balance between diagnostic accuracy, system

congestion, and staffing costs by finding the appropriate capacity and service depth that are set before the

system starts running, and hence, independently of changing congestion levels. All of these papers aim to

balance costs associated with congestion and inaccuracy in classification and neither uses class information

for prioritization of customers as in this work.

Our work is most relevant to three recent papers that study resource allocation with information acquisition

for purposes of customer prioritization. Dobson and Sainathan (2011) compare two service systems: one

system has sorters who collect information on a customer and then prioritize it before being served by

processors, and the other systemhas only processors. InDobson and Sainathan (2011), sorting and processing

are done by different servers. In contrast, a single server is responsible for both actions in our model.

Moreover, Dobson and Sainathan (2011) focus on static design questions while we investigate both the best

static policies and optimal dynamic policies. Sun et al. (2018) investigate the patient triage and prioritization

decisions in the aftermath of mass casualty events. Triage provides information on the urgency and service

requirements, which are necessary for patient prioritization but at the cost of extra delay to patient treatment.

Sun et al. (2018) show that the optimal triage decision can be characterized by a switching curve and provide

a closed-form expression for this curve. Levi et al. (2019a,b) study a similar information/delay trade-off with

multiple classes of customers and show that the structure of the optimal policy is again of threshold type.

They develop near-optimal algorithms to solve the problem and quantify the value of information obtained

through testing. Our work also studies the information/delay trade-off but in a queueing setting with external

arrivals to the system in contrast to the clearing systems studied in Sun et al. (2018) and Levi et al. (2019a).

The existence of an arrival process and the goal of minimizing the long-run average costs make the problem

significantly more difficult to analyze. Specifically, the problems studied in Sun et al. (2018) and Levi et al.

(2019a) are essentially optimal stopping problems under the optimal policy, which is no longer true for the

problem under study in this paper, and hence, a fundamentally different approach is needed to characterize

the optimal policy. In addition, we explicitly model the possibility of misclassification in our model, and our

results also provide intuition on how the traffic intensity affects the service provider’s decision on triage.

Finally, we should note that our work also shares some high-level similarities with other streams of work

including studies on (i) two-tier service systems, see, e.g., Shumsky and Pinker (2003); (ii) cross-selling in

a call center setting, see, e.g., Armony and Gurvich (2010); (iii) strategic behaviors under different levels
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of information, see, e.g., Guo and Zipkin (2007); (iv) learning information through service, see, e.g., Xu

et al. (2015), Bimpikis and Markakis (2019). The models studied in these papers all have some level of

information disclosure or learning, but the research focus is very different from ours.

3. Model Description
Consider a service system with a single server and two types of customers, namely, type 1 and type 2.

Customers arrive at the system according to a Poisson process with rate _ > 0, and they wait in an infinite-

capacity queue if the server is busy upon arrival. We refer to the new customers that have not been attended

as “class 0” customers. Class 0 customers are a mixture of type 1 and type 2 customers but their true types are

not known to the server. We assume that each class 0 customer belongs to type 1 with probability ?1 ∈ (0,1)

and to type 2 with probability ?2 ≡ 1− ?1.

The server can serve a class 0 customer without knowing its type, but s/he also has the option of spending

some time on investigating the type of this customer before service, and classifying the customer as “class

1” or “class 2.” The investigation time of a customer is exponentially distributed with mean D > 0, and is

independent of the arrival process and the customer’s type. In the rest of the paper, we use the term triage

to refer to the process of investigating the type of a customer and classifying the customer based on that

information. Define \8 as the probability of classifying a type 8 customer as class 8 ∈ {1,2}. Also, let @8 be

the probability of classifying a class 0 customer as class 8 ∈ {1,2}. Then, we have @1 = ?1\1 + ?2(1 − \2)

and @2 = ?1(1− \1) + ?2\2.

Let ℎ8 ≥ 0 denote the (finite) per unit time cost that a type 8 customer incurs during its stay in the system for

8 = 1,2. Let also A8 be the expected cost per unit time of a class 8 customer in the system for 8 = 0,1,2. It is then

easy to show that A0 = ?1ℎ1 + ?2ℎ2, A1 = (?1\1ℎ1 + ?2(1− \2)ℎ2)/@1, and A2 = (?1(1− \1)ℎ1 + ?2\2ℎ2)/@2.

Note that A0 = @1A1 + @2A2, i.e., A0 is a convex combination of A1 and A2. Therefore, A0 is either equal to both

A1 and A2, or it is strictly between them.

We assume that service times of class 8 customers are independent and identically distributed exponential

random variables with finite mean g8 > 0, 8 = 0,1,2. For analytical tractability, our theoretical results assume

that a preemptive discipline is used, i.e., the server has the option of changing its action at any given time. This

assumption may not be realistic. Indeed, most services are performed in a non-preemptive manner including

in our motivating examples from healthcare. However, later in the paper, we study the non-preemptive case

bymeans of a numerical study and show that our insights obtained for the preemptive discipline hold robustly

under non-preemption.

Under the assumptions introduced above, at any point in time, there can be at most three classes of

customers in the system with possibly different cost rates and service time distributions. The server can
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either serve one of these three classes of customers or can triage a class 0 customer into one of the two other

classes. Our objective is to find policies that minimize the expected long-run average waiting costs.

In Section 4, we formulate this optimization problem as a Markov decision process (MDP) and provide

characterizations of the optimal policy. Before we present these results, we would like to briefly discuss how

the mathematical model defined above captures the main components of the motivating examples presented

in Section 1. First of all, the existence of two types of customers in our model with differing holding cost

rates captures the idea that the system controller values the wait of certain customers in the systemmore than

the wait of others. The different service times mean that some customers require less efforts to complete,

and switching the order of service may improve system efficiency. The positive triage time in our model

represents that to determine the urgency (or “importance”) of a customer, or to estimate the customer’s

service time, the server performs a brief preliminary review, which provides imperfect information on this

customer’s type and urgency but takes some time. More specifically, Tolun (2018) states that a geneticist may

categorize a case to be urgent if s/he sees a suspicious test result during such a preliminary review, which

takes some random amount of time and can lead tomisclassification. Li et al. (2020) also note that a physician

may spend some time to extract and review patients’ information from ED information system, in order to

estimate a patient’s disposition and based on which the physician picks the next patient for treatment. Ibanez

et al. (2018) find that processing tasks after triage is associated with superior performance, yet the time cost

of reorganizing the queue may make triage inefficient and not worth it. All three examples are consistent

with our modeling assumptions on the non-negligible triage times and the possibility of misclassification.

4. Optimal Dynamic Policies
To formulate the optimal control problem under study as a Markov decision process, let S ≡
{x ≡ (G0, G1, G2) : G8 ≥ 0, 8 = 0,1,2} be the state space, where G8 is the number of customers in class 8. To

define the action space, note that at any given time the server can take one of the following four actions: (0

– serve a class 0 customer without triage (if G0 ≥ 1); (1 – serve a class 1 customer (if G1 ≥ 1); (2 – serve a

class 2 customer (if G2 ≥ 1); and Tr – triage a class 0 customer (if G0 ≥ 1). One can easily show that idling is

suboptimal when there is at least one customer in the system due to the preemption assumption. Hence, the

action space is given by A ≡ {(0, (1, (2,Tr}.
We next let

6(c, x) ≡ lim sup
C→∞

+C (c, x)
C

, ∀x ∈ S, (1)

be the expected long-run average cost, where +C (c, x) is the total expected cost up to time C starting from

state x under policy c, which is a sequence of decision rules that map S to A and that specifies the action

taken at any state and time. Then, the optimal expected long-run average cost is defined as

6∗(x) ≡ inf
c
6(c, x), ∀x ∈ S. (2)



8

Wefirst show the existence of an optimal stationary and deterministic policy c∗ that satisfies (2). Let ei be the

8th row of a 3×3 identity matrix (8 = 1,2,3), 0 be a 1×3 vector of all zeros, and r ≡ (A0, A1, A2)ᵀ be a column

vector of cost rates. We next apply uniformization with the uniformization constant q ≡ _ + D−1 +∑2
8=0 g

−1
8

as in Lippman (1975). Without loss of generality, we can redefine the time unit so that q = 1, and thus,

_, D−1, and g−1
8

become respectively the probability that the next uniformized transition is an arrival, triage

completion, and service completion of a class 8 customer, where 8 = 0,1,2. Let E(x) be the relative cost

function defined as the difference between the total expected cost starting from state x and a reference state

(e.g., state 0). The long-run average cost optimality equations can be written as E(x) + 6 = !E(x), ∀x ∈ S,
where 6 is the optimal average cost per period of time after uniformization, and the operator ! is defined as:

!E(x) = _E(x + e1) +min
{
D−1 [@1E(x − e1 + e2) + @2E(x − e1 + e3)] + (g−10 + g−11 + g−12 )E(x),

g−10 E(x − e1) + (D−1 + g−11 + g−12 )E(x), g−11 E(x − e2) + (D−1 + g−10 + g−12 )E(x),

g−12 E(x − e3) + (D−1 + g−10 + g−11 )E(x)
}
+ x · r, if x ≠ 0, (3)

!E(0) = _E(e1) + (D−1 + g−10 + g−11 + g−12 )E(0), (4)

where E(·) :S→ IR and we assume that E(x) =∞ for x ∉S for notational convenience. The first term in the

right-hand side of (3) represents the deviation of the cost-to-go from the optimal average cost 6 associated

with a new arrival and the last term represents the expected cost occurred until the next transition. The

terms inside the minimization represent the deviation of cost-to-go from 6 associated with taking action

Tr, (0, (1, (2, respectively. (Note that the last part of each of the four terms in the minimization represents a

“dummy” transition due to uniformization, where the system state remains unchanged.) We are now ready

to present Proposition 1. (The proofs of Proposition 1 and all other analytical results are provided in the

Appendix.)

Proposition 1. Assume that _g0 < 1. Then, there exist a function ℎ(·) : S → IR and a non-negative

constant 6∗ that satisfy the average-cost optimality inequalities

ℎ(x) + 6∗ ≥ !ℎ(x), ∀x ∈ S, (5)

where 6∗(x) = 6∗ for all x ∈ S. Moreover, there exists an optimal stationary deterministic policy that achieves

the minimum in (3).

The condition _g0 < 1 in Proposition 1 ensures that the system is stable. Under this condition, Proposition

1 implies that there exists an optimal stationary deterministic policy with long-run average cost 6∗ that is

independent of the initial state. The following theorem provides a partial characterization of this optimal

policy c∗ to the average-cost problem defined in (2). In general it is possible that there is more than one

optimal action for any given state. If that is the case, for consistency, we choose the optimal action in the

following order: (1, (0, Tr, and (2.
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Theorem 1. Suppose that _g0 < 1 and A1/g1 ≥ A0/g0 ≥ A2/g2. Then, there exists an optimal stationary

deterministic policy that solves the long-run average cost problem in (2) and takes the following form:

(i) When G1 ≥ 1, the optimal action is (1, i.e., always serve a class 1 customer when there is at least one.

(ii) The optimal action is (2 only when G0 = G1 = 0 and G2 ≥ 1, i.e., a class 2 customer should be served

only when there is no other class of customers.

(iii) If D + @1g1 + @2g2 ≥ g0, A0D + @1A1g1 + @2A2g2 ≥ A0g0, and

D ≥ D̃ ≡ @1(A1g0 − A0g1)
A0

, (6)

then the optimal action is (0, i.e., a class 0 customer should be served without triage, in x ∈ S with

G0 ≥ 1 and G1 = 0.

(iv) If g0 = g1 = g2 = g, D < D̃, and

_ ≤ 1

g + D

(
1− A2

(D̃/D − 1)A0 + A2

)
, (7)

then for all x ∈ S with G1 = 0 and G0 ≥ 1, there exists a threshold G∗2(G0) such that if G2 < G∗2(G0), the

optimal action is Tr, i.e., triage a class 0 customer; otherwise, the optimal action is (0, i.e., a class 0

customer should be served without triage. Furthermore, G∗2(G0) is a non-decreasing function of G0.

In Theorem 1, we assume without loss of generality that A1/g1 ≥ A2/g2, i.e., class 1 customers are more

“important” than class 2 customers. Since class 0 customers are a mixture of customers of class 1 and

class 2, it is reasonable to assume that A0/g0 is between A1/g1 and A2/g2, i.e., class 0 customers are more

important than class 2, but less important than class 1. Consistent with the classical 2` rule, parts (i) and

(ii) of Theorem 1 show that at any given time and state, it is optimal to give class 1 customers the highest

priority and class 2 customers the lowest priority, respectively. When there are no class 1 customers but at

least one class 0 customer, then the server should attend a class 0 customer – either to triage the customer

or to serve the customer directly without triage – in accordance with the structure identified in parts (iii)

and (iv) of Theorem 1. More specifically, Theorem 1 (iii) shows that when triage takes a significant amount

of time (so that the three conditions on D hold), the optimal policy simplifies to a state-independent policy

that never performs triage on any class 0 customer and that directly serves them. The intuition is that the

benefit of triage and prioritization diminishes when triage takes a significant amount of time, and hence,

customers have to endure longer waits due to triage. Conditions in part (iii) give a precise description of

what we mean by triage taking a significant amount of time. The first condition implies that it takes more

time in expectation to first triage then serve a class 0 customer than to serve the customer without triage.

Similarly, the second condition means that the expected cost charged while processing a class 0 customer is

higher if it is triaged and served than if it is directly served. (Both conditions are automatically satisfied when
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g0 = g1 = g2.) Additionally, by writing the right-hand side of condition (6) as @1g0g1(A1/g1 − A0/g0)/A0, we

can see that skipping triage altogether would become optimal when there is not much difference in holding

costs per unit of service between class 0 and class 1 customers, i.e., the value of A1/g1 − A0/g0, is low.

On the other hand, when the opposite of (6) is true and the service times for all customers are identically

distributed, and the arrival rate is sufficiently low (as in (7)), then the optimal policy is of threshold-type. In

particular, when there are no class 1 customers in the system, then it is optimal to triage a class 0 customer if

the number of class 2 customers is below a critical value, and serve a class 0 customer directly without triage

when the number of class 2 customers in the system is sufficiently large. Figure 1 demonstrates this threshold

structure by means of a numerical example. The intuition behind this threshold-type structure is that when

there are many class 2 customers waiting for service, the value of type information obtained through triage

could not compensate for the additional delay (as a result of triage) that the remaining customers will have

to suffer. Hence, the optimal action is to skip triage. Furthermore, Theorem 1 (iv) shows that the threshold

G∗2(G0) is non-decreasing in G0 when the arrival rate is bounded as in (7). The implication is that when there

are more class 0 customers waiting in queue, the cost reduced by identifying and prioritizing an important

customer is greater, which in turn means greater tolerance to the delay cost incurred by the less important

customers in the system. It is important to note that although we need condition (7) to prove Theorem 1

(iv), the result may still hold under a weaker condition. In particular, note that (7) in fact is a sufficient

condition for the system to be stable under all work-conserving and non-idling policies. More specifically, if

(7) is satisfied, then _(g + D) < 1, which ensures that the queueing system under every work-conserving and

non-idling policy is stable. In a numerical study for stable queueing systems, despite trying a large number

of scenarios, we were not able to find any case where G∗2(G0) decreases with G0 or is non-monotone. We also

want to point out that our numerical experiments show that the threshold structure of the optimal policy

may also hold for heterogeneous service times with distinct g′B, although we can only prove it under the

assumption of identical service times. Figure 1 is an illustration of the optimal policy when the mean service

times are different.

Remark 1. Note that Theorem 1 has a similar structure to the main results in Sun et al. (2018). However,

the proof is much more challenging than that for clearing systems as studied in Sun et al. (2018). The

optimality proof for the dynamic threshold policy in Sun et al. (2018) reduces to an optimal stopping problem

because there are no future arrivals. When there is an arrival stream as in our motivating examples from

healthcare, this trick can no longer be used. Hence, a whole new approach is needed, which requires intricate

sample-path arguments and tedious algebra. In particular, to prove Proposition 1 and Theorem 1, we first

prove similar existence and structural results for the corresponding discounted-cost problem that minimizes

the total discounted cost over an infinite horizon; see Appendix A. We then use results from Section 7.2 of



11

Figure 1 Visual depiction of the optimal policy when G1 = 0, _ = 0.6, ℎ1 = 10, ℎ2 = 1, g0 = 1, g1 = 0.9, g2 = 0.95, \1 =

\2 = 0.9, D = 0.3, and ?1 = 0.5. Value-iteration algorithm with state space truncation at queue capacity

100 is used to find the optimal policy.
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Sennott (1999) to extend these results to the average-cost problem by letting the discount factor go to zero;

see Appendix B.

5. State-independent Policies
In Section 4, we showed that the optimal policy for the long-run average cost problem defined in (2) is

state dependent and also provided an intuitive explanation as to why this is the case. However, in many

applications, the system managers either triage all customers or do not triage at all, perhaps because of

practicality or perception of fairness underlying these simple policies. Therefore, in this section, we explore

the set of state-independent policies, i.e., policies that only use the state information as to whether G8 is zero

or not for 8 = 0,1,2. Indeed, Theorem 1 implies that it is possible that under certain conditions (such as those

in Theorem 1 (iii)), state-independent policies can be even optimal. We start by defining two such policies

that are of particular interest.

• No-Triage Policy (NT): A non-idling policy, under which no customer goes through triage.

• Triage-Prioritize-Class-1 Policy (TP1): A non-idling policy, under which all customers are triaged,

class 1 customers receive priority over all customers, and class 2 customers receive the lowest priority.

Hence, if a customer is classified as class 1, it is served immediately, and class 2 customers are served

only when there are no customers from another class in the system.

Proposition 2. When A1
g1
≥ A2
g2
, d ≡ _(D + @1g1 + @2g2) < 1, D + @1g1 + @2g2 ≥ g0, A0D + @1A1g1 + @2A2g2 ≥
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A0g0, and D2 + @1g1(g1 + D) + @2g2(g2 + D) ≥ g20 , among all state-independent and deterministic policies, the

policy that achieves the minimum long-run average cost is either TP1 or NT.

Under some reasonable assumptions, Proposition 2 shows that it is sufficient to only consider policies NT

and TP1 to find an optimal policy that minimizes the expected long-run average cost within the set of all

deterministic state-independent policies. The first condition A1
g1
≥ A2
g2

means that class 1 customers are more

important than class 2 customers, which is without loss of generality and consistent with our assumptions in

Theorem 1. The stability of the system under policy TP1 is guaranteed by d < 1. The next three conditions

respectively imply that it takes more time for service in expectation, costs more during service, and results in

a higher service time variance to first triage then serve a class 0 customer than to serve the customer directly

without triage.

Besides being simple, easy-to-implement and potentially optimal, NT and TP1 can also serve as bench-

marks for any proposed dynamic policy. In the remainder of this section, we compare these two state-

independent policies in terms of their expected long-run average costs. Denote the expected long-run average

cost under policy c by 2c .

We first derive closed-form expressions for 2NT and 2TP1. For _g0 < 1, the system under NT is a stable

M/M/1 queue with arrival rate _ and mean service time g0, and hence, from known results on M/M/1 queues

(see, e.g., Section 7.3.1 in Kulkarni (2010)), we have

2NT =
_g0A0

1−_g0
. (8)

It is not however straightforward to obtain an expression for 2TP1. Therefore, we state it as a proposition and

provide a proof in Appendix C.

Proposition 3. Assume that d < 1. Then, we have

2TP1 =
_2(D2 + @1Dg1 + @1g21 )A0

1−_(D + @1g1)
+_(A0D + @1A1g1) +_@2A2

(
D + g2 +

d[D + g2 −_Dg2 −_@1g1(g2 − g1)]
(1− d) [1−_(D + @1g1)]

)
.

(9)

Note that under TP1, there can be only two classes of customers in the queue in steady state: class 0 and

class 2 customers. The first and second terms in (9) correspond to the long-run average holding cost of class

0 customers in queue and in service, respectively, while the third term corresponds to the long-run average

cost of keeping class 2 customers in queue and service.

Our next result provides a comparison between NT and TP1, and hence, a characterization of the optimal

policy within the set of deterministic state-independent policies when conditions of Proposition 2 hold.

Theorem 2. Assume that d < 1 and D + @1g1 + @2g2 ≥ g0.
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(i) Suppose that A0D + @1A1g1 + @2A2g2 ≥ A0g0. There exist two thresholds _ and _̄ such that 2NT ≤ 2TP1 if

and only if _ ≤ _ or _ ≥ _̄, where 0 < _ ≤ _̄ < (D + @1g1 + @2g2)−1 and all other system parameters are

fixed.

(ii) Suppose that A0D+@1A1g1+@2A2g2 ≥ A0g0, D2+@1g1(g1+D) +@2g2(g2+D) ≥ g20 , and g0 = g2. There exist

two thresholds ?1 and ?̄1 such that 2NT ≤ 2TP1 if and only if ?1 ≤ ?1 or ?1 ≥ ?̄1,where 0 ≤ ?1 ≤ ?̄1 ≤ 1

and all other system parameters are fixed.

(iii) Suppose that g0 = g2. 2NT ≤ 2TP1 if and only if A2/g2
A1/g1 ≥ Θ1, where

Θ1 ≡
[

@1g1(@2g2)−1(1− d) [_@2g0g1 − (1−_g1 +_2g0g1)D + g0 − g1]
(1−_g0) [g0 + (1−_g0)D −_@1g1(g0 − g1)] − (1− d) [1−_(D + @1g1)] [g0 − (1−_g0)D]

]+
and [G]+ ≡max(0, G).

Most assumptions needed for Theorem 2 are the same as those for Proposition 2 and hence will not be

discussed here. The only additional assumption needed is that we require g0 = g2 for parts (ii) and (iii) of

Theorem 2, i.e., class 0 and class 2 customers have identically distributed service times but may be different

from that of class 1. Although we have numerical evidence that this assumption is not necessary, we were

not able to prove these results without it. However, note that this assumption may not be too restrictive

especially for our motivating examples as we explain next. Under policy TP1, a class 0 customer will be

served immediately if it is triaged as a class 1 whereas a class 0 customer triaged into class 2 will only

get served when all class 0 customers are triaged and served. (This has also been shown to be optimal in

Theorem 1 (i)&(ii).) It is then reasonable that the information from triage affects the service time of a class

1 customer because service of a class 1 immediately follows its triage. On the other hand, the information

collected on a customer who is triaged into class 2 and served later should have little impact on its service,

since the server may forget this information by the time this customer’s service starts.

A visual illustration of parts (i) and (ii) of Theorem 2 is provided in Figure 2. Note that we plot this

figure with heterogeneous service times, i.e., g′
8
B are distinct. The structure in this figure is proved under the

assumption g0 = g2, but we believe it holds under weaker conditions. Theorem 2 (i) shows the effect of the

arrival rate on the choice between NT and TP1, and hence, in a way, on the value of the information obtained

through triage. More specifically, it would be worthwhile to triage all customers only when the traffic is

moderate; otherwise, i.e., when the traffic is light or heavy, it is better to skip triage for all customers.

The intuition is that when the traffic is light, then the wait time any customer has to endure to get served

is tolerable, and hence, the benefit from prioritization is not worth the extra cost incurred by triaging all

customers. When the arrival rate is high, the wait times will be long and triaging all class 0 customers will

make the wait times even longer, thus, it would be better to serve the customers without triage. From the
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Figure 2 Best deterministic state-independent policy when ℎ1 = 10, ℎ2 = 1, g0 = 1, g1 = 0.9, g2 = 0.95, D =

0.2, and \1 = \2 = 0.9. All conditions of Proposition 2 are satisfied in this plot.

expressions of 2NT and 2TP1 in (8) and (9), we can numerically compute the interval (_, _̄), which tells us

the range of _ where subjecting all customers to triage is better than skipping it altogether.

Part (ii) of Theorem 2 implies that TP1 outperforms NT when there is a balanced mix of both types of

customers, i.e., the value of ?1 is neither too high nor too low. The intuition is that when the value of ?1 is

very low or very high, either important customers are so rare that triage rarely ends up identifying them or

they are so dominant that triage rarely helps eliminate the less important customers for immediate service.

In part (iii) of Theorem 2, it can be shown that Θ1 > 0 if and only if D < (_@2g0g1 + g0 − g1)/(1− _g1 +

_2g0g1); see proof of Theorem 2 (iii). Hence, to triage all customers is better than to triage none when

the mean triage time is sufficiently small and the importance level between the two classes is significantly

different (i.e., A2/g2
A1/g1 <Θ1, where Θ1 < 1 by Corollary 1 below).

We next use Theorem 1 (iii) and Theorem 2 (iii) to obtain Corollary 1, which provides guidance as to

when triage should be considered. Figure 3 provides a pictorial description of this result.

Corollary 1. Suppose that A1
g1
≥ A0
g0
≥ A2
g2
, d < 1, D + @1g1 + @2g2 ≥ g0, A0D + @1A1g1 + @2A2g2 ≥ A0g0,

D2 + @1g1(g1 + D) + @2g2(g2 + D) ≥ g20 , and g0 = g2. Let Θ2 ≡
[
@1g1 (g0−@1g1−D)
@2g2 (@1g1+D)

]+
, where Θ1 ≤ Θ2 < 1 for any

D > 0.

(i) If A2/g2
A1/g1 ≥ Θ2, then there is no policy (state-dependent or -independent) that has a lower long-run

average cost than NT.

(ii) If Θ1 ≤ A2/g2
A1/g1 < Θ2, then there is no deterministic state-independent policy that has a lower long-run

average cost than NT.

(iii) If A2/g2
A1/g1 <Θ1, then there is no deterministic state-independent policy that has a lower long-run average

cost than TP1.
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Figure 3 Optimality of NT and TP1 as a function of A2/g2
A1/g1 .

Corollary 1 and Figure 3 provide useful managerial insights into when triage should be ruled out and

when it should be considered. First, when D ≥ g0− @1g1, then Θ2 = 0, and hence by Corollary 1 triage should

not be used at all. This simple condition has an intuitive explanation: The benefit of triage mainly comes

from the prioritization of “important” customers, which are class 1 customers since their importance level

A1/g1 is the largest among all customers. However, triage comes at the cost of making all customers in the

system wait for an extra D units of time on average. Taking both the cost and benefit of triage into account,
@1A1
D+@1g1 can be interpreted as the expected importance level of a customer who would be triaged as class

1. Given that A0 = @1A1 + @2A2 ≥ @1A1, the condition D + @1g1 > g0 implies that A0
g0
>

@1A1
D+@1g1 , i.e., a class 0

customer becomes less “important” after triage even if s/he would be triaged as class 1. Hence, there is no

benefit in triage and NT is optimal.

Second, if triage is fast enough so that Θ2 > 0, then one should consider the heterogeneity of customer

classes in terms of their differences in their “importance levels,” measured by A8/g8 , 8 = 1,2, to decide

whether to triage or not. More specifically, if A2/g2
A1/g1 ∈ [Θ2,1), i.e., the two classes of customers do not differ

significantly from one another, then triage should be ruled out completely; otherwise, some level of triage

can be useful. If the management finds that triage can be useful but is not willing to implement a dynamic

policy but wants to rather employ simple state-independent and deterministic policies, they should again

rule out triage if A2/g2
A1/g1 ∈ [Θ1,Θ2). Finally, if A2/g2A1/g1 < Θ1, e.g., when triage is fast, arrival rate is moderate,

and/or there is a significant difference between the “importance levels” of the two classes, then to triage

every customer is a better alternative to triage nobody – although there can be a better state-dependent triage

policy in such a situation.

6. Numerical Study
In this section, we aim to investigate twomain research questions through a numerical study. First, we have

shown that the optimal policy could be a state-dependent policy that only triages incoming customers when

the number of unclassified customers in the system is sufficiently large. However, we do not know when

and how much these more complex policies are better than simpler state-independent policies such as the

triage-all policy TP1. Second, our theoretical results are developed under the preemptive service discipline,

and hence, we would like to test whether our insights hold under non-preemptive service.
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6.1. Study Settings

When obtaining the performance for the optimal policy numerically, we retain the Markovian structure of

the problem throughout our numerical experiments, and assume service and triage times are exponentially

distributed. Without loss of generality, we set both the mean service time g2 and the cost incurred per unit

time by a class 2 customer A2 to one.We continue to assume that customers of class 1 are more important than

that of class 0, which are more important than that of class 2, i.e., A1/g1 ≥ A0/g0 ≥ A2/g2 = 1. To examine the

impact of the relative importance among different classes of customers, we consider three different values of

A1/g1, specifically {2,5,10}.We also set g1 = 0.9 and choose g0 from {1,1.05},whichmeans that information

from triage reduces the mean service time for class 1 customers, but not necessarily for class 2 customers

(see the discussion following Theorem 2 for why this would be a practical setting). Under assumptions

D+@1g1+@2g2 ≥ g0 and A0D+@1A1g1+@2A2g2 ≥ A0g0, we know that the state-independent policyNT is optimal

when D ≥ D̃ by Theorem 1 (iii). Since we are interested in when and how much improvement an optimal

dynamic policy can bring, in our experimental setup, we restrict the mean triage time D to be lower than

D̃. More specifically, we set D = D̂ + [(D̃ − D̂), where D̂ ≡max{g0 − @1g1 − @2g2, g0 − @1A1g1/A0 − @2A2g2/A0}

and [ ∈ {0.1,0.3,0.5,0.7,0.9} (so that assumptions of Theorems 1 and 2 on D are satisfied and D ≤ D̃).

We consider five different values for @1, i.e., the probability of classifying a customer as class 1, from

the set {0.1,0.3,0.5,0.7,0.9}. To examine the impact of different traffic levels, we choose _ so that d =

_(D + @1g1 + @2g2) is in {0.3,0.5,0.7,0.9}. Finally, we conduct all experiments under both preemptive and

non-preemptive service disciplines. As a result, we consider a total of 2× 3× 5× 4× 5× 2 = 1200 scenarios

in this numerical study.

The long-run average costs of NT (with or without preemption) and TP1 under preemption are computed

by (8) and (9), respectively. To numerically compute the optimal long-run average cost for the underlying

MDP formulation with an infinite state space, we needed to truncate the state space. More specifically, we

applied the value-iteration algorithm to compute the optimal long-run average cost under the assumption

that the system capacity is # , i.e., at any given time the total number of customers in the system
∑2
8=0 G8

does not exceed # and a customer that arrives when the system is full, i.e.,
∑2
8=0 G8 = # , is lost. The long-run

average costs of the optimal policy and TP1 under the non-preemptive discipline are computed under the

same state space truncation. Clearly, such a truncation mechanism would result in only an approximation

for the long-run average cost of each policy. To have a certain level of confidence in the accuracy of these

approximate results, we varied the system capacity # from 60 to 120 in increments of 20 and obtained the

long-run average cost of each policy for each scenario. We found that for all 1200 scenarios described above

and the numerical precision we report in this section, the results were the same for # = 100 and higher.

Hence, all results presented in this section are based on computations for # = 100.
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Table 1 Percentage increase in the expected long-run average cost by using the best of NT and TP1 over

the optimal policy under preemptive service for g0 = 1, g1 = 0.9, g2 = 1, A2 = 1, and d ∈ {0.3,0.5,0.7,0.9}. Policy NT

(TP1) is the best between NT and TP1 in the shaded (unshaded) cells.

d = 0.3 d = 0.5

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 1.54 0.88 0.36 0.06 0.00 1.69 1.52 0.75 0.22 0.01
@1 = 0.3 2.83 2.04 0.86 0.14 0.00 2.64 3.85 1.92 0.54 0.01
@1 = 0.5 2.33 2.53 1.13 0.19 0.00 1.95 3.62 2.73 0.87 0.03
@1 = 0.7 1.31 1.92 1.21 0.23 0.00 1.01 1.56 2.37 1.35 0.09
@1 = 0.9 0.41 0.44 0.49 0.56 0.12 0.31 0.33 0.36 0.39 0.47

A1/g1 = 5
@1 = 0.1 4.62 2.96 1.10 0.15 0.00 4.67 5.29 2.40 0.59 0.01
@1 = 0.3 4.37 5.23 1.91 0.23 0.00 4.10 9.78 4.66 1.04 0.01
@1 = 0.5 2.19 5.38 2.09 0.28 0.00 1.98 5.10 5.60 1.33 0.01
@1 = 0.7 0.80 2.77 1.93 0.31 0.00 0.63 1.33 3.11 1.73 0.03
@1 = 0.9 0.19 0.21 0.27 0.49 0.00 0.14 0.16 0.18 0.21 0.35

A1/g1 = 10
@1 = 0.1 6.34 5.12 1.77 0.20 0.00 6.52 9.56 4.08 0.85 0.00
@1 = 0.3 4.16 7.32 2.52 0.27 0.00 3.60 9.93 6.60 1.31 0.00
@1 = 0.5 1.75 6.80 2.58 0.32 0.00 1.30 4.64 7.30 1.65 0.01
@1 = 0.7 0.44 2.84 2.25 0.34 0.00 0.35 0.95 3.01 1.95 0.03
@1 = 0.9 0.10 0.11 0.43 0.46 0.00 0.07 0.08 0.09 0.11 0.23

d = 0.7 d = 0.9

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 2.21 2.03 1.06 0.40 0.04 4.76 2.31 1.15 0.48 0.09
@1 = 0.3 3.27 5.70 2.92 1.13 0.11 11.37 6.48 3.45 1.47 0.29
@1 = 0.5 2.17 5.14 4.70 1.88 0.25 10.84 10.66 5.79 2.61 0.75
@1 = 0.7 0.83 1.77 3.34 3.31 1.04 4.67 11.67 8.38 4.12 1.60
@1 = 0.9 0.20 0.21 0.25 0.32 0.51 0.99 1.29 2.13 3.63 4.31

A1/g1 = 5
@1 = 0.1 6.79 7.38 3.62 1.16 0.06 15.19 8.54 4.33 1.61 0.19
@1 = 0.3 6.09 13.72 7.97 2.36 0.08 28.21 21.89 10.85 3.86 0.33
@1 = 0.5 2.65 6.40 10.58 3.47 0.15 15.45 31.62 15.90 5.95 0.61
@1 = 0.7 0.62 1.54 3.02 4.78 0.43 4.50 11.14 18.48 8.67 1.62
@1 = 0.9 0.09 0.11 0.12 0.17 0.30 0.60 0.39 1.14 2.03 3.77

A1/g1 = 10
@1 = 0.1 9.66 14.13 6.59 1.85 0.05 31.71 17.43 8.57 2.88 0.21
@1 = 0.3 5.59 12.74 12.28 3.29 0.06 27.53 38.44 18.39 6.04 0.33
@1 = 0.5 1.82 4.74 8.98 4.68 0.14 11.80 24.01 24.81 9.07 0.71
@1 = 0.7 0.32 0.87 1.86 3.89 0.44 2.61 6.52 10.84 12.42 1.90
@1 = 0.9 0.05 0.06 0.06 0.08 0.12 0.05 0.86 0.33 0.70 1.76

6.2. Numerical Results

Tables 1 through 4 show the percentage increase in the expected long-run average cost by using the best

of NT and TP1—either to skip triage altogether (i.e., NT) or to triage all incoming customers to give the

highest priority to class 1 customers and the lowest priority to class 2 customers (i.e., TP1)—over the optimal

policy under the preemptive service discipline for all 1200 scenarios described above. In all four tables, cells
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Table 2 Percentage increase in the expected long-run average cost by using the best of NT and TP1 over

the optimal policy under preemptive service for g0 = 1.05, g1 = 0.9, g2 = 1, A2 = 1, and d ∈ {0.3,0.5,0.7,0.9}. Policy

NT (TP1) is the best between NT and TP1 in the shaded (unshaded) cells.

d = 0.3 d = 0.5

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 1.68 1.25 0.90 0.61 0.34 2.77 2.18 1.70 1.29 0.97
@1 = 0.3 3.75 1.86 0.89 0.17 0.00 3.33 4.29 2.29 0.84 0.07
@1 = 0.5 3.23 2.55 1.20 0.23 0.00 2.52 3.62 3.38 1.25 0.11
@1 = 0.7 1.90 2.26 1.35 0.45 0.00 1.45 1.73 2.26 2.50 0.68
@1 = 0.9 0.60 0.63 0.65 0.68 0.74 0.45 0.47 0.49 0.51 0.54

A1/g1 = 5
@1 = 0.1 4.86 2.65 1.09 0.17 0.00 5.06 4.84 2.37 0.62 0.01
@1 = 0.3 4.53 5.01 1.93 0.25 0.00 4.29 8.71 4.68 1.09 0.01
@1 = 0.5 2.45 5.26 2.14 0.31 0.00 2.09 4.19 5.78 1.42 0.02
@1 = 0.7 1.03 2.14 2.06 0.35 0.00 0.82 1.23 2.17 2.15 0.06
@1 = 0.9 0.26 0.28 0.30 0.37 0.04 0.20 0.22 0.23 0.25 0.28

A1/g1 = 10
@1 = 0.1 6.71 4.81 1.76 0.22 0.00 6.49 9.11 4.02 0.89 0.01
@1 = 0.3 3.88 7.11 2.53 0.29 0.00 3.57 8.86 6.67 1.36 0.00
@1 = 0.5 1.57 6.09 2.64 0.34 0.00 1.32 3.69 7.49 1.74 0.01
@1 = 0.7 0.57 2.12 2.37 0.38 0.00 0.46 0.71 2.07 2.34 0.05
@1 = 0.9 0.14 0.15 0.16 0.58 0.02 0.10 0.11 0.12 0.13 0.15

d = 0.7 d = 0.9

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 1.96 2.46 2.09 1.62 1.29 4.63 3.33 2.38 1.69 1.19
@1 = 0.3 2.91 5.59 3.61 1.91 0.76 10.46 6.08 3.54 1.92 0.97
@1 = 0.5 2.10 4.12 5.67 2.94 1.11 8.44 10.59 6.13 3.21 1.49
@1 = 0.7 1.01 1.57 2.61 4.17 2.41 3.67 9.07 9.34 5.21 2.58
@1 = 0.9 0.29 0.30 0.31 0.35 0.42 0.15 1.12 1.60 2.63 4.38

A1/g1 = 5
@1 = 0.1 5.81 7.13 3.55 1.33 0.12 13.44 7.83 4.22 1.83 0.35
@1 = 0.3 5.34 11.96 7.96 2.61 0.12 24.39 21.44 10.84 4.05 0.44
@1 = 0.5 2.38 5.57 9.70 3.89 0.23 13.22 29.11 16.39 6.45 0.85
@1 = 0.7 0.67 1.30 2.44 4.27 0.81 3.63 9.51 16.32 9.77 2.60
@1 = 0.9 0.13 0.14 0.16 0.18 0.23 0.08 0.68 0.91 1.54 3.00

A1/g1 = 10
@1 = 0.1 8.65 13.48 6.46 1.91 0.07 29.82 16.68 8.26 2.99 0.28
@1 = 0.3 4.84 11.03 12.37 3.47 0.08 24.34 38.15 18.35 6.31 0.40
@1 = 0.5 1.57 4.00 7.56 5.08 0.19 10.11 21.59 25.44 9.51 0.88
@1 = 0.7 0.37 0.70 1.41 2.73 0.70 2.06 5.49 9.51 13.72 2.84
@1 = 0.9 0.07 0.08 0.08 0.09 0.10 0.04 0.08 0.20 0.47 1.10

corresponding to scenarios where NT (TP1) is the best policy between NT and TP1 are shaded (unshaded).

Next, we discuss our observations from these tables on the impact of each of the system parameters and the

robustness of the insights with respect to the preemption assumption.

6.2.1. Impact of the expected triage time (D) and the probability of being class 1 (@1). We observe

a large variation among scenarios with respect to the level of suboptimality of the best state-independent
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policy between NT and TP1. More specifically, when the value of D is low and that of @1 is high, or when

the value of D is high and that of @1 is low, there is not much to be gained by using a dynamic policy over

using a state-independent policy. In particular, for each fixed pair of d and A1/g1 considered, NT is the better

one between NT and TP1 when the value of [ (and thus D) is high and the value of @1 is low (see the upper

right corner of the (@1, [) quadrant), and it does not perform much worse than the optimal dynamic policy.

Similarly, TP1 is better than NT when the value of [ (and thus D) is low and the value of @1 is high (see the

lower left corner of the (@1, [) quadrant) and performs similarly to the optimal policy. On the other hand,

scenarios where the best of NT and TP1 performs the worst lie close to the border between shaded and

unshaded cells. A closer look at the parameters reveal that for these cells, A2/g2
A1/g1 is close to Θ1, which means

that neither TP1 nor NT dominates the other significantly; see part (iii) of Theorem 2. Hence, the proximity

of A2/g2
A1/g1 to Θ1 can be used as a criterion to decide whether it is worthwhile to implement a more complex

dynamic policy over a state-independent one.

6.2.2. Impact of the importance level (A1/g1). From Tables 1 and 2, we observe that as A1/g1 increases

(i.e., as the “importance” of class 1 customers increases), the gap between the optimal dynamic policy and the

best ofNT and TP1 becomes larger in general, except for some scenarios where the value of [ (thus the triage

time) is low and @1 represents a good mix of class 1 and class 2. Since A2/g2 is a constant, the results imply

that when class 1 customers become more “important” than class 2 customers, then an optimal dynamic

policy that makes state-dependent triage decisions brings greater benefit compared to state-independent

policies. However, if the triage time is sufficiently short and there is a good mix of customers, then the

triage-all policy (TP1) is nearly optimal and the optimality gap becomes smaller as customers become more

different in their “importance” levels.

6.2.3. Impact of the traffic intensity (d), the service times, and the preemptive assumption. We

observe that as the traffic intensity increases, the gap between the optimal dynamic policy and the best of

NT and TP1 becomes larger in general, especially for the scenarios that lie close to the boarder between the

shaded and unshaded cell, i.e., when A2/g2
A1/g1 is close to Θ1. We have fixed the mean service times of classes

1 and 2 customers but vary that of class 0 customers from g0 = 1 (results in Table 1) to g0 = 1.05 (results in

Table 2). We observe that the gap between the optimal policy and the best of NT and TP1 becomes smaller

when the service times of customers are reduced more by triage. Finally, Tables 3 and 4 show that all insights

obtained from our numerical analysis with preemption continue to hold when the preemption assumption

is relaxed. Interestingly, we find that the best of NT and TP1 performs closer to the optimal policy under

non-preemptive service discipline.

In summary, the systemmanager should consider implementing a state-dependent triage policy when A2/g2
A1/g1

is close to Θ1 (e.g., when the values of @1 and D are neither too high nor too low), when the heterogeneity
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Table 3 Percentage increase in the expected long-run average cost by using the best of NT and TP1 over

the optimal policy under non-preemptive service for g0 = 1.0, g1 = 0.9, g2 = 1, A2 = 1, and d ∈ {0.3,0.5,0.7,0.9}.

Policy NT (TP1) is the best between NT and TP1 in the shaded (unshaded) cells.

d = 0.3 d = 0.5

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 0.42 0.21 0.06 0.01 0.00 0.76 0.58 0.21 0.04 0.00
@1 = 0.3 0.82 0.48 0.13 0.01 0.00 0.90 1.43 0.51 0.09 0.00
@1 = 0.5 0.30 0.60 0.19 0.02 0.00 0.35 1.99 0.76 0.14 0.00
@1 = 0.7 0.03 0.59 0.23 0.03 0.00 0.04 0.48 1.01 0.23 0.00
@1 = 0.9 0.00 0.00 0.01 0.09 0.00 0.00 0.00 0.01 0.05 0.15

A1/g1 = 5
@1 = 0.1 1.41 0.66 0.16 0.01 0.00 3.19 1.87 0.61 0.09 0.00
@1 = 0.3 2.35 1.13 0.25 0.02 0.00 3.21 3.54 1.11 0.15 0.00
@1 = 0.5 1.83 1.19 0.30 0.02 0.00 1.52 4.10 1.37 0.20 0.00
@1 = 0.7 0.29 1.01 0.31 0.03 0.00 0.10 2.81 1.54 0.26 0.00
@1 = 0.9 0.00 0.01 0.29 0.05 0.00 0.00 0.00 0.04 0.53 0.01

A1/g1 = 10
@1 = 0.1 2.36 1.08 0.23 0.02 0.00 4.97 3.16 0.95 0.12 0.00
@1 = 0.3 3.17 1.51 0.32 0.02 0.00 3.92 4.93 1.46 0.17 0.00
@1 = 0.5 2.40 1.46 0.35 0.03 0.00 1.88 5.20 1.71 0.23 0.00
@1 = 0.7 0.61 1.17 0.35 0.03 0.00 0.07 3.55 1.78 0.30 0.00
@1 = 0.9 0.00 0.11 0.30 0.05 0.00 0.00 0.00 0.27 0.50 0.01

d = 0.7 d = 0.9

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 1.57 1.09 0.45 0.11 0.00 3.10 1.60 0.71 3.90 1.69
@1 = 0.3 2.00 2.91 1.18 0.27 0.00 8.94 4.57 1.99 0.61 0.02
@1 = 0.5 1.11 4.19 1.83 0.45 0.01 9.99 7.47 3.30 1.03 0.04
@1 = 0.7 0.20 1.09 2.67 0.77 0.02 3.90 10.95 5.03 1.63 0.11
@1 = 0.9 0.00 0.00 0.03 0.13 0.40 0.09 0.62 1.71 3.47 2.18

A1/g1 = 5
@1 = 0.1 5.75 3.66 1.39 0.26 0.00 11.85 5.85 2.40 0.59 0.01
@1 = 0.3 5.19 7.73 2.82 0.51 0.00 26.27 13.82 5.47 1.22 0.01
@1 = 0.5 2.19 7.85 3.85 0.77 0.00 14.11 20.12 8.27 1.98 0.03
@1 = 0.7 0.28 2.43 4.72 1.14 0.01 4.08 11.10 11.47 3.43 0.10
@1 = 0.9 0.00 0.00 0.04 0.19 0.23 0.05 0.37 1.07 2.35 1.10

A1/g1 = 10
@1 = 0.1 8.38 6.47 2.28 0.38 0.00 25.13 10.87 4.17 0.88 0.01
@1 = 0.3 5.48 11.42 4.01 0.65 0.00 24.77 22.21 8.40 1.69 0.01
@1 = 0.5 2.13 7.90 5.10 0.97 0.00 10.73 24.06 12.08 2.82 0.03
@1 = 0.7 0.17 2.67 5.83 1.40 0.01 2.46 7.24 13.42 4.66 0.11
@1 = 0.9 0.00 0.00 0.02 0.46 0.18 0.01 0.13 0.44 1.10 1.21

in the importance levels of customers is high, and/or when the traffic intensity is high. The gap between the

optimal policy and the best of NT and TP1 can be over 30% in some scenarios.



21

Table 4 Percentage increase in the expected long-run average cost by using the best of NT and TP1 over

the optimal policy under non-preemptive service for g0 = 1.05, g1 = 0.9, g2 = 1, A2 = 1, and d ∈ {0.3,0.5,0.7,0.9}.

Policy NT (TP1) is the best between NT and TP1 in the shaded (unshaded) cells.

d = 0.3 d = 0.5

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 0.01 0.05 0.12 0.18 0.00 0.04 0.13 0.28 0.52 0.56
@1 = 0.3 0.10 0.45 0.17 0.02 0.00 0.21 0.98 0.62 0.14 0.00
@1 = 0.5 0.05 0.60 0.23 0.03 0.00 0.11 0.69 0.94 0.21 0.00
@1 = 0.7 0.00 0.09 0.29 0.05 0.00 0.01 0.13 0.49 0.40 0.01
@1 = 0.9 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.00 0.00 0.02

A1/g1 = 5
@1 = 0.1 0.79 0.62 0.17 0.02 0.00 1.00 1.79 0.61 0.10 0.00
@1 = 0.3 1.37 1.12 0.29 0.02 0.00 1.14 3.58 1.19 0.17 0.00
@1 = 0.5 0.44 1.20 0.35 0.03 0.00 0.35 4.22 1.55 0.23 0.00
@1 = 0.7 0.01 1.04 0.37 0.04 0.00 0.01 1.03 1.78 0.36 0.00
@1 = 0.9 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.00 0.03 0.10

A1/g1 = 10
@1 = 0.1 2.22 1.06 0.25 0.02 0.00 2.69 3.15 0.97 0.13 0.00
@1 = 0.3 2.29 1.51 0.36 0.02 0.00 1.84 5.04 1.58 0.19 0.00
@1 = 0.5 0.97 1.48 0.40 0.03 0.00 0.29 5.36 1.89 0.26 0.00
@1 = 0.7 0.00 1.21 0.40 0.03 0.00 0.00 1.78 2.05 0.38 0.00
@1 = 0.9 0.00 0.00 0.38 0.08 0.00 0.00 0.00 0.00 0.09 0.05

d = 0.7 d = 0.9

[ 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

A1/g1 = 2
@1 = 0.1 0.21 0.59 1.10 1.23 0.88 2.43 1.69 1.20 0.85 0.60
@1 = 0.3 0.90 3.06 1.31 0.37 0.01 8.37 4.47 1.99 0.62 0.39
@1 = 0.5 0.50 2.18 2.16 0.63 0.02 7.33 7.84 3.60 1.13 0.22
@1 = 0.7 0.06 0.53 1.54 1.33 0.10 2.67 8.40 6.33 2.56 0.33
@1 = 0.9 0.00 0.00 0.01 0.03 0.12 0.03 0.32 1.03 2.28 4.27

A1/g1 = 5
@1 = 0.1 3.07 3.48 1.37 0.31 0.00 10.50 5.26 2.38 0.62 0.02
@1 = 0.3 2.93 7.85 2.94 0.58 0.00 22.13 13.89 5.59 1.33 0.02
@1 = 0.5 1.09 5.40 4.18 0.88 0.01 11.71 20.44 8.63 2.23 0.05
@1 = 0.7 0.10 0.86 3.74 1.44 0.02 3.08 9.03 12.35 3.82 0.17
@1 = 0.9 0.00 0.00 0.01 0.04 0.22 0.02 0.20 0.68 1.62 3.28

A1/g1 = 10
@1 = 0.1 5.50 6.40 2.32 0.43 0.00 21.99 10.58 4.20 0.95 0.01
@1 = 0.3 3.12 11.69 4.21 0.73 0.00 21.23 22.59 8.77 1.89 0.02
@1 = 0.5 0.81 5.64 5.53 1.11 0.00 8.72 20.79 12.74 3.15 0.04
@1 = 0.7 0.04 0.85 4.17 1.72 0.02 1.74 5.48 10.97 5.33 0.19
@1 = 0.9 0.00 0.00 0.00 0.01 0.15 0.00 0.05 0.23 0.65 1.71

7. Conclusion
In this paper, we studied a fundamental question many service systems with heterogeneous customers and

arrivals face: When is it worthwhile to spend additional time to triage customers before service to improve

the priority order of customers for processing? To find an answer to this question, we analyzed a stylized,

single-server queueing model with two types of customers both analytically and numerically. This analysis
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resulted in several useful managerial insights. First, we found that implementing a triage policy for purposes

of prioritization should not be considered if triage takes a significantly large amount of time in comparison

to the actual service. This result is not surprising but we were able to derive a simple condition to decide

whether triage is too long to implement: If D + @1g1 > g0, i.e., the expected time it takes to triage a customer

and serve her immediately after triage when classified as important is larger than the expected time it takes

to serve a customer without triage, then triage should be ruled out. If we find that triage is not that long, then

we show that one needs to also take into account the heterogeneity of customers in the population in terms of

their perceived value to the system and their service times to decide whether triage should be implemented.

By means of aMarkov decision process formulation, we show that when the service times of all customers

are identical and it is worthwhile to triage, the optimal triage policy is dependent on the number of customers

in the system. More specifically, the optimal policy does not in general triage all arriving customers but

only when the number of unclassified customers is sufficiently large in comparison with the number of other

customers in the system. In other words, if the number of unclassified customers is lower than a certain

threshold, then it is better to directly serve these customers right away instead of classifying them by triage.

Although the optimal triage policy should be state dependent in general, the comparison of the triage-all

policy and the no-triage policy provides insights for managements that see value in a triage policy but do not

want to employ a complex state-dependent one. This analysis resulted in an explicit necessary and sufficient

condition to determine whether triage-all is better than no-triage. From our numerical experiments, we

observed that this condition can also inform when to prefer dynamic triage policies. In particular, the system

manager should consider implementing a state-dependent triage policy when the probability of classifying

a customer into the important class and the mean triage time are of moderate size, when the difference

between the importance levels of the two classes of customers is large, and/or when the traffic intensity is

high. The gap between the optimal policy and the best of NT and TP1 can be over 30% in some scenarios.
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Appendices
We provide proofs of our theoretical results in the appendices. In particular, in Appendix A, we provide

the MDP formulation of our optimal control problem under the objective of minimizing the total discounted

cost over an infinite horizon and we prove certain structural results for its optimal solution. In Appendix

B, we extend the structural properties of the value functions for the infinite-horizon total discounted cost

problem to the long-run average cost problem to prove Proposition 1 and Theorem 1. Finally, the proofs of

analytical results presented in Section 5 are provided in Appendix C.

Appendix A. Discounted Cost Problem

Let - c
8
(C) be the number of class 8 customers (8 = 0,1,2) in the system at time C ≥ 0 under policy c. The

infinite-horizon discounted-cost problem is to find a policy c that minimizes

+ c (x) = �
[ ∫ ∞

0
4−UC

2∑
8=0

A8-
c
8 (C)3C

���x] , (10)

where x is the initial system state andU > 0 is the continuous-time discount rate.We next apply uniformization

with the uniformization constant q = _+D−1 +∑2
8=0 g

−1
8
+U as in Lippman (1975). Without loss of generality,

we can redefine the time unit so that q = 1. Then, the )-period total discounted cost under policy c is

+ c (x,)) = �
[ )∑
C=1

WC
2∑
8=0

A8-
c
8 (C)

���x] , (11)

where the discounting factor is W ≡ _+D−1+g−10 +g
−1
1 +g

−1
2

U+_+D−1+g−10 +g
−1
1 +g

−1
2

= 1−U; see Figure 11.5.3 in Puterman (2005). The

uniformized discrete-time version of the decision problem in (10) is to find a policy c that minimizes

+ c (x) = lim
)→∞

+ c (x,)). (12)

Let E(x) = inf c +
c (x) be theminimum total discounted cost starting from state x. The optimality equations

for the total discounted cost problem defined in (10) can be written as E(x) = !E(x), ∀x ∈ S, where ! is

defined in (3) and (4). Now, we are ready to first show the existence of an optimal policy that minimizes the

total discounted cost over an infinite horizon.
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Proposition 4. There exists an optimal stationary deterministic policy that solves the discounted-cost

problem (10), and the optimality equation E(x) = !E(x), for x ∈ S, has a unique and finite solution E(·) that

corresponds to the total discounted cost under this optimal policy.

Proof: We prove Proposition 4 by checking the conditions of Theorem 11.5.3 in Puterman (2005). It

is obvious that the state space S is countable and the action space at state x, denoted by Ax , is finite

for each x ∈ S. If we let 2 ≡ _ + D−1 +∑2
8=0 g

−1
8
< ∞, then Assumption 11.5.1 in Puterman (2005) holds

because 2 ≥ maxx,0{V(x, 0)} and 1 − @(x |x, 0) < 1, where V(x, 0) is the transition rate when action 0 is

chosen in state x in the underlying continuous-time MDP and @(x′ |x, 0) denotes the transition probability

from state x to x′ when action 0 is chosen for the embedded chain underlying the continuous-time MDP.

Next, we show that there exists a positive real-valued function F(x) satisfying minx∈S F(x) > 0 such that

Assumptions 6.10.1 and 6.10.2 in Puterman (2005) hold. Let F(x) =max{1, G0 + G1 + G2} for x ∈ S. Then,

minx∈S F(x) = 1 > 0. Let A (x, 0) be the expected immediate reward gained when action 0 is taken in state

x, then we have A (x, 0) ≡ −A0G0 − A1G1 − A2G2, and for all x ∈ S,

max
0∈Ax

|A (x, 0) | = | − A0G0 − A1G1 − A2G2 | ≤max{A0, A1, A2}(G0 + G1 + G2) ≤max{A0, A1, A2}F(x).

Hence, Assumption 6.10.1 is satisfied. For j = ( 90, 91, 92) and x ∈ S,∑
j∈S

?( j |x, 0)F( j) =
∑
j∈S

?( j |x, 0)max{1, 90 + 91 + 92} ≤
∑
j∈S

?( j |x, 0)max{1, G0 + G1 + G2 + 1},

where ?( j |x, 0) is the transition probability to state j when action 0 is taken in state x for the discrete-time

MDP after uniformization, and the inequality holds because every period the number of customers in the

system can change by at most one. Thus,∑
j∈S

?( j |x, 0)F( j) ≤max{1, G0 + G1 + G2 + 1} = 1+ G0 + G1 + G2 ≤ 2F(x), ∀0 ∈ Ax and x ∈ S.

Hence, part (a) of Assumption 6.10.2 is satisfied. For any policy c, integer � ≥ 1 and 0 ≤ 2 < 1, we have

2�
∑
j∈S

%�c ( j |x)F( j) = 2�
∑
j∈S

%�c ( j |x)max{1, 90 + 91 + 92} ≤ 2�
∑
j∈S

%�c ( j |x)max{1, G0 + G1 + G2 + �}

= 2� (G0 + G1 + G2 + �) ≤ 2� (� + 1)F(x), ∀ x ∈ S,

where %�c ( j |x) is the (x, j)th component of the �-step transition probability matrix under policy c and

the first inequality holds because the number of customers in the system can change by at most one every

period. As long as � is sufficiently large, we know that 0 ≤ 2� (� + 1) < 1. Let 0 = 2� (� + 1), we have

2�
∑

j∈S %
�
c ( j |x)F( j) ≤ 0F(x), and part (b) of Assumption 6.10.2 is satisfied. 2

The following theorem provides a partial characterization of the optimal policy to problem (10). Here, we

denote the action taken at state x under the optimal policy by 0∗(x).



27

Theorem 3. Assume that A1/g1 ≥ A0/g0 ≥ A2/g2. There exists an optimal stationary deterministic policy

that solves the discounted-cost problem defined in (10) and takes the following form:

(i) If G1 ≥ 1, then 0∗(x) = (1, i.e., a class 1 customer should be served.

(ii) 0∗(x) = (2, i.e., a class 2 customer should be served, only when G0 = G1 = 0.

(iii) Suppose that @1A1g1/(1+Ug1) +@2A2g2/(1+Ug2) +A0D ≥ A0g0 and @1g1/(1+Ug1) +@2g2/(1+Ug2) +D ≥

g0. When G0 = 1 and G1 = 0, 0∗(x) = (0, i.e., the class 0 customer should be directly served.

(iv) Suppose that @1A1g1/(1+Ug1) +@2A2g2/(1+Ug2) +A0D ≥ A0g0 and @1g1/(1+Ug1) +@2g2/(1+Ug2) +D ≥

g0. If

D ≥ D̃(U) ≡ @1(A1g0 − A0g1)/[(1+Ug1)A0], (13)

then 0∗(x) = (0 for all x ∈ S with G0 ≥ 2 and G1 = 0, i.e., a class 0 customer should be directly served.

(v) Suppose that g0 = g1 = g2 = g, Ug2/(1+Ug) < D < D̃(U),

_ ≤ 1

g + D

(
1− A2

(D̃(0)/D − 1)A0 + A2

)
, (14)

and 0 < U < D−1−_. For G1 = 0 and G0 ≥ 1, there exists a threshold G∗2(G0) such that if G2 < G∗2(G0), then

0∗(x) = Tr, i.e., a class 0 customer should be triaged; otherwise, 0∗(x) = (0, i.e., a class 0 customer

should be served without triage. Furthermore, G∗2(G0) is a non-decreasing function of G0.

To prove Theorem 3, we first prove the following lemma:

Lemma 1. For any policy c1 that triages a class 0 customer in initial state x ∈ S when D > g0, there exists

a policy c2 that directly serves that class 0 customer, and for which + c1 (x,)) ≥ + c2 (x,)) for any ) ≥ 1.

Proof: For any initial state x ∈ S with G0 ≥ 1, consider policy c1 that triages a class 0 customer at C = 0.

We also consider policy c2 based on c1 but serves a class 0 customer directly at C = 0. There are two

possible scenarios: (i) If the service of the class 0 customer under c2 is not completed at C = 1, then in the

corresponding sample path, the triage in c1 does not finish at C = 1 because D > g0. Hence, the two sample

paths couple at C = 1 and letting c2 follow c1 after C = 1, we obtain + c1 (x,)) −+ c2 (x,)) = 0, ∀) ≥ 1. (ii)

If the service of the class 0 customer under c2 finishes at C = 1, let c2 follow c1 starting from C = 1 except

when c1 works (triages or serves directly) on the customer being triaged at C = 0, then let policy c2 stay idle.

Hence, + c1 (x,)) −+ c2 (x,)) ≥ 0, ∀) ≥ 1, which concludes the proof. 2

Based on Lemma 1, we exclude policies that take the action of triage when D > g0.

Proof of Theorem 3 (i)&(ii).We first show that (i)&(ii) are optimal for the )-period problem in (11) using

stochastic coupling and induction on ). For ) = 1, the results are true since + c (x,1) = �
[
W
∑2
8=0 A8x

]
does

not depend on c. Now assume the results hold for some ) ≥ 1. Using stochastic coupling we will show that

it also holds for ) + 1. We first show that (1 is better than every other possible action one by one.
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(i)-1: Serving a class 1 is better than serving a class 2. Define policy c1 that serves a class 2 customer

(assume there is one) at C = 0 while there is a class 1 customer and then follows the optimal policy at C = 1.

Then, c1 must serve a class 1 at C = 1 by the induction assumption. Consider now the policy c2 that switches

the order of the first two actions under c1 and then follows c1 starting at C = 2. The difference between the

expected cost for the two policies is

+ c1 (x,) + 1) −+ c2 (x,) + 1) = g−12 W2A1 + (1− g−12 )W2(A1 + A2) −
[
g−11 W2A2 + (1− g−11 )W2(A1 + A2)

]
= W2(A1/g1 − A2/g2) ≥ 0.

Hence, serving a class 1 customer is better than serving a class 2 customer.

(i)-2: Serving a class 1 is better than serving a class 0. The proof is similar to Case (i)-1 thus omitted.

(i)-3: Serving a class 1 is better than triaging a class 0. Define policy c1 that triages a class 0 customer

(assume there is one) at C = 0 while there is a class 1 customer and then follows the optimal policy at C = 1.

Then, c1 must serve a class 1 at C = 1 by the induction assumption. Consider now the policy c2 that switches

the order of the first two actions under c1 and then follows c1 starting at C = 2. The difference between the

expected cost for the two policies is

+ c1 (x,) + 1) −+ c2 (x,) + 1) = (A0 + A1)W2 −
[
g−11 W2A0 + (1− g−11 )W2(A0 + A1)

]
= W2A1g

−1
1 > 0.

Hence, serving a class 1 is better than triaging a class 0 customer.

We have proved that 0∗(x) = (1 if G1 ≥ 1, hence we only need to consider the case when G1 = 0, G0 > 0,

and G2 > 0 for Theorem 3 (ii). Define policy c1 that serves a class 2 customer at C = 0 and then follows the

optimal policy at C = 1. Then, by the induction assumption, c1 must work on a class 0, either by serving

directly ((0) or performing triage (Tr) at C = 1. Consider policy c2 that directly serves a class 0 at C = 0,

serves a class 2 at C = 1, and then goes on to follow the optimal policy starting at C = 2.

If c1 takes action (0 at C = 1, then the difference between the expected cost for the two policies is

+ c1 (x,) + 1) −+ c2 (x,) + 1) = W2(A0/g0 − A2/g2) ≥ 0. If c1 takes action Tr at C = 1, then by Lemma 1 we

must have D ≤ g0. Next, we write down the costs under policies c1 and c2 as follows.

+ c1 (x,) + 1)

= Wxr + W2xr + W2_A0 − W2A2g−12 + W2g−12

[
D−1 [@1+ (x − e1 + e2 − e3,) − 1) + @2+ (x − e1,) − 1)]

+_+ (x + e1 − e3,) − 1) + (1−_− D−1)+ (x − e3,) − 1)
]
+ W2_

[
D−1

[
@1+ (x + e2,) − 1) + @2+ (x + e3,) − 1)

]
+_+ (x + 2e1,) − 1) + (1−_− D−1)+ (x + e1,) − 1)

]
+ W2(1−_− g−12 )

[
D−1

[
@1+ (x − e1 + e2,) − 1)

+ @2+ (x − e1 + e3,) − 1)
]
+_+ (x + e1,) − 1) + (1−_− D−1)+ (x,) − 1)

]
, (15)
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+ c2 (x,) + 1)

= Wxr + W2xr + W2_A0 − W2A0g−10

+ W2g−12

[
g−10 + (x − e1 − e3,) − 1) +_+ (x + e1 − e3,) − 1) + (1−_− g−10 )+ (x − e3,) − 1)

]
+ W2_

[
g−10 + (x,) − 1) +_+ (x + 2e1,) − 1) + (1−_− g−10 )+ (x + e1,) − 1)

]
+ W2(1−_− g−12 )

[
g−10 + (x − e1,) − 1) +_+ (x + e1,) − 1) + (1−_− g−10 )+ (x,) − 1)

]
, (16)

where+ (x, C) is the total discounted cost in the next C periods starting from state x under the optimal policy. It

is easy to use a sample-path argument to show that+ (x + ei , C) ≥ + (x, C),∀x ∈ S, 8 = 1,2,3, and C ≥ 0. Hence,

from (15) and (16) and the fact that D ≤ g0, we get + c1 (x,) + 1) −+ c2 (x,) + 1) > W2(A0/g0 − A2/g2) ≥ 0.

Since the results hold for all ) <∞, they also hold for the infinite-horizon problem with the total discounted

cost, which concludes our proof. 2

We need the following lemma to prove Theorem 3 (iii).

Lemma 2. Assume A1/g1 ≥ A0/g0 ≥ A2/g2. For x = (0,0, G2), we have (i) E(x + e2) − E(x) ≥ (A1 +

G2A2)g1/(1 + Ug1); and (ii) E(x + e3) − E(x) ≥ (A2 + G2A2)g2/(1 + Ug2), where E(x) is the minimum total

discounted cost starting in state x.

Proof: By Theorem 3 (i), the optimal action at state x + e2 is to serve class 1. Hence,

E(x + e2) − E(x) = _E(x + e1 + e2) + g−11 E(x) + (D−1 + g−10 + g−12 )E(x + e2) + A1 + G2A2 − E(x)

> (1−U− g−11 ) (E(x + e2) − E(x)) + A1 + G2A2,

which yields E(x + e2) − E(x) > (A1 + G2A2)g1/(1+Ug1). Similarly, we have

E(x + e3) − E(x) = _E(x + e1 + e3) + g−12 E(x) + (D−1 + g−10 + g−11 )E(x + e3) + A2 + G2A2 − E(x)

> (1−U− g−12 ) (E(x + e3) − E(x)) + A2 + G2A2,

which yields E(x + e3) − E(x) > (A2 + G2A2)g2/(1+Ug2). 2

Proof of Theorem 3 (iii).We prove the result by a sample-path argument for the uniformized discrete-time

process. By Lemma 1, we only need to consider cases with D ≤ g0. For initial system state x = (1,0, G2), G2 ≥

0, consider policy c1 that triages the single class 0 customer at C = 0 and follows the optimal policy starting

from C = 1, and policy c2 that serves the single class 0 customer at C = 0 and follows the optimal policy

starting from C = 1. There are three possible scenarios:

(i) With probability g−10 , the service of the class 0 customer under c2 finishes by C = 1, then in the

corresponding sample path, the triage under c1 must be also complete by C = 1 (because D ≤ g0). Hence,

+ c1 (x) −+ c2 (x) = @1(E(x − e1 + e2) − E(x − e1)) + @2(E(x − e1 + e3) − E(x − e1))
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≥ @1(A1 + G2A2)g1/(1+Ug1) + @2(A2 + G2A2)g2/(1+Ug2),

where the inequality follows from Lemma 2.

(ii) With probability D−1 − g−10 , the service of the class 0 customer under c2 is not complete by C = 1 and

hence the state is still x, however, the triage under c1 is complete by C = 1. Hence, we have

+ c1 (x) −+ c2 (x) =+ c1 (x) − (A0 + G2A2 + WE(x)) ≥ + c1 (x) − E(x) − (A0 + G2A2) > −(A0 + G2A2)D,

where the first inequality holds because W ≤ 1 and the last one holds because + c1 (x) ≥ E(x) and D > 1.

(iii) With probability 1− D−1, the triage under c1 is not complete by C = 1, nor is the service of the class 0

customer under c2 (because D ≤ g0). The event that happened in C = 1 could be a dummy transition due

to the uniformization or a new arrival, and thus, in either case, the two sample paths under c1 and c2
have the same states starting from C = 1 and accumulated the same cost in the previous period. Hence,

+ c1 (x) −+ c2 (x) = 0.

Taking the expectation over these three possible outcomes at C = 0, we have

+ c1 (x) −+ c2 (x) > g−10 [@1(A1 + G2A2)g1/(1+Ug1) + @2(A2 + G2A2)g2/(1+Ug2)] − (D−1 − g−10 ) (A0 + G2A2)D

= g−10

[
@1A1g1/(1+Ug1) + @2A2g2/(1+Ug2) + A0D − A0g0

]
+ g−10 G2A2

[
@1g1/(1+Ug1) + @2g2/(1+Ug2) + D − g0

]
≥ 0,

where the last inequality holds by the conditions given in the theorem. 2

To prove Theorem 3 (iv), we need Lemma 3, which is proved in the E-companion, but first let F be the set

of functions defined on S such that if E ∈ F, then following hold:

f1) @1D−1 [g−11 (E(x + e2) − E(x)) − g−10 (E(x + e2) − E(x − e1 + e2))] ≤ A0g−10 , G0 ≥ 1, G1 = 0, G2 ≥ 0.

f2) � (x) ≥ 0, G0 ≥ 1, G1 = 0, G2 ≥ 0, where

� (x) ≡ D−1 [@1E(x − e1 + e2) + @2E(x − e1 + e3)] + g−10 E(x) − D−1E(x) − g−10 E(x − e1). (17)

Lemma 3. Suppose that A1
g1
≥ A0
g0
≥ A2
g2
, @1A1g1/(1+Ug1) +@2A2g2/(1+Ug2) +A0D ≥ A0g0, @1g1/(1+Ug1) +

@2g2/(1+Ug2) +D ≥ g0, and D ≥ D̃(U). (i) If E ∈ F, then !E ∈ F. (ii) There exists an optimal stationary policy

with a value function that possesses the properties of functions from set F.

Proof of Theorem3 (iii).Lemma 3 proved that there exist an optimal stationary policy and the corresponding

(optimal) value function that satisfies property f2) when D ≥ D̃(U). Property f2) implies that it is better to

directly serve a class 0 customer than to triage it at any system state when D ≥ D̃(U), hence the result. 2

To prove Theorem 3 (v), we need Lemma 4, which is proved in the E-companion, but first let H be the set

of functions defined on S such that if E(·) ∈H, then following hold when g0 = g1 = g2 = g:

h1) � (x) ≤ � (x + e3), G0 ≥ 1, G1 = 0, G2 ≥ 0.
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h2) E(x + e1) − E(x + e2) ≤ E(x + e1 + e3) − E(x + e2 + e3), G0 ≥ 0, G1 = 0, G2 ≥ 0.

h3) E(x + e3) − E(x) ≤ E(x + 2e3) − E(x + e3), G0 ≥ 0, G1 = 0, G2 ≥ 0.

h4) E(x + e3) − E(x) ≥ E(x − e1 + 2e3) − E(x − e1 + e3), G0 ≥ 1, G1 = 0, G2 ≥ 0.

h5) � (x) ≥ � (x + e1), G0 ≥ 1, G1 = 0, G2 ≥ 0.

h6) E(x + e1) − E(x + e2) ≥ E(x + 2e1) − E(x + e1 + e2), G0 ≥ 0, G1 = 0, G2 ≥ 0.

h7) @1 [E(x + e2) − E(x + e1)] ≥ D̃(U)A0, G0 ≥ 0, G1 = 0, G2 ≥ 0.

h8) � (x) − g−1 [E(x − e1) − E(x − e1 − e3)] ≤ D̃(U)D−1A0, G0 ≥ 1, G1 = 0, G2 ≥ 1.

h9) [E(x + 2e3) − E(x + e3)] − [E(x + e3) − E(x)] ≤ (@2D−1 − g−1)g2(A0 − A2), ∀x ∈ S.

h10) � (G0,0,0) ≤ A0, G0 ≥ 1.

h11) For any x ∈ S, E(x + e3) − E(x) ≤ A2U−1
(
1− VG1+G2+11 V

G0
2

)
, where

V1 ≡
_(1+ Dg−1) + g−1 +U−

√
[_(1+ Dg−1) + g−1 +U]2 − 4_(1+ Dg−1)g−1

2_(1+ Dg−1) , (18)

V2 ≡ (1+ Dg−1)V1 − Dg−1. (19)

Lemma 4. Suppose that (14) holds, A1 ≥ A0 ≥ A2, g0 = g1 = g2 = g, Ug2/(1+Ug) < D < D̃(U), and 0 < U <

D−1 − _. (i) If E ∈ H, then !E ∈ H. (ii) There exists an optimal stationary policy with a value function that

possesses the properties of functions from set H.

Proof of Theorem 3 (v). Lemma 4 proved that there exist an optimal stationary policy and the corresponding

(optimal) value function that satisfies properties properties h1) and h5) when A1 ≥ A0 ≥ A2, g0 = g1 = g2 =

g, Ug2/(1 + Ug) < D < D̃(U), and 0 < U < D−1 − _. Properties h1) and h5) imply that the optimal policy on

whether to triage or not is determined by a threshold G∗2(G0) for any given G0, which is a non-decreasing

function of G0. To be more specific, if it is optimal to skip triage in (G0,0, G2) for G0 ≥ 1 and G2 ≥ 0, then it

is optimal to do so in (G ′0,0, G ′2) for 1 ≤ G ′0 ≤ G0 and G ′2 ≥ G2. This completes the proof of Theorem 3 (v). 2

Appendix B. Proofs of Proposition 1 and Theorem 1

We first show that the three SEN conditions given in Section 7.2 of Sennott (1999) hold. Let z be some

state in S, + cW (z) be the total discounted cost under policy c starting from z, and +W (z) be the optimal total

discounted cost. The SEN conditions are as follows:

SEN1 The quantity (1− W)+W (z) is bounded for W ∈ (0,1).

SEN2 There exists a nonnegative (finite) function " (·) such that ℎW (x) ≡+W (x) −+W (z) ≤ " (x) for x ∈ S

and W ∈ (0,1).

SEN3 There exists a nonnegative (finite) constant  such that − ≤ ℎW (x) for x ∈ S and W ∈ (0,1).

Note that after uniformization, the discounting factor for the equivalent discrete-time MDP is W = 1− U;

see Figure 11.5.3 in Puterman (2005). Hence, letting U→ 0 is equivalent to letting W→ 1.
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Lemma 5. Assume that _g0 < 1. The three SEN conditions are satisfied for the infinite horizon total

discounted cost problem in (10).

Proof: We first verify SEN 1. Let z = 0 be the initial system state and c be the policy that serves all class 0

customers directly without triage. Hence, this is an "/"/1 queue with arrival rate _ and service rate g−10

starting at the empty and idle state. Thus, we have

+ cW (0) = �
[ ∫ ∞

0
4−(1−W)CA0&(C)3C

���&(0) = 0
]
= A0

∫ ∞

0
4−(1−W)C� [&(C) |&(0) = 0]3C ≤ A0_g0

(1− W) (1−_g0)
,

where &(C) is the number of customers in the "/"/1 queue at time C. The above inequality follows from

Corollary 3.1.1 of Abate and Whitt (1987) that � [&(C) |&(0) = 0] is non-decreasing in C and bounded by

limC→∞ � [&(C) |&(0) = 0] = _g0/(1− _g0) where _g0 < 1. Hence, (1− W)+W (0) ≤ (1− W)+ cW (0) ≤ A0_g0
1−_g0 <

∞,∀W ∈ (0,1), i.e., SEN1 holds. To prove SEN 2, we need to find an upper bound on ℎW (x) =+W (x) −+W (0)
for all x = (G0, G1, G2) ∈ S. Let " (0) = 0 and for x ∈ S\{0} define c′ as a policy that serves customers in

FCFS manner with no triage until the state reaches 0, after which it follows the optimal policy. Let )0(x)
be the first passage time to state 0 starting from state x and #0(C) be the total number of customers served

during [0,)0(x)] under c′. Then, ℎW (x) ≤ + c
′

W (x) −+W (0) ≤max{A0, A1, A2}� [)0(x)#0(x)]. Since _g0 < 1,

it can be shown that " (x) ≡ � [)0(x)#0(x)] ≥ 0 is a finite function of x, which completes the verification

of SEN2. We finally prove SEN3 by a simple sample-path argument. Consider two systems. System 1 and

System 2 are identical except that System 1 starts in state x and uses the optimal policy and System 2 starts

in state 0 and uses policy c̃, which takes whatever action System 1 takes if possible; otherwise, it idles.

Then, we have ℎW (x) ≥ +W (x) −+ c̃W (0) ≥ 0, which completes the proof. 2

Proofs of Proposition 1 and Theorem 1. By Lemma 5, Theorem 7.2.3 (ii) in Sennott (1999) implies

that there exists an optimal stationary policy with optimal bias function ℎ(·) and constant average cost 6∗

satisfying the inequalities in (5). Hence, Proposition 1 holds. Letting U→ 0 (equivalently W→ 1) in the proof

of Theorem 3 (i)(ii)&(iii) proves the results for parts (i), (ii), and partially for (iii). Furthermore, Theorem

7.2.3 (ii) in Sennott (1999) implies that ℎ(x) is a limit function of the sequence ℎU= (x) ≡+U= (x) −+U= (z),
i.e., lim=→∞ ℎU= (x) = ℎ(x), ∀x ∈ S, where 0 < U= < D

−1 − _, z is some state in S, and U= ↓ 0 as =→∞.
Hence, ℎU= (x) inherits all the properties of the optimal value function of the discounted-cost problem, and

so does ℎ(x). To be more specific, ℎ(x) ∈ F if D ≥ D̃(0), and ℎ(x) ∈ H if D < D̃(0) and condition (7) holds,

where the right-hand sides of h7), h8), and h11) hold for U ↓ 0, i.e.,

h7) @1 [E(x + e2) − E(x + e1)] ≥ D̃(0)A0, G0 ≥ 0, G1 = 0, G2 ≥ 0;

h8) � (x) − g−1 [E(x − e1) − E(x − e1 − e3)] ≤ D̃(0)D−1A0, G0 ≥ 1, G1 = 0, G2 ≥ 1;

h11) E(x + e3) − E(x) ≤ A2
1−_(g+D) [g(G0 + G1 + G2 + 1) + DG0], x ∈ S.

Hence, as in the proof of Theorem 3 (v), see last paragraph of Appendix A, we conclude that the optimal

stationary policy has the structural properties described in Theorem 3 (iv)&(v). Hence, Theorem 1 holds. 2
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Appendix C. Proofs of Propositions 2 and 3, Theorem 2, and Corollary 1

LetΠ′ denote the set of deterministic policies under which all class 0 customers are triaged (not necessarily

upon arrival). Our next result describes the best policy in Π′, which will be used to prove Proposition 2. To

simplify the presentation of the proofs, let d0 ≡ _(D + @1g1).

Lemma 6. Assume that A1
g1
≥ A2
g2

and d < 1. The following policy minimizes the expected long-run average

cost within Π′: (i) Class 1 customers have the highest priority. (ii) When there are no class 1 customers,

triaging a class 0 customer is preferable over serving a class 2 if A0g2 > A2(D + @1g1 + @2g2), and serving a

class 2 customer is preferable over triaging a class 0 otherwise.

Proof:When every class 0 customer is required to be triaged and triage/services are preemptive, our problem

becomes a special case of the scheduling problem described in Corollary 3 in Lai and Ying (1988), with

transition matrix %, arrival rate and service time vectors defined as follows:

% =
©­«
0 @1 @2
0 0 0
0 0 0

ª®¬ , , = (_,0,0), and - = (D, g1, g2).

It is easy to verify that the eigenvalues of % are all 0, and ,(� − %)−1-′ = _(D + @1g1 + @2g2) = d < 1. Let

q8 be Klimov’s index for class 8 ∈ {0,1,2}. By the procedures in Klimov (1974), we get q0 = A0/(D + @1g1 +

@2g2), q1 = A1/g1, and q2 = A2/g2. Corollary 3 states that it is optimal to serve customers according to a

non-increasing order of Klimov’s priority indices. By the assumptions, we have q1 > q0 and q1 > q2, which

proves (i). Conditions in part (ii) are equivalent to the order of q0 and q2. 2

Proof of Proposition 2. From Lemma 6, we know that the optimal policy within Π′ is TP1 when A0g2 >

A2(D + @1g1 + @2g2). If A0g2 ≤ A2(D + @1g1 + @2g2), then a policy that triages every class 0 customer and

serves the customer immediately after triage is optimal. We call it policy TS. The stochastic system under

policy TS is an M/G/1 queue with a phase-type distributed service time whose first and second moments are

D + @1g1 + @2g2 and 2[D2 + @1g1(g1 + D) + @2g2(g2 + D)], respectively. Hence, the long-run average number

of customers in this queue, denoted by &TS, is given by

&TS = _
2(D2 + @1g1(g1 + D) + @2g2(g2 + D))/(1− d), (20)

and the long-run average cost is 2TS =&TSA0 +_(DA0 + @1A1g1 + @2A2g2). Hence,

2TS − 2NT = _2A0

(
D2 + @1g1(g1 + D) + @2g2(g2 + D)

1− d −
g20

1−_g0

)
+_(A0D + @1A1g1 + @2A2g2 − A0g0) ≥ 0, (21)

where the inequality holds because of D2 + @1g1(g1 + D) + @2g2(g2 + D) ≥ g20 , D + @1g1 + @2g2 ≥ g0, and

A0D + @1A1g1 + @2A2g2 ≥ A0g0. Hence, within the set of all deterministic state-independent policies, it is

sufficient to consider only TP1 and NT. 2



34

Proof of Proposition 3. The stochastic system under TP1 contains two queues in steady state: we call the

queue where a class 0 customer waits for triage (and service if it is classified as class 1) Queue 0, and call

the queue where a class 2 customer waits for service after it is triaged Queue 2. Let &0 denote the long-run

average number of customers waiting in Queue 0 and !2 denote the long-run average number of class 2

customers in the system (including those in Queue 2 and in service). Since the server gives preemptive

priority to triaging class 0 customers and serving class 1 customers over serving class 2 customers, to obtain

&0, we can use the steady-state number in the queue formula for an M/G/1 queue with a phase-type service

time distribution having a mean of D+@1g1 and a second moment of 2(D2+@1Dg1+@1g21 ), see, e.g., Theorem

7.12 in Kulkarni (2010). Hence, &0 = _
2(D2 + @1Dg1 + @1g21 )/(1− d0), and the expected remaining service

time of the customer in service observed at a random time in steady state, denoted by � ('0), can be obtained

as � ('0) = _(D2 +@1Dg1 +@1g21 ), see, e.g., Problem 5.7 in Gross et al. (2008). Note that both TP1 and TS are

work-conserving policies, i.e., no service needs are created or destroyed within the system under each of the

two policies. Then, by the invariance of expected long-run average workload of work-conserving policies,

see, e.g., Theorem 1 in Chapter 10 of Wolff (1989), we have

� ('0) +&0(D + @1g1 + @2g2) + !2g2 = � ('TS) +&TS (D + @1g1 + @2g2), (22)

where &TS is given by (20), and the expected remaining service time of the customer in service, denoted by

� ('TS), is given by � ('TS) = _(D2 + @1g1(g1 + D) + @2g2(g2 + D)). Hence, we have

!2 = _@2

[
D + g2 +

d[D + g2 −_Dg2 −_@1g1(g2 − g1)]
(1− d) (1− d0)

]
. (23)

With the expressions &0 and !2, we have 2TP1 =&0A0 +_(DA0 + @1g1A1) + !2A2. 2

Proof of Theorem 2. Let 51(_) ≡ (2NT − 2TP1) (1 − _g0) (1 − d) (1 − d0)/_. We prove part (i) by

showing that 51(_) = 0 has at most two solutions in (0, (D + @1g1 + @2g2)−1), lim_→0 51(_) < 0, and

lim_→(D+@1g1+@2g2)−1 51(_) ≤ 0. We first plug into 51(_) the expressions of 2NT and 2TP1 in (8) and (9),

respectively; then we rewrite 51(_) as 51(_) = �3_3 + �2_2 + �1_ + �0, where

�3 = Dg0(D + @1g1 + @2g2) [@2A2D + @1g1(@2A2 + A1)] > 0,

�0 = − [A0D + @1A1g1 + @2A2g2 − A0g0] − @2A2D < 0.

Hence, 51(_) is a cubic function of _, and thus is continuous over (0, (D + @1g1 + @2g2)−1). Furthermore, the

derivative of 51(_) is 5 ′1 (_) = 3�3_
2 + 2�2_ + �1, and hence, 51(_) can have at most two stationary points.

Since lim_→0 51(_) = �0 < 0, and

lim
_→(D+@1g1+@2g2)−1

51(_) = −
@2A2(D + @1g1 + @2g2 − g0) [D2 + @1g1(D + g1) + @2g2(D + g2)]

(D + @1g1 + @2g2)2
≤ 0,
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we conclude that 51(_) = 0 can have at most two solutions in (0, (D + @1g1 + @2g2)−1), which completes the

proof of part (i).

To prove part (ii), we rewrite 51(_) as a function of ?1, denote it by 52(?1), and obtain 52(?1) ≡

�3?
3
1 + �2?

2
1 + �1?1 + �0 = 51(_), where

�3 = _
2g1(g1 − g2) (\1 + \2 − 1)2 [(ℎ1 − ℎ2) (g0 − \2D(1−_g0)) + (\1 + \2 − 1)ℎ1D(1−_g0)] .

The derivative of 52(?1) is 5 ′2 (?1) = 3�3?
2
1 + 2�2?1 + �1. Hence, 52(?1) can have at most two stationary

points. We only need to show lim?1→1 52(?1) < 0 and lim?1→0 52(?1) < 0, which are equivalent to 2NT <

2TP1 when ?1→ 1 and ?1→ 0, respectively.

lim
?1→1
(2TP1 − 2NT ) = lim

?1→1
(2TP1 − 2TS + 2TS − 2NT )

≥ lim
?1→1
(2TP1 − 2TS) = lim

?1→1
[(D + @1g1 + @2g2 − g2)g−12 (&TS −&0) +_@2D]ℎ1 > 0,

where the first inequality holds because of (21), the last inequality holds because D + @1g1 + @2g2 ≥ g0,

g2 = g0, and

&TS −&0 =
_2 [D2 + @1g1(g1 + D) + @2g2(g2 + D)]

1−_(D + @1g1 + @2g2)
− _

2 [D2 + @1g1(g1 + D)]
1−_(D + @1g1)

> 0.

The proof for ?1→ 0 is similar thus omitted, which completes the proof of part (ii).

To prove part (iii), we write 51(_) as 51(_) = @1A1(1 − d) [_@2g0g1 − (1 − _g1 + _2g0g1)D + (g0 − g1)] −

@2A2 53(D), where

53(D) ≡ (1−_g0) [g2 + (1−_g2)D −_@1g1(g2 − g1)] − (1− d) (1− d0) [g0 − (1−_g0)D]

≥ (1− d) {g2 + (1−_g2)D −_@1g1(g2 − g1) − (1− d0) [g0 − (1−_g0)D]}

= (1− d)
{
(1−_g0)D[2−_(D + @1g1)] +_(Dg0 + @1g21 )

}
,

where the first inequality holds because D + @1g2 + @2g2 ≥ g0 and d < 1, and the last equality holds because

g0 = g2. Hence, 53(D) > 0 for all D > 0 such that d < 1. This means that 2NT ≤ 2TP1 if and only if

A2/g2
A1/g1

≥ @1g1(@2g2)−1(1− d) [_@2g0g1 − (1−_g1 +_2g0g1)D + (g0 − g1)]/ 53(D),

which is equivalent to A2/g2
A1/g1 ≥ Θ1 since A2/g2A1/g1 > 0. 2

Proof of Corollary 1.We start by showing that Θ2 ≤ 1. First, consider the case where D ≥ g0 − @1g1. In this

case, it is easy to see that Θ2 = 0. Otherwise, when D < g0 − @1g1, we have

Θ2 − 1 =
−@1g1(D + @1g1 + @2g2 − g0) − @2g2D

@2g2(@1g1 + D)
< 0,
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where the inequality holds because D + @1g1 + @2g2 ≥ g0 and D > 0. Now, part (i) follows from Theorem 1

(iv), whereas parts (ii) and (iii) follow from Theorem 2 (iii). Note thatΘ2 ≥ Θ1 holds, otherwise, there exists

a A2/g2
A1/g1 such that Θ2 <

A2/g2
A1/g1 < Θ1, i.e., TP1 is the best static deterministic state-independent policy (see the

proof of Theorem 2 (iii) where 2NT > 2TP1), which contradicts with the fact that NT is the optimal policy by

Theorem 1. 2
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