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We consider a queuing system with multitype customers and nonhomogeneous
flexible serversin the heavy traffic asymptotic regime and undecamplete
resource pooling CRP condition For theinput-queuedIQ) version of such a
system(with customers being queued at the system “entrdnmee queue per
each typg it was shown in the work of Mandelbaum and Stolyar that a simple
parsimonious @G scheduling rule is optimal in that it asymptotically minimizes
the systemcustomer workloadand some strictly convex queuing casls this
articlg we consider a different-eutput-queuedOQ)—version of the modelwhere
each arriving customer must be assigned to one of the servers immediately upon
arrival. (This constraint can be interpreted as immediatging of each customer
to one of the “output queugsone queue per each senjeConsequentlythe
space of controls allowed for an OQ system is a subset of that for the corre-
sponding 1Q system

We introduce theMinDrift routing rule for OQ system&vhich is as simple
and parsimonious asdp) and show that this ruJén conjunction with arbitrary
work-conserving disciplines at the servelms asymptotic optimality proper-
ties analogous to thosec@ rule has for 1Q systemsA key element of the
analysis is the notion of systeserver workload which, in particular major-
izes customer workloadWe show that(1) the MinDrift rule asymptotically
minimizes server workload process among all OQ-system disciplines(and
this minimal process matches the minimal possible customer workload pro-
cess in the corresponding 1Q systeAs a corollary MinDrift asymptotically
minimizes customer workload among all disciplines in either the OQ or IQ
system
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142 A. L. Stolyar

1. INTRODUCTION
1.1. The Problem

We consider a queuing system with multiple customer floyges i =1,...,1 and
nonhomogeneous flexible servgrs- 1,...,J. This means that the mean service
time; * of atypei customer by servgrdepends on both the customer type and the
serverWe study the “heavy traffic” asymptotic regimehen the system is close to
be “critically loaded’ and assume that a certatomplete resource poolingCRP)
condition holdsAssociated with the CRP condition is the notion of systeark-
load, which in this article is called systegustomer workload

The “input-queued(IQ) version of the modelsee€[3,8,9,12,20]) is such that
arriving customers are placed in “input” quepyese queue per each typewhere
they await for service without being preassigned to any particular server until they
are actually “taken for service” by one of thethis shown in[12] that an 1Q sys-
tem can be asymptotically optimally controlled in heavy traffind under the CRP
condition by a very simple and parsimonious generalizgdGc) scheduling rule
which, in particular minimizes customer workload among virtually all service
disciplines

In this article we consider a different—"output-queue@Q)—version of the
mode] where each arriving customer must be assigf@douted) to one of the
servers immediately upon arrivalThis can be viewed as immediate routing of
each arriving customer to one of the “output” queumse per each serveiSuch
models arise in various applicatigriacluding wireless networksnanufacturing
systemsand call centersA wireless application example is a system in which data
packets(“customers) need to be delivered to multiple mobile usatsstinations
(which determine “customer typéesvia a set of transmitter&servers’); transmis-
sion (“service”) rates depend on thdifferent) channel qualities between different
transmitters and users

Due to the abovenmediate routingIR) constraintthe space of controls allowed
for an OQ system is éstrict) subset of that for the corresponding IQ syste@cp
is not a valid discipline for OQ system9 natural question is‘Is it possible to
control an OQ system in heavy traffic as efficiently as the corresponding 1Q system
could be controlled? For examplare there OQ-system controls that are as parsi-
monious as @ but still able to minimize the system customer workload?” The
results of this article demonstrate that the answer to the latter question is “yes"—we
introduce theMinDrift routing rule which, in particular minimizes the system cus-
tomer workload in heavy traffioVe will describe our results shortlgfter a brief
literature review

1.2. Previous Work

The 1Q version of our systeifwith nonhomogeneous flexible serveend the def-
inition of the heavy traffic asymptotic regime for (iin terms of a certain linear
program were introduced irf8] (for a special two-server systerand in[9,20]
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ROUTING IN OUTPUT-QUEUED SYSTEMS 143

(for the general settingFor the system in heavy traffithese articles also define
the CRP condition and associated with it the notiocuwstomer workloaddefined
asX(t) = 2 v Q(t), t = 0, whereQ;(t) is the typei queue length at timeand
v > 0 is the fixed constant calledorkload contributionof a typei customer
Reference$8,9] proposediscrete-reviewscheduling policieswhich, in the heavy
traffic and under CRP conditiomsymptotically minimize customer workload and
linear holding costsln [3,20], continuous-review thresholgblicies are proposed
that are asymptotically optimah the same sense and also under CRP condition
(The asymptotic optimality proofs are given for a special two-server sysiEme
common feature of discrete-review and continuous-review threshold policies is that
they require a priori knowledge of the flows’ mean arrival raigs

In[12], it is proved that a very simple ¢ scheduling rulgwhich, in partic-
ular, doesnot require the knowledge of arrival ratas) asymptotically minimizes
customer workload and strictly convex holding costs in a general 1Q system under
the CRP conditionMoreover in the limit, the (appropriately rescaledqueue-
length vector proces®a(t),...,Q, (1)) exhibitsstate space collapg8SQO: it “lives”
on a one-dimensional manifal@The results of 12] are closely related to earlier
results in[14] for a discrete-timeyeneralized switcimodel Also, they generalize
the earlier @ optimality results for a single-server systéi¥].) Following[14],
[12] provides equivalenfgeometri¢ characterization of the CRP conditicas fol-
lows. Let M be the systemservice rate regionwhich is roughly the set of all vec-
tors representing feasible long-term average service rates the system is capable of
jointly providing to different typesThen the vector* = (v1,...,»") of workload
contributions is theainique(up to scaling outer normal vector to the boundary of
M at the pointA = (Aq,...,A).

Most of the previous work on OQ systems is concentrated on load balancing
schemes for systems with homogeneous seridush less work has been done on
a heavy traffic regime in systems with nonhomogeneous flexible seiRerbably
the first was[10], where a two-server system is consideragsource pooling in
heavy traffic is discussednd threshold-based policies are propo$gde als¢11]
for an earlier discussion of resource pooling in systems with rogtinga recent
article[16] a two-server systerifferent from that in10]) with exponential ser-
vice times is considere@nd the asymptotic optimality of a threshold routing pol-
icy is proved under linear holding cost&Ve refer the reader tpl6] for a more
extensive review of the previous work on OQ systems

1.3. Our Results

In this article we consider a general OQ system in a heavy traffic regime and
under the CRP conditiorFirst, we give further equivalent characterization of the
CRP condition which is natural and convenient for the analysis of OQ sysfems
namely we consider theerver utilization regionC, which is the set of potential
server utilization vectors that can be imposed by the input flows with mean rates
A; or greaterThen the CRP conditigrin particular implies the uniqueneg@up to
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scaling of the vector normal tdC at the boundary pointl,...,1). We call com-
ponentse;” > 0 of the vectorla™ = (ag,...,aJ), opposite of the above-mentioned
normal vectorserver workload contributionsf different serversand we call by
systemserver workloadhe quantity"X(t) = 3 a;*U, (t), whereU;(t) is theunfin-
ished workof serverj at timet. We establish the relations between customer and
server workload contributionsvhich show that the asymptotic relatiof(t) =
UX(t) between customer workload and server workload exists

We assume that a strictly convex increasing functg) is defined for each
serverj, which is interpreted as the cost rate incurred by the unfinished work on
serverj.

We introduce two versions of thdinDrift routing rule MinDrift (U) assigns
an arriving typel customer to a server

j € arg rrjlinpglCJ-’(Uj (1)). Q)

(This version may not be practical in many cadecause it assumes exact knowl-
edge of the unfinished work valuég(t).) The MinDrift(Q) rule is the same as
MinDrift (U), exceptU;(t) in (1) is replaced by th&-estimated unfinished work
U (t) = 2 Um Qmi(t) of serverj, whereQj (t) denotes the number of typeus-
tomers in the servgrqueue (MinDrift (Q) is a more practical version

Our main resulfsee Theorems 1 and B that in the OQ system in the heavy
traffic asymptotic limit and under the CRP conditjaihe MinDrift rule (either
versior), in conjunction with virtually arbitrary work-conserving scheduling dis-
ciplines at the serversninimizes(among all service disciplingshe server work-
load and the instantaneous and cumulative costs corresponding to the cost rate
2 C;(U;(t)). Moreover in the limit, the (rescaled unfinished work vector process
(Uq(t),...,U;s(t)) exhibits SSC such that the vect@;(U,(t)),...,Cj(U,;(t))) is
always proportional tax*. (This behavior is analogous to that exhibited by I1Q
systems if 12 14], but with the server unfinished works replacing “input’-queue
lengths and server workload contributions replacing customer workload contribu-
tions) In addition the minimal server workload proce&stained under MinDrifit
matches the minimal possible customer workload process in the corresponding 1Q
system As a corollary MinDrift (Q) (asymptotically minimizes customer work-
load among all disciplines in either the OQ or IQ syst@®e Theorem)3In this
sensethe MinDrift rule controls an OQ system as efficiently as the corresponding
IQ system(allowing a wider class of disciplingsan possibly be controlled

Essentially as another corollary of the main reswits obtain a necessary con-
dition (Theorem 4 for any OQ-system service discipline to havéasymptoti¢
workload minimization propertyUsing this condition we demonstratéin Sec-
tion 13 that even some very natural service disciplines in OQ systknmwvn to
guarantee stability of the queugssuch is feasible at al) do not minimize system
workload in heavy traffic

Another contribution of the article is thah addition to the CRP conditignve
in fact identify and characterize a weaker First-Order GRP-CRB condition
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ROUTING IN OUTPUT-QUEUED SYSTEMS 145

The purpose of doing this is twofaléirst, FO-CRP is sufficient to establish con-
vergence properties d@iuid sample pathswhich arise in thdluid limit asymptotic
regime andin addition to being an important step in proving the main heavy traffic
resultg are of independent intereSecondthis clarifies the role of the additional
assumptionwhich strengthens FO-CRP to CRi®proving the heavy traffic results

Finally, we would like to point out that despite the fact that the technical devel-
opment in this article is in many ways analogous to thai.)14], some parts of it
are quite differentin particular the representation of the server workload process
in Sections 9 and 1@Foughly as a sum of the “driving” and “regulation” procesges
is substantially different from the representation of customer workload processes in
[12,14].

1.4. Outline of This Work

In Section 2we set basic notations and conventiohise OQ-system model is for-
mally introduced in Section.3n Section 4 we define theltwo versions of Min-

Drift routing rule and discuss its basic intuition and some examplles definition

and characterization of FO-CRP and CRP conditions in terms of an IQ system are
presented in Section Section 6 gives an equivalent characterization of FO-CRP
and CRP conditions in terms of an OQ system and establishes relations between
customer and server workload contributiombe heavy traffic asymptotic regime

is defined in Section ,7which also contains the definitions of and the relations
between customer workload and server workldaelction 8 contains formulations

of our main result§Theorems 1-¥% described earlieThe analysis of fluid sample
paths is the subject of Section®ection 10 contains the proof of Theoremdgard-

ing the asymptotic optimality of the MinDrif) rule. The proof of Theorem 2
(regarding the MinDriftQ) rule) can essentially be reduced to that of Theorem 1—a
detailed outline of this reduction is given in Section Theorem 4 a necessary
condition for asymptotic workload minimizatiois proved in Section 12Ne con-

clude in Section 13 with a discussion of the relation between stability and heavy
traffic optimality properties of service disciplines

2. BASIC NOTATION AND CONVENTIONS

We use the standard notatioRsand R, for the sets of real and real nonnegative
numbers respectively the not quite standar®. , is used for the set oftrictly
positive real numbersCorrespondindN-times product spaces are denoRY RY,
andRY_.. The spac®N is viewed as a standard vector-spaeith elementsx € RN
being row-vectors = (X4, ..., Xn). We write simply O for the zero vector RN and
1=(11...,1) for a vector with all unit coordinate$The dimensions of vectors 0
and1 are either specified explicitly or are clear from the congext

The scalar produdidot product of x,y € RN is

N
Xy =2 %Y,
i—1
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and the norm ok is

[ x|l = Vx-x.
Vector inequalities are to be understood componentwAsean examplgfor
v, XE RN y < xmeansy, < x;,i =1,...,N. Also,

Y XX = (Y1 X150, YN XN,

and ify € R}, we slightly abuse notation by writing

1y = y1,...,1/yn).

We denote the minimum and maximum of two real numbérsand &, by
&, 0& andéq O&,, respectively

Let D([0,00), R) be the standard Skorohod space of right-continuous left-limit
(RCLL) functions defined on0,00) and taking real valuesSeeg for example[7]
for the definition of this space and its associated topology@adigebra)

The symbol- denotes convergence in distributionrahdom processe@®r
other random elementsi.e., weak convergence of thedlistributions. Typically,
we consider convergence of processeb {fi0,0), R), or its N-times product space
DN([0,00), R) equipped with product topology ant-algebra

The symbol-%2%5 (or the abbreviation .0.c. after a convergence statemgent
stands for convergence thatisiform on compact setfor element®f D([0,00), R)
or its N-times producD™([0,0), R). For functions with a bounded domaiC R,
the uo.c. convergence means uniform convergence

We reserve the symbebk for weak convergence oflementsn the space
D([0,00), R); the latter is the space of RCLL functions taking values in thd=ssit
real numbersextended to include the two “infinite numbers’co and —co (with
the natural topology oR). If h,g € D([0,0), R), thenh = g meansh(t) — g(t)
for everyt > 0 whereg is continuous(Convergence at= 0 is not required We
will not need any characterization of the topology@[0,), R) beyond the def-
inition of convergence given earlier

3. THE MODEL

We consider a queuing system with a finite numbef customeitypesand a finite
number] of flexible servers For notational conveniencee use the symbdlalso
for the set of type$l,...,1}. Similarly, J also denotes the set of servéts..., J}.
The arrival process for each type= | is a renewal process with the time
(from the initial time Q until the first arrival beingu;(0), and the rest of the
interarrival times being an independent and identically distrib(ited.) sequence
ui(n),n=212,.... Let A; = 1/E[u;(1)] > 0 denote the arrival rate for typeand
a? = Var[u;(1)]. The service times of type customers by servgre J form an
i.i.d. sequence;(n),n=12,.... Lety; = 1/E[v;(1)] < co andB? = Var[v;j(1)].
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ROUTING IN OUTPUT-QUEUED SYSTEMS 147

The conventiory; = 0 is used when servgrcannot serve type. All arrival and
service processes are assumed mutually independent

Aversion of such a flexibléparalle) server modelwhich received most atten-
tion in the previous worksee[3,8,9,12,20] and references thersgiis theinput-
gueuedmodel In the input-queued modetustomers of each typehat await service
are waiting in a separate “input” queuef infinite capacity This, in particular
means that customers do not have to be assigned to the servers while waiting in the
input queue such server assignment (igreversibly done when the customer is
“pulled” for service by one of the servers

In this article we concentrate on a differentedtput-queuedOQ)—model
satisfying the following(additiona) immediate routingIR) condition

Each new customer arriving in the system must be assigned to one of the servers j
immediately upon arrival, and after that, the customer can only be served by the
server to which it is assigned.

A natural way to interpret the IR conditiof@and this interpretation is in fact the
main motivation for the OQ modgis that upon arrivaJ each new customer must
beroutedto one of the servers pmore preciselyinto the “output” queue associ-
ated with(or “located at)) that server

Remark 1:It should be clear that the IR condition defines timty difference between
an OQ system and the corresponding IQ systEnereforein generalthe class of
controls(or service disciplingsfor an OQ system is atrict subsef that for the

corresponding 1Q systerfror examplethe G discipline for 1Q systemsstudied

in[12], doesnotsatisfy the IR condition andonsequentlyis nota valid discipline

for OQ systems

A service disciplinen an output-queued system consists of two pansting
(server assignment) algorithendscheduling ruleemployed by each servéand
generally speakinglepending on the serveio determine which customer to serve
from its queud(i.e.,, among the customers assigned {o it

We will consider the class of service disciplines satisfyiimgaddition to IR
the following condition on the routing algorithm

(dO) The realizations of a customer’s service requirements are not known at the
time when routing decision (server assignment) for this customer is made. (The
distributions of the service requirements at different servers are known.)

Sometimesbut not alwayswe will further restrict the class of service disciplines
by imposing the following conditions on the server scheduling tules

(d1) Scheduling rule of each server is nonpreemptive within each customer type;
namely, a server cannot take for service a new customer of type i if it already has
another type i customer “in service” (with both elapsed and residual service times
being nonzero). Consequently, at any given time, a server cannot have in service
more than one customer of any given type.
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(d2) A server does not “know” the realization of a customer service time before the
customer service starts.

Note that condition$d1) and(d2) doallow a server idlingeven if it has customers

in servicg or preemption of service of one customer by another customer but of a
different typeThey also allow server-sharing by several customersdgain each

of a different type

Remark 2:Note that the class of 1Q-system service discipljrszgisfying condi-

tions (d0)—(d2) (but not IR, is well defined and it first, belongs to the class of
disciplines studied ifil12] and secongcontains the @udiscipline(seg 12]). More-

over, this class is obviously a superset of the above-defined class of OQ-system
disciplines satisfyindd0)—(d2) and IR

4. THE MinDrift ROUTING RULE
4.1. Notation

Let U;(t) denote th€unfinished) worlof serverj at timet; namely the total amount

of unfinished processing time of all customers of all types present in sequeue

at timet. We denote byQj (t) the number of type customers in queugeat timet,
including those customers whose service is already started but not yet completed
The quantity

W, = 2 (1/15)Qy (1)

we will call Q-estimated (unfinished) woif serverj. Finally, by Q;(t) we will
denote the total number of tygecustomers in the system at timheln the OQ
system we always have

Q(t) = 2 Q; (1),
]
but we note tha@; (t) is well defined for both the OQ and IQ systems

4.2. MinDrift Rule Definition

Suppose that for each senjea cost functiorC;(¢), { = 0, is given Assume that
the cost functions have the following properties

Ci(+) is continuous strictly increasing convexith C;(0) = 0.

Moreover the first derivativeC/(-) is continuous strictly increasingvith
C/(0)=0.

Finally, the second derivativ€/’(-) is strictly positive continuous in the open
interval (0,00), with C;"(0) = lim, 1, C/"({) = 0, whereC;"(0) is either finite or
is +oco.
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The MinDrift rule routegassigngcustomers to the servers as followghen a new
customer of type arrives in the systenit is routed to a serversuch that

jearg jmeiJan'(Uj (£)/1- (2)

Ties are broken arbitrarijyfor example in favor of the smallest indei Also, by
conventiona typei customer can never be routed to a sejveg; = 0. (Through-
out this article we also adopt a related convention that any expression involving
division byy;; holds under the additional assumption that> 0, even if we do not
state this explicitly

Defined by(2) is the basic version of the MinDrift rujave will refer to it as a
MinDrift (U) rule.

A version of MinDrift rule, with U; in (2) replaced byU;, will be called Min-
Drift (Q) rule; namely the MinDriffQ) rule routes an arriving typiecustomer to a
serverj such that

J € arg minC/ (WU, 1)/ 3)

4.3. Nature of the MinDrift Rule

The nature of the MinDrift rule is simple—it “myopically(br “greedily”) tries to
minimize the average drift of the aggregate cost funcfiyrC; (U;(t)). Indeed
C/(U;(1))/1; (see(2)) approximates the expected increment of the aggregate cost
function caused by routing one typeustomexarrived at time) to serveij; there-
fore, by (2), MinDrift (U ) routes new arrivals in the way such that tapproximate
expected increment @f; C; (U;(t)) is minimized In other wordsMinDrift (U) rout-
ing tries tominimize the average rate of increaseX)fC; (U;(t)), due to placement
of new work (or load) to the serverdote thatin the OQ systerthe “best” a service
discipline can do to maximize the rate at whighC; (U;(t)) is decremented due to
processing of the unfinished waris to never idle servers when they have work to
do. Thus the MinDrift(U) routing rule (in conjunction with arbitrary work-
conserving scheduling rules at the serystsves to minimize the average drift of the
aggregate cost

The MinDrift(Q) rule is based on the same principle as MinOif), except
that instead of using the exact valugsof unfinished work(which may not be
available in many applicationst uses theifestimated average value®U; (which
may be more readily availabléAs we will demonstratan the heavy traffic asymp-
totic regime we considethe two versions MinDriftU) and MinDrift(Q) of the
rule are in a certain sense “indistinguishgblender nonrestrictive additional
conditions

The Ccuscheduling rule for IQ systemstudied in[12], is the rule that myo-
pically tries to minimize the drift of the aggregate cost func®orC, (Q;(t)) of the
gueue length®);, with C;(-) being cost functions having the same properties as
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functionsC;(-) defined earlierConsequentlyGep is such that a servgralways
tries to serve a queue

i € arg riT(IE?XCi’(Qi () 1y,

thusmaximizing the average rate at whigh C;(Q;(t)) is decreased due to depar-
tures of served customershe Gcp does not—anatannot—exercise any control
over the rate of increase &f; C;(Q;(t)) due to new arrivalsTherefore although
both Gcp (in an 1Q systemand MinDrift (in an OQ systemstrive to minimize
drifts of certain cost functionshey differ in that they control different system state
variables Gcp controls the rates at which queue lengtsare depleted due to
servicg and MinDrift controls the rates at which unfinished wotksare increased
due to new arrivals

4.4. Examples

Consider a special case when the cost functions have theGggm= ;£ "**, with
some fixedn > 0 andy; > 0. Then the MinDrif{U) becomes the rule routing an
arriving typei customer to a server

U m
jeawmmmm+¢f‘“”, (4)
jed ..

ij

and similarly for MinDrift(Q).

Consider a special case of the system such tbaany given pai(ij ), we have
eitherp; = 0 orp; = |, > 0. In other wordsthe system is such that each seryer
has a(depending on)) subset of types that it can servebut the average service
rates of all types within this subset are the same and equgl tand the server
cannot serve at all any typesutside the subsgtFor this systemthe MinDrift(Q)
version of(4), with n = 1, becomes

2 Qi)
j €arg ET;IJHZ)/J- H—JZ (5)

Since parameterg > 0 can be set arbitrarijyve see fron(5) that for this special
systemsuch “popular” routing rules as “Join a seryewxith the shortest quetie

j € argmin> Q; (1), (6)
and “Join a serveyr with the smallest expected unfinished wgrk

2 Q)
j € argmin———, (7)
jed uj
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are special cases of MinDr{f®). (We remind the reader thah both casesouting
customers to servers where they cannot be served at all is prohiblisednote that
if we further assume that each server employs first-in-first(lif O) scheduling
then rule(7) is equivalent to the “Join the shortest expected delay” routing)rule
It should be clear that in a general systemere service rateg; depend on
bothi andj more generally than in the special system described edtierJoin-
shortest-queue and Join-smallest-expected-unfinished-work routing rulestare
special cases of MinDriftConsequentlythe heavy traffic optimality properties
(which we prove in this article for MinDrijtmay not(and typicallydo not) hold
for these rules

5. COMPLETE RESOURCE POOLING CONDITION

In this sectionwe present the definition of the complete resource poal@gP
condition and related notions and reswitdich are “oriented toward” the analysis
of the 1Q model and basically follow those [i2]. However the development in
this section is more general than that in Section BL&]. In particular we consider
the notion of First-Order-CRPFO-CRB (which is a weaker form of CRPand
prove some additional properties related to this not{@ime results of this section
provide a “reference point” for the next sectjavhich gives an equivalent charac-
terization of FO-CRP and CRP conditions “in terms of” the OQ mgdel

Consider anl X J matrix ¢ = {¢;, i € |, j € J}, with all ¢; = 0. Each
elementg;; can be interpreted as the average rate at which sertere is allo-
cated to the service of typecustomersin the long run We do not call elements
¢;; “fractions” of serverj time, becausgfor the reasons which will become clear
in Section 6 it will be convenient for usiotto assume a priori that; ¢;; = 1, or
even thatp; = 1.

With a given¢ we associate the vectpt¢) = (Hi(),..., 1 (¢)), whose coor-
dinates are

Wi (o) = Ed)ij Hij » el (8)
j

this is the vector of mean long-run service rates provided to the tyg@ds if each
serverj allocates its time to serving typeat the average raig;.

Consider also a different vector-function of a matfixnamely let the vector
p($) = (p1(9),..., ps(¢)) € R’ be defined as

pi(¢p) = 2 oy, OjeEd 9

Each componeng;(¢) is naturally interpreted as the total “utilization” of seryer
given the average rates at which its time is allocated to service of differentitypes
are given byg;. (Again, we do not assume a priori that(¢) = 1.)
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DeriNiTION 1. We defineM to be the set of () corresponding to all possiblé,
satisfying the condition

p(d) = 1. (10)

Further, letM* denote the set of athaximalelements € M such that Lg R, ...
(L E M is maximal if p= ¢ € M implies{ = W.)

Note thatM is a bounded convex polyhedron Ri.. We assume that is
nondegeneraté.e., has dimension ), which is equivalent to assuming that each
customer typé can be served at nonzero ratgby at least one serv@rThe setM
is in fact the closure of our systenssability regionM°, which is the set of arrival
rate vectorsk = (Ay,...,A;) such thatA < p(¢) for some¢ satisfying(10) (cf.
[1,2,6,13-15).

DEerFINITION 2: We say that the condition of FO-CRP holds for a vectaf A lies
within the interior of one of thé(l — 1)-dimensional) outer faces 0¥1 and A €
M*.If, in addition, the matrixp such thatA = u(¢) and (10) hold is unique, then
we say that the CRP condition holds.

Remark: The CRP condition given above is the same 48, and it is equivalent
to that introduced earlier if9,20] (see Assumption.d, Thm. 5.3 and Cor5.4 in
[20] for a summary. The fact of equivalence willin particular follow from the
results of this sectian

When the FO-CRP condition holdst us denote by = (v4,...,v,) the(unique
up to a scaling“outer” normal vector to the polyhedroi at the pointA. Note that
v € R!.,. (Otherwisgif somew; = 0, a small increase of the componentwould
produce a vectod’ = A, A’ # A, and such thal" € M—a contradiction to the
maximality ofA.) For concretenessve use the normal vecter, which is the vec-
tor defined uniquely by the additional requirement that|| = 1. The components
v;" of the vectorv™ are sometimes called thiveorkload contributionof customers
of the different types (see[9,12,20]); in this article we will call themcustomer
workload contributionsto make a distinction from the server workload contribu-
tions introduced in Section.6

The FO-CRP condition fok implies in particular that

A= maxy*-u= max v* ; 11
v maxy™-p= max v H(e) (11)

this in turn implies thatfor any matrix¢ such that10) holds and\ = () (in fact,
the equality in(10) must hold; namely we have

A=u(p) and p(¢) =1 (12)
Given i satisfying the FO-CRP conditiofor eachj € J let us denote

lj = a.rg_rna.)q/f< Hij = {| S ||Vi* uij = mIaXV|* H“‘ }
I
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Any pair (ij ) such that € I; is calledbasic activity thereforel; indicates the set of
basic activities for servar It is easy to see frortiL1) that for any ¢ satisfying(12),
¢ > 0 impliesi € I;.

Lemma 1: If A satisfies the FO-CRP condition, then the corresponding gr@ph
with nodes being type i and servers type j and arcs being basic activities is connected.

Proor: Suppose notConsider any breakdown of the gragh into two compo-
nents G andG?, disconnected from each oth&orm= 1,2, denote byl ™ and
J(™ the set of types and serversspectivelywithin the componeng™. By our
constructionfor anym= 1,2, j € 3™ impliesl; C | (™.

Consider anyp satisfying(12). Recall thatp; > 0 impliesi € |;. Let us fix a
smallé > 0, and consider vectar** obtained fronv* by the following modifica-
tion: v* = pF(L + 8)if i € 1D, andp* = v} if i € 1®. Since there is no arc
connectingg andG®, if & is small enoughthen¢ solves the problem

max v**.
Pip(p)=1 IJ(¢)

as well as the problem in the right-hand s{@®&HS) of (11). In other wordsA = p(¢)
solves the problem max,,v**- |, as well as maye ,v*- . This means that™ is
a normal(different fromv*) to the boundary of\ at pointA—a contradiction to
the FO-CRP condition u

Now, with any matrix ¢ let us associate grag§(¢) with nodes being typeis
and serverg, and arcg(ij ) corresponding to pair§j ) with ¢; > 0.

LEMMA 2:

(i) If FO-CRP holds, then there exis¢ssatisfying (12) and such thaf; > 0
if and and only if i€ |;.

(i) The FO-CRP condition foa holds if and only ifA € M* and there exists
¢ such that (12) holds and the gragh¢) is connected.

(iif) If CRP condition holds, thenp satisfying (12) is unique, the graph
G(¢) = G" (i.e.,¢; > 0if and only if i € |;), and this graph is a tree.
PrOOF:

(i) Consider arbitraryp’ satisfyingp(¢’) = 1 and such tha#; > 0 if and
only if i € I;. Note thaty*-p(¢p') = »*- A, because the condition ap
guarantees that’ solves the problem in the RHS @f1). Let

A— (8’
yr = AT Hd ),

1-6

where 0< § < 1 is fixed We have

v = ST
1-6 B

V*‘)\” —

v*A,
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and we can always choosgeto be small enough so that’ lies in the
interior of the same face o asA does Then there existg” such that
A= ("), p(¢") =1, and¢i > 0 impliesi € |;. It is easy to verify
directly that¢ = (1 — 8)¢” + 6¢’ is a matrix with the properties we seek

(ii) Necessity follows from(i). Let us prove sufficiencylLet ¢ be a matrix
such that(12) holds A € M*, and the graplj(¢) is connectedSince
A € M*, there exists an outer normal vecigr to the boundary ofV at
point A, and it is such that* # 0, v* € R'.. Consequently¢ solves the
problem(in the RHS off (11). From this we conclude that* € R ,;
otherwise(if »;* = 0 for somei), ¢ could not be a solution tfl1), since
G(¢) is connectedFinally, the normaly* must be uniquéup to scaling.
sion of v*; that is max v /v{ > min; v""/v{. Then connectedness
of G(¢) easily implies that sincé solves(11), it cannot possibly solve
(12) with v* replaced by **. Therefore v** cannot be a normal td1 at
point A.

(iii) The definition of CRP and statemerit$ and(ii) of the lemma immedi-
ately apply the uniqueness éfsatisfying(12)—the fact thatG(¢) = G*
and that this graph is connectdtremains to show thafi(¢) must be a
tree Suppose nol et us pick any cycle on this graph is easy to see that
we can “perturb” thestrictly positive elementsp; along the arcs of the
cycle so as to produce a matiX # ¢ such thatu(¢’) = u(¢) = A and
p(¢') =1, a contradiction to the uniqueness®f u

Remark: Just as in the case of thecBscheduling rulestudied for an IQ model in
[12], we emphasize here that the notion of a basic activihotwtilized in any way
(neither explicit nor implicit by the MinDrift routing algorithm (The algorithm
need not know which activities are basitt is only used as a tool for the analysis
of the algorithm Similarly, the algorithm need not know the values of workload
contributions

6. EQUIVALENT CHARACTERIZATION OF THE CRP CONDITION
IN TERMS OF THE OQ MODEL

In this sectionwe give an equivalent‘dual”) characterization of the CRP condi-
tion and introduce notions and results that will be used in the analysis of our
OQ-model

First, let us give a somewhat differetdlthough closely relateédnterpretation
of the matrix¢ and functiongi(¢) andp (), defined in Section 5Suppose a matrix
¢ is given and assume that customers of a tyerive (routed to a servej at the
average rat@y; ¢;;. Thenp;(¢), i € 1, is the total average rate at which typeus-
tomers arrive in the systerand

pi(¢) = E ¢y = Z(Hij di )it j €,
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is the average rate at which therk (i.e., the required amount of processing time
arrives(routed to servelj. (We used the convention thgt;; ¢; ) * = 0 if p; = 0.)

DerINITION 3: We define theerver utilization regiorlC C R to be the set of all
possiblevalues ofp (¢) with ¢ satisfying the condition

H(d) = A. (13)

Further, letK,. denote the set of athinimal elementgp € K such thatp € R?.,.
(p € Kis minimal ifp = ¢ € Kimplies{ = p.)

Region K is a convex polyhedron iR}, and it is nondegenerat@.e., has
dimensionJ) as long as\ is nondegenerat®&lote thatiC is unboundegbut it is, of
course “bounded beloy say by Q since it lies in the positive orthant

LEMMA 3:

(i) The FO-CRP condition for a fixed vectarholds if and only if the fol-
lowing is true:
(a) Vector1l € R’ lies within the interior of one of thé(J — 1)-
dimensional) faces df.
(b) 1€ K..

(i) When the FO-CRP condition for (or, equivalently, (i) (a) and (i) (b)) holds,
then the unique (up to a scaling by positive constant) outer normal vector
—a* to the polyhedrork at the pointl is such that™* = (aj,...,a5) €
RY.,, anda* is related to the vector* as follows:

oz]* = maXp,J Vi*, J = J, (14)
|

Vi* = m_in aj*/p.ij, il (15)
]

In addition:
(c) i €1 (i.e., activity(ij ) is basic) if and only if j€ J;, where

J, = arg ming’/; . (16)
]

(d) Any matrix¢ satisfyingp(¢) = 1 and (13), in fact, satisfies (12).
(e) We have

a*-l=v*A a7

(iif) The CRP condition for a fixed vector holds if and only if (i) (a), (i)(b),
and the following property hold:
(f) the matrix¢ satisfyingp (¢) = 1 and (13) is unique.
When CRP does hold, the mateixis in fact the unique solution of (12).
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PROOF:

(i) Letus prove the necessity ¢d) and(b). Consider the vectax™* defined
by (14). (Note thate* € RY,.) Then(15) holds Indeed for a fixedi, we
havea;" = ; v{" if (ij) is basi¢ anda;” > ;v otherwise (Incidentally
this means thait € |; is equivalent tg € J;.)

Let us choose any matri that solveg12) and such thag(¢) = G*.
(Recall that graplg* is connected Then since thig is such thatp; > 0
impliesj € J,, it is easy to observe that solves the problem

min . 18
,min_ o p($) (18)

or, equivalently 1 solves the problem

r’;rglrcla -p. (29)
(Compare problemél8) and(19) to problem(11).) This meansin par-
ticular, that1 is a minimal element ok, anda ™ is a normal to the region
K at pointl. SinceG(¢) is connectedlit is easy to see fronil8) thatp =
1 could not possibly solve the problefh9) with «* replaced by any other
nonzero vector ™ € R, unlessa** = ca™ for somec > 0. This com-
pletes the proof of necessity @) and(b).

The sufficiency ofa) and(b) follows simply by the symmetry between
the definitions of the FO-CRP conditidfor A) and conditionga) and(b)
(expressed in terms of vectbr; namely if for the vector-1 and the region
— K we define a condition analogous to FO-CRP A@nd regionM, this
will be exactly conditionga) and(b). Thus from this condition((a) and
(b)) we can obtain a condition analogous(& and(b), but with 1 and
replaced by-A and— M, respectivelythis latter condition is exactly our
original FO-CRP

(ii) As part of the proof ofi), we already proved all the properties stated in
(i), except(d) and(e). If (d) would not hold then i could not be a max-
imal element ofM. Property(e) follows from the fact that any matri,
chosen as in the proof @), satisfies(12) and solves both problents1)
and(18).

(iii) This follows from(i), (ii), and the definition of CRP u

When the FO-CRP condition holdthe components;” of the vectora™ we
will call server workload contributionsf different servers.

7. HEAVY TRAFFIC REGIME

In this sectionwe introduce the notion of sequence of queuing systems in heavy
traffic. Suppose a vector satisfying the CRP condition is fixedssociated with
this A are the unique matrig satisfying(12) and the corresponding normal vectors
v* € R anda* € R’. (We remark that all of the definitions and facts in this section
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are valid when the weaker FO-CRP condition holdg&h arbitrary fixed ¢ satis-
fying (12). However for our main results in Section &e stronger CRP condition
is essentia)

The quantity

X(t) = X v Qi(t), t=0,

i=1

we will call the customer workloadf the systemThe customer workload process
X(-) is of primary interest in the analysis of the IQ mo@&]8,9,12,20].

For the OQ modelwe define a differentalthough closely relatedn the sense
specified later notion of server workload

J
UX(1) = ) af Y (t), t=0.
j=1
In addition we define theQ-estimated server workloaak
J
ji=1

Informally speakingfor a service discipline satisfying constrait)—(d2), 9X(t)
is a “good” (asymptotically exagtestimate of the server workloatX(t).

Since for any pair of € | andj € J the inequalitye; /p; = »{* holds we
observe that th®-estimated server workload cannot be less than customer workload

()= > (af /W) Qy = X(t). (20)

i=1j=1
We also have the following inequaljtwhich we record for future reference
axX"(t) = Co X" (1), t=0, (21)

with

Co = max kia /*u” . (22)
(ij):pu>0 Vi
We now consider a sequence of queuing sysfemaexed byr € R = {rq,r,,...},
wherer,, > 0 for allnandr,, T co asn — co. (Hereafter in this articler — co means
thatr goes to infinity along the sequen@&or some subsequence &Bf the choice
of the subsequence will be either explicit or clear from the cont&edch system
r € R has as earlierl customer types andiservers The primitives and the pro-
cesses corresponding to a system R will be appended with a superscript
Assume that for each tygethe mean arrival raté} = 1/E[uf (1)] is such that

I’(/\E—)\i)—>bi, I — oo, (23)
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whereb; € Ris a fixed constantAssume also convergence of the variartbat is
[air]z — aiz, I — oo. (24)

In addition we make the following technical assumptjoreededin particular to
apply Bramson’s weak law estimatigd (and establisli75) laten: Uniformly over
i andr,

E[(u(1)*Hu/ (D) >x=n(x), x=0, (25)

wheren(-) is a fixed function andy(x) — 0 asx — co.
For the initial interarrival timeswe assume that for each

uf (0)/r - 0, r — oo.

LetF'(t), t= 0, denote the number of typecustomers that arrived in the system by
timet, excluding “initial” customers present at timeAssumptiong23), (24), and
(25) imply a functional central limit theorefFCLT) for these arrival processes

{rY(Fr(r2t) — Xir2t), t = 0} % {0, B(t), t = 0}, (26)

wheres? = A3a?, B(-) is a standardzero drift unit variancé Brownian motion
and > denotes convergence in distributi¢for processes in the standard Skoro-
hod space of RCLL functions

The service time distributions daot change with the parameter (This in
particular means that the condition analogou&2f) trivially holds for the service
timesy/ (1), uniformly on(i, j) andr.) Let us denote by

|
Vi) = ) vi(m), I=012,...,
m=1
the total amount of worki.e., total service timgbrought to servey by the firstl
(newly arriving typei customers routed to.itVe extend the domain 6tV (-) to
all real nonnegative= 0 by adopting the convention tha¥; (t) = *V; ([ t]). (We
will use the same domain extension convention throughout the article for other func-
tions which are originally defined on the integees well) Forz\/ijr, we have the
following FCLT:

{r 2V (r2t) — ptrt), t= 0} - {B; B(t), t = 0}. 27)

For each € I, let us fix a set of integer-valued nondecreasing nonnegative func-
tions °N; (1), 1 = 0,1,2,...), j € J, satisfying the following conditions

SN (D=1, 1=012,..., (28)
i
max*N; (1) — ulj_(bu I] < oo, JESINA (29)
1=0 A
*N;(I1)=0 forl=0,12,..., | & J. (30)
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The value of°N;(I) is interpreted as the number of typecustomers routed to
serverj, out of the firstl typei customers arriving in the systerhen it is clear
that for each flowi, the functions®N; (-) define a fixed("static”) pattern of rout-
ing customers to the serversJn such thatfor anyl, the fractions of customers
routed to different serverp € J, closely track the valueg; ¢; /A;; recall that
2 HWij ¢ij /A = 1. (The MinDrift rule does not require any knowledge of this static
routing patternit is only used as a tool for the analysiSuch functions can he
for example constructed recursively as followd/e set*N; (0) = 0 for all j € J,.
Foreach =1,2,..., we set’N; (1) = °N; (I — 1) + 1 for one of thg € J; with the
smallest value ofN; (I — 1) — (W ¢ /A1, and®N; (1) = *N; (I — 1) for all other
j- (The “ties” betweer) are broken arbitrarilyfor example in favor of the small-
est one

Fori € |, let us denote by

SNij (F"(t)
A(t) =D o>V CNy (FF(D) = Do > vf(m), t=0,
jea jea m=1

the total amount of server workload brought to the system by the new arrivals of
flow i by timet = 0 assuming the arrivals would be routed according to the (fixed)
functions®N; (-). From(26)—(30) we obtain the following FCLT for the sequence of
processed\(-):

> i
rt\A(rat) — )\Ej/\— r2tf, t=0[ % {uo; B(t), t = 0}, (31)
where
. * 2 %
Yoi? =\ [2 longes ] af + 2 &i W Bile'1? (32)
] ]

=[v]? |:)\?ai2 + Z oij I—li?:Bijz].
j

From (31) and(17) we obtain the following FCLT for the sequence of pro-
cesses; Al(+):

{r*l (Z Al(rt) — [2}: af‘]ﬂt), t= 0} 5 {at+ oB(t), t =0}, (33)

where

o? izua'iz, a=v*h. (34)
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8. MAIN RESULTS

For each value of thé¢scaling parameter € R, let us consider the following
processesLet U'(-) and 9U"(-) be the(vecto) processesrepresentingunfin-
ished work andQ-estimatedunfinished work, respectivelyat different servers
let “X"(-), 9X"(-), andX"(-) denote the scalar processes representing server work-
load Q-estimated server workloadnd customer worklogdespectively

Assume that in a system with indexe R, each servey, at any timet, incurs
a holding costat the(instantaneoysrate of

whereC;(-) are fixed convex increasing functignsith the additional properties
described in Section.4

Note that in our asymptotic regime the cost function is “rescaled” as the param-
eterr changes(In other wordsin a system with index, the holding cost rate
corresponding to the unfinished wotk'(t) is C;(U"(t)/r) instead ofC;(U;'(t)).)
Notice however that in the special caselescribed in Section.4) whenC;({) =
¥;¢ "1, with some fixedn > 0 andy; > 0, the form of the corresponding MinDrift
rule does not change with tndeed in this casereplacingC/(U;"(t)) in (2) with
C/(U"(t)/r)/r simply does not change the routing rule

For our main resultsve need the notion of a fixed poiit vector°u € R will
be called dixed pointif

[Ci(oul)"'wc\{l(cu\])] = Ca*’ (35)

for some constart= 0. If we recall that each derivativ@/ (-) is continuous strictly
increasing withC/(0) = 0, one deduces the following

A fixed point°u corresponding to each & 0 exists and is unique. Moreover,
cu=0forc=0, and°u € R, (i.e., has all components strictly posit) for any
c>0.

Thus the set of fixed points forms a one-dimensional manifeldich can be param-
eterized for example by the corresponding server workload valugs°u. In addi-
tion, it is easy to verify the following property

A fixed point°u is the unique vector that minimizgs; C;(u;) among all vectors
u € RL with the same server workload (i.e., satisfying conditdnu = a*-°u).

Indeedif °u= 0, the property is triviallf °u € R, condition(35) implies that the
(Lagrangian function

> Ci(y) —cla*u—a*-°u]
j

has zero gradieniwith respect tau) at point°u. Since this Lagrangian is strictly
convex inRY, it is minimized by°u. Then the desired property follows from the
Kuhn-Tucker theorem
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Let us define thaiffusion scalingoperator™", which acts on a scalar function
2= (E(t),t=0)as

(FrE)(t) =

1
CE(r?Y (36)

and is applied to vertor-functions componentwise

Let us consider the followingliffusion-scaledprocessest” = I''U’, 90" =
[rayr, ugh =Truxr ag" =" ax’, andx" =T"X".
8.1. Optimality of the MinDrift(U) Rule

Assume that the initialscaled amounts of unfinished work are deterministic and
converging

a'(0) — a(0), (37)

where(i(0) is a fixed point as defined earlieConsequently’x"(0) = a*-0"(0) —
a*-0(0) = w(0).
Let us define the following one-dimensional reflected Brownian mogicn
{%(t), t = 0}:
%(t) = W(0) + at+ oB(t) + y(t), (38)

whereB(+) is a standard Brownian motion
y(t) == |00 inf {W(0)+a+0BE)}, (39)

and the drifta and diffusion coefficient- are given in(34) and(32), respectively

THeoreM 1: Consider the sequence of queueing systems in heavy traffic, as intro-
duced in Section 7. Assume initial condition (37). kdie a reflected Brownian
motion defined by (38) and (39).

(i) Suppose that the service discipline is such that the routing rule is Min-
Drift(U) with cost functions ¢(-), for each value of the parameter r, and
each server employs an arbitrary work-conserving scheduling rule (namely
the server is not allowed to idle when there is unfinished work in its queue).
Then, as r— oo,

ugr Y %

and
a % aq,

where for each & 0, the vectort(t) is the fixed point that is (uniquely)
determined byr*-G(t) = x(t).
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(i) The service discipline defined in (i) is asymptotically optimal within the
class of service disciplines satisfying condition (d0) in that it minimizes
the server workload and the unfinished work cost rate at all times. More
precisely, letdg and k& be the scaled unfinished work and server work-
load processes corresponding to an arbitrary service discipline G (and
appropriately constructed on a common probability space with the sequence
of processes defined in (i)). Then, with probabilityfor any time t= 0,

Iil;g inf §Eir[g, t][“%{;(5) —-X(§)]=0 (40)
and
liminf 3 C;(af.6(1)) = X G (0;(t)). (41)
] ]

As a corollary, with probabilityl, for any T> 0,

r—oo

Iiminff > Gi(0f (1)) dt= lim f > Ci(af(t)) dt
0] oo Jo 7

.
0 j
The proof of Theorem 1 is the subject of Sections 9 and 10

8.2. Optimality of the MinDrift(Q) Rule

Assume thatfor eachr, the initial state of the system at time 0 is deterministic and

it conforms to condition$d1) and(d2) on a service disciplinéwhich are assumed

in Theorem 2 below In particular for each pair of andj, server has in its queue

at most one customer of typevhose service has already startadd the realiza-

tions of service times of the customers whose service has not yet started are not
known to the serverFor the initial residual service times ;(0) (if any) of the
customers whose service has already startedassume

U,r,J(O)/r —>O, I — co.

Finally, assume that the initiglscaled amounts ofQ-estimated unfinished work
are converging

g (0) — a(0), (43)

where(0) is a fixed poinf as defined earlier
It follows from the above initial conditions that

9%"(0) = a*-90"(0) - «*-0(0) = W(0) (44)
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ROUTING IN OUTPUT-QUEUED SYSTEMS 163
and in addition with probability 1,
0"(0) —» a(0) and U“x"(0) — W(0). (45)

For the fixedw(0), we consider a one-dimensional reflected Brownian mogien
{%(1), t = 0}, defined in(38).

THEOREM 2: Consider the sequence of queuing systems in heavy traffic, as intro-
duced in Section 7, and with the initial conditions described in Section 8.2.

(i) Suppose that the service discipline is such that the routing rule is Min-
Drift(Q) with cost functions {X-), for each value of the parameter r, and
each server employs an arbitrary work-conserving scheduling rule satis-
fying conditions (d1) and (d2). Then, as+ oo,

agr Y %, ugr Y %

and

ar S0, 0 -5 a0,
where, for each & 0, the vectort(t) is the fixed point that is (uniquely)
determined by *-G(t) = X(t).

(i) The service discipline defined in (i) is asymptotically optimal within the
class of service disciplines satisfying conditions (d0)—(d2) in that it min-
imizes both the server workload and the Q-estimated server workload
and the unfinished work cost rate at all times. More precisely,llet
aag, Uks, and 9% be the scaled unfinished work, Q-estimated unfinished
work, server workload, and Q-estimated server workload processes, respec-
tively, corresponding to an arbitrary service discipline G satisfying (d0)—
(d2) (and appropriately constructed on a common probability space with
the sequence of processes in (i)). Then, with probability 1, for any time
t=0,

liminf inf [9%5(¢) — %(£)] = liminf inf [YR&(¢) — %(£)] =0
£€[0,t] r—oo  £€[0,t]

(46)
and
liminf E G (0] (1)) = liminf 2 G (af s(1))
r—oo [ r—oo i
= 2 C; (G (1)). 47
]
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As a corollary, with probability 1, for any B 0,

Iimf C,(9qy (1)) dt = lim f > c;(ar(t)) dt
0 r—o Jg 7

r—oo

0 j

and

r—oo

T T
Iiminff ECj(qa,{G(t»dt:liminff C (0 (1)) dt
0 J r—oo 0 ]

ZLECj(Gj(t))dt. (49)
]

The proof of Theorem 2 is essentially a slightly modifigahd extendedver-
sion of that of Theorem.1t is outlined in Section 11

8.3. Customer Workload Minimization Under the MinDrift(Q) Rule

Suppose that we are within the conditions of TheorerRdt the initial customer
workloadsx'(0), we “automatically”(by (20) and(44)) have

limsupx"(0) = lim 9%"(0) = W(0).

Supposein addition that in fact X"(0) converges to the same limit 4&"(0):
lim X"(0) = lim 9%"(0) = W(0), (50)

which is equivalent to the condition that ljrgf (0) = O for every nonbasic activity
(i)

Now, any service discipline in the OQ systesatisfying condition$d0)—(d2),
is within the class of disciplines for the corresponding 1Q system studi¢@iZh
(see Remark 2 in Section 3 of this articlén particular Theorem 1 if12] estab-
lishes that reflected Brownian motigRBM) with exactly the same distribution as
the RBM X (defined in this article by398)) is in fact the stochastilmwer bound of
any limit of the customer workload proceg5 under any service discipline satis-
fying conditions(d0)—(d2) (but not necessarily IR which includes service disci-
plines for both OQ and IQ systems

However from (20) we have a pathwise relation

X'(t) = 9%'(t), t=0, (51)
and by Theorem 2i), under the MinDrif(Q) rule, 9" > %. Thus X is both the

w

lower and uppefstochastitbounds ofk" and therefore X" — X. We have proved
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ROUTING IN OUTPUT-QUEUED SYSTEMS 165

the following resultwhich basically says that the MinDr{{®) rule minimizes cus-
tomer workload among virtually all service disciplines in either the OQ or IQ system

THEOREM 3: Suppose that the conditions of Theorem 2 and, in addition, condition
(50) hold.

(i) Forthe service discipline described in Theorem 2(i), we, in addition, have

" R, (52)

(i) The service discipline described in Theorem 2(i) asymptotically mini-
mizes customer workload among all service disciplines, satisfying con-
ditions (d0)—(d2), in either the OQ or IQ system; namely, the customer
workload process under any such discipline G can be constructed on
a common probability space with the RBlIso that, with probability 1,
for any time t= 0,

liminf inf [X&(E) —x(€)]=0.
r—oo  ¢€[0,t]

8.4. A Necessary Condition for Workload Minimization Under Any
Service Discipline: Vanishing Nonbasic Queues

Theorems 2 and 3 show thabughly speakingthe MinDrift(Q) rule minimizes
both server and customer workload in the heavy traffic liMifteorem 4 demon-
strates thateither customer or serveworkload in an OQ system can be minimized
by some discipline only jfunder this disciplingthe (scaled queue lengths cor-
responding to nonbasic activiti€§ ) vanish in the limit

THEOREM 4: Suppose that the conditions of Theorem 2 and, in addition, condition
(50) hold. Suppose that under some service discipline in the OQ system, satisfying
conditions (d0)—(d2), either (52) or

ugr s % (53)
or
ag" s % (54)
holds. Then, for any % 0,
q; (t) 250 for any nonbasic activityij ). (55)

The proof is presented in Section.12
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9. FLUID SAMPLE PATHS UNDER THE MinDrift RULE
9.1. Fluid Sample Paths: Definition and Basic Properties

In this sectionwe study the sequence of processes introduced in the previous sec-
tion under thefluid (or “law of large numberg’scaling and under the MinDrift
rule. More preciselywe need to consider ongample pathef the processes under
this scaling and then their limitsvhich we formally define here and cédllid sam-
ple paths(FSP3. The key property of FSPs that must be establigie@heorem %
is that as time increases to infinitthe queue length vector converges to a fixed
point This attraction property is used to protia Section 10 the state space col-
lapse propertyi.e., the property that the limit of the sequencediffusion scaled
processes is a process “living” on the manifold of fixed paints

Throughout Section 9 we assume the CRP condititowever all definitions
and results of this section hold under the weaker FO-CRP congititim arbitrary
fixed ¢ satisfying(12) andG(¢) = G*; in other wordsthe FSP definition and key
properties daot require a solutiorp of (12) to be unique

First, we introduce some additionétandon) functions associated with the
process for each value of the scaling parametéFhe functiong='(t), Qf(t), and
X'(t), have already been defined earljeDenote byGj(t) the amount of time
within [0, t] that serverj was serving type customersFor each pair(i,j) we
defineN; (n) as the number of typearrivals actually routed to servgrout of the
first n new typei arrivals and denote

Hi (1) = Nj (FF (1) — *NI (R (D).

Here for any pair(i,j), °Nj(-) = *N;(-) for all r, where *N;(-) are nonrandom
functions fixed earlier and satisfying conditio(&8)—(30).
We define thgserver workload) regulatioprocess as follows

Yr(t) = Yicrile(t) + Yri)ute(t), t= 0;

where
mamﬁE@Q—Eqm>
j i

Yrgute(t) = ergutei(t)’
i
Yioutei(t) = 2 o Wi T H ().
J

FunctionYg, is the regulation component due to physical idleness of the servers
Y,oute IS the regulation component due tpossible routing of customers to non-
basic serversand functionsy,, e ; represent the contributions int,,.. due to dif-
ferent flowsi € 1.
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The regulation componeiv.(t) is clearly nonnegative and nondecreasing
is easy to verify that each regulation compon¥gj,.;(t) is also nonnegative and
nondecreasingAlso, so is therefore Y,5u(t).) Moreover Yo, (t) is a piecewise
constant functioywhich is constant between typeustomer arrivalsaand jumps by
the valuea; /P — v = 0 when a typd arrival is routed to servgt note that the
size of the jump is strictly positive if and only if servgis nonbasic for type.
Finally, note thatY"(t) does not increase over some time interval if and only if
during that intervalnone of the servers idles and all new arrivals are routed to the
corresponding basic servers

We record the above factalong with their obvious generalizatipim the fol-
lowing lemma for future reference

LemmMma 4: For each value of the scaling parameter r, consider a pair of time points
0 =t] <t} < oo and denote

Y)Y ()

B, ,
° -4

) Fif(t2) — Fi(t])

Bii = 2 r o 4r )
i3, -1t

C« Gi(t2) — Gj(t))
BE’J = Z tr _ tr
icl 2— 1

Then B=0ifand only if B ; = O for all i and B ; = 1 for all j. Also, lim,_,.. By =
0if and only iflim,_,.. B{; = Ofor all i and lim,_,,, B3 ; = 1 for all j.

Let us consider the process’ = (U', "X, F",*V" SN, N",G" H"Y", Yie,
Y.bue), Where

Ur=(t),t=0,j €J),

uxXr = (UX"(t),t=0),
Fr=(F(t),t=0i€l),

V= (Vi) 1=0,i €1,j€J),
SN = (Nj(I), 1 =0,i €l,j €J),
N" = (Ni(),I=0,i€l,jeE),
G' = (Gj(t),t=0,i €1,j€J),
H" = (H{(t),t=0,i €l,j€J),
Y= (Y'(t),t=0),

Yiie = (Yiae(t), t=0),

Yioute = (Yroute(t), t = 0).
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168 A. L. Stolyar
For eachr consider thdluid scaledprocess
rzr=z'= (ur’ uxra f r, ZUr, Snr, nr’ gra hr, yr9 yirdlev yrroute)7
where the fluid scaling operat®y is applied componentwise and acts on a scalar
functionE = (E(t), t = 0) as follows
I o— - 1 e
(rg)(t) = " 2(rt).
DEerFINITION 4: A fixed set of functions= (u, Ux, f, v, 5n,n, g, N, ¥, Yidies Yroute) Will
be called afluid sample pati{FSP) if there exists a sequenRg of values of r and
a sequence o$ample pathgof the correspondingrocesses{z'} such that, as

r — oo along the sequencg;,

and, in addition,

[u(O)]| < oo,
(f'(t),t=0) > (A, t=0), u.o.Cc,i€El, (56)
(Fof(t),t=0) - (', t=0), uoc.,i el jed (57)

Remark: A sequencé;, the existence of which is required in Definitionmay be
completely unrelated to the sequerRewe introduced earlier in the definition of
the heavy traffic regime

The following lemma establishes some basic properties of ARE®mit the
simple proof which is a direct consequence of the definitions involved

Lemma 5: For any FSP z, all of its component functions are Lipschitz continuous
and, in addition,

fi(t):)\it, t20,|€|,
0 (1) = 'ty t=0,iel,je],
°ny (1) = (W &y /AL, t=0,iel,je],

uj(t) = u;(0) +zualnij()\it)_zgij(t)’ t=0,j €,

UX(t) = a*-u(t) = “x(0) + y(t), t=0.
Furthermore, both ¢) and “x(-) are nondecreasing (with(9) = 0).

Since all component functions of an FSP are Lipsclhiitey are absolutely con-
tinuous and therefore for almost all points= R, (with respect to the Lebesgue
measurg the following property holds

Each component function of z has (finite) first derivative at t, and each function
n; (+) has (finite) first derivative ai;t.
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We refer to such time pointsasregular. We adopt a convention that= 0 isnota
regular point(i.e., in the definition of regular pointsve require that proper deriv-
atives exist

The dynamics olu(t) satisfies the following differential equation and addi-
tional conditions at every regular point

d )
¢ YO = p" (1) = p(L), (58)
where the components of tidedimensional vectorp™(t) and p°(t) are defined
as
0 = S AR €L, =
PPt = 3 g (1) € [0,1], (60)
and forp°" we have
p]_out(t) =1 if u; (t) > 0. (61)

9.2. Uniform Attraction of Fluid Sample Paths

Foru € R, denote
"A(U) = maxC/(u)/ef, LA = minC/(u))/ey';
] ]

®(u) =1— A(u)/*A(u) if u# 0, and®(0) = 0 by convention
Consider the following functions associated with a fixed F9Pt, define

J7(t) = {j € T (u(1)/af = "Alu(t))}

and similarly, J.(t) (with *Areplaced by.A). Next, introduce

U (t) = {7 = 0[C/())/aj = "Alu(1))},

and note thatu;(t) is well defined since each functidy(-) is strictly increasing
continuousLet *x(t) = a*-*u(t), where*u(t) = (*u(t),...,"uy(t)), and note that
Ux(t) = *x(t) forallt = 0.

Finally, note that at any timet, the following five conditions fowu(t) are all
equivalent

u(t) is a fixed point
"Au(t)) = LA(u(t)).
®(u(t)) =0.

*x(t) = Ux(t).

*u(t) = u(t).

grwpnpE
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170 A. L. Stolyar

The following sequence of lemmas establishes further properties of fluid sample
pathswhich are less obvious than the basic properties of Lemmaé&form of the
MinDrift rule is used in the proofs in an essential way

LemMmA 6: Consider a fixed FSP z. Suppose 0 is a regular point and (t) # 0.
Then the following properties hold at this t:

(i) uj(t) > Oforallj € J.
(i) We have

S oaut)=0, S afut)=0. (62)

JEI* (1) j€d.(t)

(iii) Moreover, there exists a constasat> 0, which depends on system param-
eters only, such that if, in addition(t) is not a fixed point (i.e 3A(q(t)) >
+A(Qq(1))), then

Soaut=-a, 3 qub)=ze. (63)

JEI* (1) j€3. (1)

ProoOF: Let us first prove(iii ). Thus consider regular time point> 0 and suppose
that*A(u(t)) > .A(u(t)). The following observation is true

If i € 1andj € J*(t)\J;, thenn;(A;t) = 0. (64)

Indeed according to the MinDrift rule and LemmdiB) (c), for all sufficiently large

r, the prelimit pathz" is such that in a small intervét, t + €], e > 0, new arriving
customers of typé cannot be routed to a serviee J*(t)\J,. This easily implies
that the corresponding FSP componset) cannot increase in a small interval to
the right of A; t, and thereforen; (A;t) = O sincet is regular Using a similar argu-
ment it is also easy to prove the following property

Ifiel, J\J*(t) # J, andj € J*(t), thennjj(A;t) = 0. (65)

Let us denote by*(t) the (nonempty subset of types such that), N J*(t) # .
Since graphg(¢) = G* is connectedthere exists at least one= | *(t) such that
J\J*(t) # I, in which casgby (65)), we have strict inequality

> o Pt (At) =0< > af ¢y . (66)

jed* (v jedr(

If i € 1%(t) andJ\J*(t) = D (i.e,, J C J*(t)), then

> ot A = Y of ¢y (67)

j€I(t) jeI* ()
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Indeed using(64), the fact thaty" i * is the same across @k J;, Xjc; nj(A;t) =1,
andXjc; W ¢ /A = 1, we can write

> et (A = o A nf (A t)
i€

jear ()
. &y
=2 o A ) =2 o
JEJ i JEJ
= > af gy
JIESN)

As a corollary from(64), we also obtain the following property
If i & 17(t) andj € J*(t), thennj(A;t) = 0. (68)

We will now show that

> au(t) = —¢, (69)

j€I*(t)

wheree > 0 depends only on the subsEf(t). Indeed

Soaut)= 3 g uanat - X o,

j€I*(t j€I*(t) i€l j€I*(t

and(using(68), (66), and(67)) we have

Y e AN = X Y o A (At

JEI* (1) i€l iel*(t) jea*(t)
< > X aidi= X oo D ¢
iel*(t) jed*(t) jeJ* () iel*(t)
JjEI* (L)

We have proved69), with e > 0 depending only on the subs#&t(t) C J. Since
there is only a finite number of subsetshfiwe have proved the first inequality in
(63), with some fixede; > 0.

The second inequality i(63) is proved analogouslyWe denote byl.(t) the
(nonempty subset of types such thatl N J.(t) # J. Then we use the following
property(obtained using the argument analogous to that leadifi§4oand(65)):

If i €1.(t) andj & J N J.(t), thennj(A;t) = 0.

We omit details
The proof of the nonstrict inequalities in propetiy is a straightforward exten-
sion of the proof of(iii ); namely we need to consider an additiof@égenerate
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case wherd*(t) = J.(t) = J. In this casefor example to prove the first inequality
in (62), we observe that the nonstrict inequali67) always appliesand(70) holds
with the strict inequality replaced by a nonstrict one

Finally, (i) is proved by contradictiarBupposgu;(t) = 0 for somg € J. Obvi-
ously the set of such is exactlyJ,(t). Sinceu(t) # 0, u(t) is not a fixed point
Therefore the second inequality i(63) should hold However this is impossible
because we must havg(t) = 0 for allj € J.(t). Indeed the conditiony;(t) = 0 and
the existence aiif (t) imply thatu;(t) = 0. (Otherwise u;(-) would be negative just
before or right after time.) u

LemMma 7: Consider a fixed FSP. Suppose a time intefialt, ], with0 = t; < t,,
is such that

min minuy;(t) > 0.
t=t=t, jEj

Then, ovefty, t,], the functions’A(q(t)), .A(q(t)), *x(t), and*u;(t) for all j € |
are Lipschitz continuous. Moreover, for almost att[ty, t,],

d d d . _
m ["A(u(t))] = 0, m [.A(u(t))] =0, m [*x(1)] =0, (71)
and if, in addition,*A(u(t)) > .A(u(t)) (i.e., u(t) is not a fixed point), then

E * = - 72
dt[ X(D)] = —ey, (72)

wheree; > 0 is defined in Lemma 6.

Proor: First, the Lipschitz continuity of each functiody (u; (t)) in [ty, t,] follows
from Lipschitz continuity ofu;(-) and the fact thaffor the range of possible values
of u;(t) in [t5, t], G (-) is continuous bounded away from both infinity and zero
(This is the only place where we use the assumption that the fundidnsare
twice continuously differentiable

This implies that for an arbitrary fixed subskt J, the following functions are
also Lipschitz continuous ifty, t5]:

ni1Eaijj’(uj ()/af, r}1€||n C/(uj(t)/af .

In particular *A(q(t)) and,A(q(t)) are Lipschitz which (along with the fact that
the second derivative§/’(-) are bounded away from zeromplies that all*u;(t)
and *x(t) are Lipschitz We see that almost all pointse [t,,t,] are regular(as
defined earlierand in addition are such that all the max and min functions in the
last displayfor all (nonempty subsets] C J, have derivativeswithin the present
proof, let us call such pointsstrictly regular.
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Consider an arbitrary strictly regular poin€ [t,, t,]. The proof will be com-
plete once we prové71) and(72) for this pointt. Sincet is strictly regulaythe
derivativesd/dt[ *A(u(t))] andd/dt[C/(u;(t))/e; ] for j € J*(t) are all equal(In
particular this implies that*u/(t) = uj(t) for all j € J*(t).) We cannot have
d/dt[*A(u(t))] > O because this would imply that(t) > 0 for all j € J*(t),
which would contradict{62). This proves the firsand with it, the las} inequality
in (71). The second inequality if71) is proved analogously

We can now write

d
a [*X(t)] = E aj* *u;(t) = 2 af]-* *Uj,(t) = E aj*uj’(t),
jEJ

JEI* (1) JEI* (V)

where the inequality follows from the fact that/(t) = 0 for all j € J (which is
implied by(71)), and the second equality is becatisft) = u;(t) forj € J*(t). In
the cas€'A(q(t)) > .A(q(t)), by (63), the RHS of the above display is bounded
above by—e,, which proveq72). |

LemMma 8: Consider a fixed FSP z. Supposé;i # 0 for some £ = 0. Then t)
has all strictly positive components (i.e(tu e R},) for all t > t;. Moreover, in
[t1,00), .A(g(t)) is nondecreasing, and bottA(q(t)) and *x(t) are nonincreasing.

Proor: Indeed we can always find a regular poigit> t; arbitrarily close tat; so
thatu(¢) # 0. By Lemma 6 u(¢) € RY,. Then using Lemma 7it follows that
+A(u(t)) is nondecreasinand*A(u(t)) and*x(t) are nonincreasingtarting from
time &, and thereforau(t) € R, for all t = £. Sinceé can be chosen arbitrarily
close tot,, the proof is complete |

LeEmMA 9: Consider a fixed FSP z. If(0) = 0, then ut) =0 for allt = 0.

Proor: Suppose notBy continuity of *x(-), for an arbitrarilye > 0, there exists
timet; > 0 at which*x(t) reaches levet for the first time Of courseu(t,) # 0. By
Lemma § *“x(t) cannot increase starting at tintg and thereforex(t) = e for
all t = 0. Sincee > 0 can be chosen arbitrarily smaiix(t) = 0, and therefore
u(t)=0forallt=0. |

The following theorem easily follows from the lemmas presented earlier in this
subsection

THEOREM 5: For any fluid sample pathd® (u(t)) is a nonincreasing function, and
the server workloadx(t) is a nondecreasing function. Moreover, there exist fixed
constants 7> 0 and K= 1 such that, for any FSP, (1) reaches a fixed poinfu
within finite time"x(0) T, and then stays there, and'-°u = “x(0)K.

Proor: The fact thaix(t) is nondecreasing has already been established earlier
Supposeu(0) # 0. By Lemma § . A(u(t)) is nondecreasing antA(u(t)) is
nonincreasing ifi0,c0), and therefore (u(t)) is nonincreasing-urtherby Lemma §
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u(t) € RL, for all t > 0. Then by Lemma 7 for almost allt > 0, *x(t) > Yx(t)
implies

a<X,(t) = —€1.

Since*x(0) = "x(0)[ X & ]/[min; o5°], “x(t) = *x(t), andx(t) is nondecreasing
we immediately see thait(t) must reach a fixed point within a time proportional to
Ux(0).

Therefore the statement of the theoremith some fixedT; > 0 andK = 1,
holds for the FSPs withi(0) # 0. By Lemma 9 it trivially holds for u(0) = 0 as
well. |

For future referencewe record the following property of prelimit paths

Lemma 10: There exists a constart > 0 such that the following holds. For any
prelimit (scaled) path U= (u"(t), t = 0), and0 = t{ < t§ < oo, the property

u(t) #0 and ®(U'(t)) =e,, Ot€E[t],t5],

implies that y(tj) — y"(t{) = 0 or, equivalently, that in the (scaled) interval
(t1,t5], all new arriving customers are routed to their corresponding basic servers
and none of the servers idles.

Proor: First, sinceu'(t) # 0 in [t{,t}], none of the servers idles in this time
interval Second a small value of ®(u'(t)) implies that the vector
(C1(Ui(t)),...,Ci(ui(t))) is “almost proportional” to vectos*. Thus if ®(u"(t))

is small it follows from the form of the MinDriffU) rule and Lemma @i)(c)
that in[t],t;], a new arrival of any type € | can only be routed to a server
j € J. We omit thee-6 formalities u

10. PROOF OF THEOREM 1
For eachr € R, consider the following procesebtained by diffusion scaling
Tr UL UXLFEL VL SN NG GLHS Y, Vilie, Yibue)
= (0 %% £ 20", °0%, A% 65 A% 9, e, Yioue),

where the diffusion scaling operatbf is defined in(36).

To prove the properties stated in Theorenit Will suffice to show that for any
subsequenc®&, C R there exists another subsequerite C R, such that these
properties hold when — oo alongR.,. As in [14], to do this we will choose sub-
sequencek, and construct all processéer all r € R,) on the same probability
space in a way such that the desired properties hold with probabilityare implied
by certain probability 1 propertig¢s

Let us fix an arbitrary subsequen®y C R of indices{r}. According to Sko-
rohod’s representation theore(see for example [7]), for eachi, the sequences
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(onr) of the processef"} and{*V;}, j € J, can be constructed on a probability
space such that the convergenceé3t) holds uo.c. with probability 1 (w.p.1):

> dyaf
ot Ag(th)—Aijth ,t=0[ 0% (ug B (1), t = O, (73)

whereB; is a standard Brownian motion

We can and do assume that our underlying probability spaed w} is a direct
product of the abové probability spaceq Without loss of generalitywe assume
that this probability space is complet®n this probability space the convergence
(33) holds uo.c. w.p.1 as well

J

{r*(Z Al(r2t) — [2 aj*]r2t>, t= 0} LOCs fat+ oB(1),t =0},  (74)

whereB is a standard Brownian motion

Now, from condition(25) and Bramson’s weak law estimatgdg, Prop 4.3]),
we know that for anyl; > 0, anye > 0, and anyi, for all larger, we have(see the
proof of property(5.19) in Proposition 51 of [4])

P{ max sup|fir(l+§)—fir(l)—)\i§\26}<e. (75)

0=I=Tyr 0=¢=1

(The max in(75) and(76), as well as in(76)—(78), is overintegers I [0, Tsr].)
Also, using Proposition £ of [4], it is easy to showsimilarly to the derivation of
property(71) in [14]) that for anyT; > 0, anye > 0, and any pair ofi, ), for all
larger, we have

P{ max  sup [Sof(l + &) — i (1) — wté| = e} <e (76)
0=I=T3r 0=¢=1

Estimateq75) and(76) enable us to choose a subsequeRse_ R4, such that as
r — oo alongR,, with probability 1, for any T; > 0 we have

max sup |f'(l+&)—f"()— A& =0, iel, (77)

O=I=Tar 0=¢=1
and

max sup [*of (I + &) — *vf(l) — p;*¢1 -0, ieljed (78)

O=I=T3r 0=¢=1

Propertieg77) and(78), in turn, imply the following property
With probability1, for any fixed T > 0 and d> 0, for any(i,j), we have the
following:
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176 A. L. Stolyar
Uniformly on any sequence of paif§,t;), r € R,, suchthat0 =t] <tj =
r2T,, ty—ti =rd,

lim zVijr(s|\|ijr(|:ir(r ’ty))) — 2\/ijr(SNijr(Fir(r t;))) _
r—w, 1ER, ¢ (tz —t1)

Uniformly on any sequence of paifg,15), r € R,, suchthat0 = 1] <) =
r2Ty, 15— 11 =rd,

1; (79)

, Vi (15) = *Vif (1D)
lim =

r—oo, rER, Hﬁlaé_ 1)

(80)

For each € J, we have
Ujr(rzt) =U"(0) + szijr(Nijr(Fir(rzt))) - 2 Giﬁ(rzt),

and therefore the expression for the scaled server workload can be written as

%7 (1) (81)
— ugT(0) + 1 [ ; f SV N (Fr(r70) - ; T zt] (82)

+ r—lga;<r2t—geg(r2t)> (83)
+rt ; Z af [*Vif (NJ (F"(r?t))) — *Vif CNj (' (r 21)))] (84)

= W' (t) + Fiae(t) + Yrouwe(t) = W (1) + Y (1), (85)

whereW'(t) is the term(82), ¥i,.(t) denotes the ternB3), Viou(t) denotes the
term(84), andy' (t) = Yiye(t) + Vioue(t). We know from(74) that
(W' (1), t = 0) 2255 (W(t), t = 0),

where

W(t) = W(0) + at + oB(t),

B(-) is the realization of a standard Brownian motiand the parametesando
are those defined itB4). (The realizationw(-) is, of course continuous) As seen
from (85), the key step in proving Theorem 1 will be the proof of the following
convergence

(Y (1), t=0) == (y(t), t = 0). (86)

In the rest of this sectigrwe restrict ourselves to @neasurableprobability 1)
subset, C Q of elementary outcomas, such that all the specified above proba-
bility 1 properties holdwhenr — oo alongR,.
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LemMA 11: Consider a fixedv € Q,. As r— oo along R, the functionsy;, . and
Viouter @Nd theny" and §', are “asymptotically close” in the following sense. For
any fixed T > 0 and any fixeds; > 0 and 6, > 0, for all sufficiently large r,
uniformly on te [0, T,],
(1 - 81)yrroute(t) - 82 = yFoute(t) = (1 + 61)yrroute(t) + 52 (87)
and then
(1=56)9" () =82 =¥'(t) = (1 +61)9" (1) + 2. (88)

The proof of Lemma 11 is analogous to the proof of Lemma[d. The key
observation heréwhich follows from(79) and(80)) is that for fixed T, > 0 and
(arbitrarily smal) d > 0, if t € [0,T,] and|H{ (F(r?t))| = rd, then for all suffi-
ciently larger, the ratio

2Vijr(Nijr(Fir(r ’t))) — 2Vijr(s|\|ijr(|:ir(r ’t)))
M tH (R (r2t)

is close to unityWe do not present the detai/e note thatanalogous to the sit-
uation with Lemma 9 if12]) Lemma 11 applies to any service discipline satisfy-
ing condition(d0), and the uniqueness @f (in the CRP conditionis used in the
proof of Lemma 11 in an essential way

It follows from Lemma 11 that to provég6), it suffices to prove

(97 (1), t=0) =5 (y(t), t = 0), (89)

becausg/(-) is bounded on finite intervals

Since regulatio§" is a nondecreasing functigfor anyr), for any fixedw € Q,,
from any subsequenc@;(w) C R, (which may depend om!), it is always pos-
sible to find a further subsequen®®(w) C R3(w) such that

vy =9 (90)

wherey is some nondecreasing RCLL functidiwe will prove that this limity is
indeed the regulation of the one-dimensional Brownian motion defined ephfier
principle § may take the values co. (In other wordsy € D([0,0), R.) Recall that
the notation " stands for convergence at every point of continuity of the limit
function except maybe the point)0NVe note tha{90) implies that

Ugr = X =W+ 9, (91)

and therefore(t) < oo if and only if y(t) < co.

The following lemma(and its prooj is analogous to Lemma 7 ifil4] and
Lemma 10 i 12]; it contains key observations used in the proof of Theorefh&
key construction of the propévhich involves “slowing down” the diffusion scaled
process to consider a family of processes on the “fluid” time scale and then expoit-
ing the uniform attraction property of fluid sample patissessentially the same as
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178 A. L. Stolyar

that in Section 5 of4]. This construction is central for establishing SSC in the
heavy traffic asymptotic regime for multiclass queuing netwddee[4,19]).

LemmMA 12: Suppose that the service discipline is such that the routing rule is Min-
Drift(U) and scheduling rules at the servers are work-conserving. Suppose that
w € Q, and a subsequencR,(w) C R, are fixed such that, along this sub-
sequence, (90) holds. Suppose, a sequétice € R,(w)} is fixed such that

fr>t'=0
and
ug'(f") > C>0.

Lets > 0 be fixed and

€= sup |W(&) — W(&,)| < C.

&1, E,€[1'=38,1'+35]NR,.
Then the following hold:

() ¥ (andx) is finite in[0,t’ + &].
(b) y does not increase ift’,t’ + 8] (i.e.,y(t' + 8) — y(t’) = 0).
(c) The following bound holds

C—e=Xx(t)=CK+e 0Ote[t,t'+468],

with K defined in Theorem 5.
(d) Foranys’ > 0,

(@ (t),te[t’ +8,t" +8]) 225 (a(t), t e [t' + 6, t" + 8]),
wheredi(t) is the (unique) fixed point such that'- Gi(t) = x(t).

If, in addition, f" = t’ for all r, and 0'(t’) — °d, where°d is a fixed point
(necessarily, withw*-°t = C), then the following hold:

(c’) X(t') = C and, consequentlyi(t’) = °q.
(d) (ar(t), t € [t,t" + 8]) =25 (a(t), t € [t),t" + 8]).

Proor: The proof essentially repeats that of Lemma 1{1i#]. For completeness
and since some adjustments are requivee present it here

Let us consider the functions of interest on the fluid time scadenely con-
sider earlier defined function&'(t) = “x"(t/r), y"(t) = y'(t/r), t = 0, and simi-
larly defined functiorw" and other related ones

Let us choose a fixed > 0 as follows Let us fixe; € (0,C — €), denote

C;=(CH+e3)K+ e+ e,
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ROUTING IN OUTPUT-QUEUED SYSTEMS 179
and fix arbitrary
T=C;3Ty,

whereK andT,; are the constants defined in TheorenAS seen later in the propf
C; will be the upper bound ofg'(-) in the interval i", t" + &] or, equivalently the
upper bound ofx"(-) in the interval ri", ri" + r&]. Thus the choice of the constant
Tis such that an FSP with initial server workload not exceedingill converge to
a fixed point within timeT.

For each integelr € [0,25r/T ], consider

ugtl(E) =X (rit + TI+ €),  é=0,

and similarly definedv™', y"'!, and other related functions
Let us fix arbitrarye, € (0,€,/2), wheree, is defined in Lemma 10Then the
following property holds

PropPERTY 1: For all sufficiently large r, relation (92) below holds for all integer
| €[0,256r/T], and relations (93)—(95) hold for all integerét [1,25r/T]:

C—e—e3="X"1(§) =C;, 0¢é €[0,T], (92)
P(0~'(¢)) =€, foré=0andé =T, (93)
D("'(€) = 2¢4, DEE[OT], (94)
y-!(T) —y"~'(0) =0. (95)

To prove Property dwe first observe thai92) must hold forl = 0 for all large
r, because otherwise we would be able to choose a subsequence of imdliceg
which the sequence of pat&® converges to an FSPwith “x(0) = C and either
Ux(£) > CK or Ux(¢) < C for someé € [0, T], which contradicts Theorem. 5
Moreover this observation shows that in fact for all large

C—€3/2="%"10) = (C+e3/2)K, (96)
and given our choice of the constam
@(0"1(0) < €. (97)

Next, suppose Property 1 does not holthen we can choose dimfinite) sub-
sequence of such that(along this subsequenckE = 1'(r) is well defined as the
smallest = 1 such that one of the conditioi82)—(95) does not hold(Note that
by this construction an(B7), property(93) always holds fot =1’ and¢ = 0.) We
will show that this construction leads to a contradiction

Indeed for all larger, both(92) and(93) hold forl =" and¢ = 0. This follows
from the combination of the following facts

Downloaded from https://www.cambridge.org/core. Run Run Shaw Library, City University of Hong Kong, on 17 Jun 2020 at 01:52:00, subject to
the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964805050096


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964805050096
https://www.cambridge.org/core

180 A. L. Stolyar

. Property(96).

.| W(&y) — W(éy)| =€easlong asy, & €[t/ — 36,1 + 351N R,.

. W' — Wuniformly in[t’ — 35,t" + 35] N R,.

. Property(95) foreach 1= 1 =1' - 1.

. The functiong/" andy" are asymptotically clos@n the sense of Lemma L1

a b~ wdNhpE

Since(92) and(93), with | = 1" and¢ = 0, hold for larger, we see that93) and(94)
hold for| = |I" and all larger. (Otherwise we would be able to choose a sub-
sequence of along whichz™'" converges to an FSPviolating Theorem 5 Sim-
ilarly, the lower bound ir{92) must hold(for larger) for | =1’ andé € [0, T ]. This,
in conjunction with(94) and Lemma 10means that95) holds forl = |’ (for large
r). Finally, this and the argument we already used to prove bd@gdfor | = 1’,
¢ = 0, shows that in fact92) holds forl =1’ and all¢ € [0, T] (for larger). We
have proved tha92)—(95) hold forl = 1'(r) for all larger. This is a contradiction
with the construction of the functioli = 1'(r), which proves Property.1

Property 1(namely(92)) implies that for all larger,

C-e—ea=""1(§)=C5, ¢€[0T],0=1=25/T.

Statement$a)—(c) of the lemma follow from this estimate
To prove(d), we first notice thata), (b), and Lemma 11 imply the following
uniform convergence for the workload process

(URT(t), tE [t + 8t +8]) 225 (x(t), tE [t + 8t +8]). (98)

Statementd) then follows from Property ,1the fact thate, can be chosen arbi-
trarily small and convergencé8).

To prove propertiegc’) and(d’), we use the same exact constructithins easy
to see thatunder the additional assumptigmdl conditions(92)—(95) in Property 1
hold for all integer & [0,256r/T ] (including zer9. Given this propertiesc’) and
(d") are proved analogously to propertigs and(d). We omit details u

The rest of the proof of Theorem 1 repeats that of Theorem[14h and that
of Theorem 1 i 12], virtually verbatim We reproduce it herewith the necessary
minor adjustmentsfor completeness

10.1. Proof of Theorem 1{i)
To prove this part it suffices to prove the following

PROPERTY 2: AS r— oo (alongRR.,), for anyw € Q, (i.e., with probability 1), we
have the following convergence:

(97 (1), t=0) =25 (y(t), t = 0), (99)
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ROUTING IN OUTPUT-QUEUED SYSTEMS 181
wherey is defined by (39), and

(a"(t), t = 0) =>% (a(t), t=0), (100)
where for each tfi(t) is the fixed point such that*-G(t) = X(t).

ProoF oF PROPERTY 2: Let us fixw € Q,. As explained earlierfor an arbitrary
subsequenc®s(w) C R, there exists another subsequefitd w) C R3(w) such
that the convergenc®0) holds along this subsequendéhen the proof of Prop-
erty 2 will be complete if we can prove the following statemgifis the chosem,
with r — oo alongR4(w)). We recall thatat this poini the functiony is justsome
limit function—the fact that it is equal to the function defined(8@) is what needs
to be proved in order to establigh00).

Step 1. The limit functioft is finite everywhere if0,0).

Step 2. The functiof is continuous, ang(0) = 0.

Step 3. IfX(t) > 0, then tis not a point of increase f

Step 4. The functiof, defined above as a limit, satisfies (39).
Step 5. Convergence (100) holds.

In this proof we will use the convention that(0—) = 0, W(0—) = X(0—) =
W(0). Sq, the caseg/(0) > 0 will be viewed as a discontinuity gf(andx) at 0. Also,
we will use the notation

€(5,t) = sup |W(&1) — W(E2).
£1,E,E[t=8,t+8]NR.,
Proof of Step 1Suppose the statement does not h@énotet* = inf{t =
0|y(t) = co}. The inf is attained becaugeis RCLL.
We choose a small such thats € (0,t*) if t* > 0, and arbitraryd > 0 if
t* = 0. Let us fixe = €(45,t™). Then we choose a small € (0,5) and a largeC
such thatC > x(t* — At) + € if t* > 0, andC > %(0—) + € if t* = 0. We define

t" = min{t = (t* — At) OO|“X"(t) = C}
and choose a further subsequencérgfsuch that
fr >t e[t — At t*].

(We must have’ = t*, because thémit functiony(t), and therefore(t), is infi-
nite for allt = t*.) It is also easy to sed@rom (77)) that

Ug"(t) - C.

The conditions of Lemma 12 are satisfjehd soy is bounded ift’,t’ + §]—a
contradiction sincet’ + § > t*. Step 1 has been proved

Proof of Step 2Suppose that the statement does not hblek contradiction is
obtained very similarly to the way it is done in the proof of Stedé&tt* be a
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discontinuity point(the casd™® = 0 is included (i.e., (t*—) < §(t*)). Sincex =
W + ¥ andw is continuousx(t*) — X(t*—) = §(t*) — y(t*—). There are two pos-
sible cases

(& x(t*—)>0.
(b) x(t*—) =0.

Case (a)In this casewe must have* > 0. (Indeed by the definition ofw and
our conventionsx(0—) = W(0) = lim, “x"(0). If W(0) > 0, then by Lemma
12(c’), x(0) = lim, “x"(0), which means thag, and thereforg, has no jump at
0. If w(0) = 0, thenx(0—) = 0.) We can always fix a sma#i > 0 and small
At € (0,8), such thatt’ = t* — At is a point of continuity ofy (and %) and
€ = €(45,t™) < X(t’) = C. We have convergenc&'(t’) — C (sincex is con-
tinuous att’), and by Lemma 12y cannot increase in the intervél,t’ + §]
which containg,. Sqg X cannot have a jump &f.

Case (b) In this caselet us fix a smallC > 0 and then a sufficiently small
d > 0 so that

C, = KC + e < X(t%),

wheree = €(46,t*) andK = 1 is defined in Theorem Eand used in Lemma
12). Then ift* > 0, we fix a smallAt such that

limsup sup UYX'(¢) <C.

r—oo  [t*—Att*]

If t* = 0, we fix an arbitraryAt > 0. We define

" = min{t = (t* — At) 0O|"X"(t) = C},

and choose a further subsequencérgfsuch that

fr >t e[(t* — At) 0O, t*].

The conditions of Lemma 12 are satisfieahd sox(t) < C; for all t €
[t’,t" + 8], which contradicts the assumption of ca®g sincet* belongs to
the latter interval Step 2 has been proved

Proof of Step 3Lett* = 0 be such thak(t*) > 0. If t* = O, then the fact that
§ does not increase in a small intery@) §] follows from Lemma 12b'). If t* > 0,
then precisely the same construction as in the proof of Stepshows thaf does
not increase in a small intervit’,t’ + &] containingt™ in its interior Step 3 has
been proved

Proof of Step 4Follows from the statements of Steps 2 and 3 and Proposition 1
(in the Appendix.

Proof of Step 5It suffices to show the following

Downloaded from https://www.cambridge.org/core. Run Run Shaw Library, City University of Hong Kong, on 17 Jun 2020 at 01:52:00, subject to
the Cambridge Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/50269964805050096


https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0269964805050096
https://www.cambridge.org/core

ROUTING IN OUTPUT-QUEUED SYSTEMS 183

For any t* = 0 and anye > 0, there exist$ > 0 such that

limsup sup [a" (&) —a(é)| <e. (101)

r>oo  EE[tF—5,t* +5]NR,

(The uo.c. convergence will then follow from the Heine—Borel lemina

If X(t*) = 0, then(101) must hold because both functionsndd" (for larger)
are bounded by an arbitrarily small constant in a sufficiently small neighborhood of
t*. If X(t*) > 0 andt* = 0, then(101) follows from Lemma 12d’). If X(t*) > 0 and
t* > 0, then to obtair(101) we can repeat the construction of the proof of St&g 2
and then apply Lemma 18&). Step 5 has been proved

Thus the proof of Property 2and with it the proof of statemergt) of the
theoremis complete u

10.2. Proof of Theorem 1 {ii)

We use the same construction of the probability sgacine subsequenc®,, and
the probability 1 subseb,, as specified earlieConsider an arbitrary disciplin®.
Sample paths for both thedd and G disciplines are constructed on this common
probability spaceForw € Q,, consider paths dfkg, 5, andWg, corresponding to
the disciplineG. Sincewg is invariant with respect to the disciplin®@; = W', and
thereforews — Wg = W u.0.C.

We claim thatalong the subsequen@,, for anyt = 0,

liminf inf [UX5L(¢) — X(£)] =0, (102)
r—oo  ¢€[0,t]

and thereforé40) holds To prove thigwe first recall that Lemma 11 holds for any
discipline G satisfying conditiond0).

For any subsequend@s;(w) C R,(w), we can choose a further subsequence
R4(w) C Riz(w) such thafyg = s, whereygs is some nondecreasing nonnegative
RCLL function (The case thal(t) takes valuetco starting from some finite time
t. is possible) Therefore for anyt = 0 whereyg(-) is continuousasr — oo along
Ra(w),

lImU%5(t) = W(t) + Yo(t).

Since“%§(t) is nonnegativewe see thaW + §g is nonnegative at every point of
continuity of s, and therefore it is nonnegative for al= 0 (by right-continuity.
Then by Proposition i) (in the Appendiy, ¥ (t) = §(t) for all t = 0. Sincey is
continuous and nondecreasing argdand ally§ are nondecreasindor anyt = 0
we obtain the uniform bound

liminf inf [y5(£) —9(£)]=0.
£€[0,t]

r—oo
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By Lemma 11 we have an analogous bound fg as welt
lim inf gelrggt][ye(f) —9(&)1=0,

which proveg102), with r — oo along subsequende,(w), and therefore alon® ,
as well(since the subsequen@®;(w) can be arbitrary The proof of(102) (and
therefore(40)) is complete

Since the functior; C;(u;) is continuous in the vectar, and the fixed point
a(t) in (41) minimizes the value of; C;(u;) over vectorsu with server workload
U%(t), property(41) also holds Finally, the equality in(42) follows from the fact
thatd"” — @ u.o.c., and the inequality follows fron41) and Fatou’s lemma

The proof of Theorem 1 is now complete

11. PROOF OF THEOREM 2

The proof of Theorem 2 is a relatively straightforward extension of that of Theo-
rem 1 The extension is based on the fact {hgiven the assumptions of Theo-
rem 2(ii ), the processedi" andd" are in fact “asymptotically closg’5ee(103)). As

a resuli the behavior of the systefin the diffusion limi under MinDrift(Q) is the
“same” as that under MinDrift). In this sectionwe provide a detailed sketch of
such a proof extensioWVe believe the details can be easily filled in by a reader

Construction of the probability space and subsequence®R, and R,. For
the proof of Theorem 2ve assume thafor eachr, the service times of the “initial
customers” of type at servelj, whose service has not yet started at initial time 0
are given by an.i.d. sequencej(n), n = 1,2,.... Thus the sequencésj(n)} is
separate from the sequenfag(n)}, defining service times of customers arriving
after time Q but, of course #f (1) has the same distribution a$(1). We denote by

z\7ljr(n) = 2 l_)ﬁ(m), n= 0’1727"'7

m=1

the total amount of unfinished work “contained” in the the finstin the order of
them being taken for servi¢@nitial typei customers at the serverAs with other
functions we extend the domain &I\Z{(-) to all real nonnegative= 0 and denote
its fluid-scaled version by = I'" *Vj.

The underlying probability space is the same as in the proof of Theotem 1
except it is augmented by taking a direct product with the space on which the
sequencegon r) of the processe$*V,} are defined The subsequenc®; is
defined exactly the same wayhe property analogous t@8) holds for the pro-
cesses o], as well as*vf. Then the subsequenc®, can be chosen in a way such
that additionally the properties analogous (@8) and(80) hold for the processes

*pf and *Vj, respectively
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“Asymptotic closeness” of9l" and G". Using(78) and(80), and their analogs

for *pf and*Vy/, it is easy to demonstrate the following propemghich holds for
any service discipline within the class specified in Theordin):2

As r— oo alongR,, with probability 1, for any 7> 0 and anye > 0, we have
|90 (t) — a"(v)]

103
ogspTz max(a'(t),e) (103)

This property is the key in showing thah the heavy traffic limif MinDrift (Q)
induces the same system behavior as the Min[uift

Definition and properties of the FSPs under MinDrift (Q). The procesZ' is
augmented by the following components

Q =(Qi(t),t=0,i €1,j €),
V=GV 1 =0iel,je),
W= (9y(t),t=0,j€J),

axX" = (IX"(t),t = 0).

The fluid-scaled proces® and an FSR are augmented by the corresponding com-

ponentsy’, 5", 9u', 9x", andq, >, 9u, 9x, respectivelyThe definition of the FSP is
the samgexcept it includes the additional conditions

u(0) = u(0)
and an analog a67) for *v{. This augmented definition of an FSP easily yields the
following additional FSP propertgwhich can be added into Lemma:5
du(t) = u(t), Ot=0, (104)

which, of course also impliesx(t) = “x(t), t = 0. Using (104), it can be easily
shown thatall of the FSP properties established for MinDf(iit) hold for Min-
Drift (Q) as well

Proof of Theorem 2.Given property(103) and the fact that FSPs under Min-
Drift (Q) satisfy all of the properties of FSPs under MinD{lift) (plus (104)), the
rest of the proof is the same as that of Theorem 1

12. PROOF OF THEOREM 4

Before proceeding with the praofiote thatin addition to(51), we have another
pathwise relatiorisee(21) and(22)):

AT (t) = Co%'(1), t=0. (105)

Proor: The argument leading to Theorem 3 shows tlgaten the conditions of
Theorem 4either of the convergencés3) or (54) implies (52). Sq it will suffice
to prove that(52) implies (55).
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Assume(52). Supposefor somet, = 0, property(55), with t = t;, does not
hold. This implies thatin addition to the pathwise inequali®/f (t;) = 9%"(t;) (see
(51)), we have for some fixed constart > O,

Iirrn inf P{9%"(t;) — X"(t;) > c} >c. (106)

Consider a subsequence of indicedong which the distributions of bo#ti(t,)
and X" (t;) (weakly) converge to some distributionghich we denote; and %,
respectivelyDistributionr is necessarily equal to the distributionsgt,), and 9
(stochastically dominates; andis not equal ton, which follows from(106).

Consider the processé&$ and 9%" restarted at time;. Let us fix arbitraryt,,
t; < t, < co. Then we have

lim inf P{[inf]xf(t) < e} =p, Oe>0, (107)
r 1, t

where
p, = P{X(t) hits 0 within[t,, t,]}.

Since pathwise inequalit{105) holds we see that107) holds for the proces%"
as well

lim inf P{[inf]qxr(t) < e} =p,, Oe>0. (108)
r 1, to

Consider now an RBMx with the drift a and diffusion coefficientr (same as for
the RBMX), defined within interva[ty, t,], with the initial distribution at time
t;. Since % strictly dominates,,

P{a%(t) hits 0 within[t, t,]} = p, < .. (109)

Using Theorem fi), it is easy to see that the RBR&X is an asymptoti¢stochasti¢
lower bound of the sequence of proces8gS (in the sense specified in Theo-
rem 2(ii)). From this fact we see that for ady> 0, we can choose a sufficiently
smalle > 0, so that

lim inf P{ inf 9% (t) > e} =(1-p) — 6. (110)

[t t

If we fix 6 € (0, p, — p») and a corresponding> 0 as abovewe obtain the fol-
lowing from the estimate&l10) and(108):

liminf [P{[inf]qxr(t) > e} + P{[inf]qxf(t) < e}] =p+(1-p)—8>1
r 1, o 1,1

a contradictionwhich completes the proof u
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13. STABILITY VERSUS HEAVY TRAFFIC WORKLOAD MINIMIZATION

Consider a special case of the MinDrift routing rugth cost functionsC;({) =
(3){ 2 (see Section 4). The corresponding MinDrifQ) rule is as followsroute an
arriving type i customer to a server j such that

j € arg mianUj (t)/1 . (1112)
je

Our heavy traffic results apply to this ruleéThe form of the rule does not change
with r, as explained in Section)8

Using the approach ¢1,2,6,14,15], it is not hard to show that under this rout-
ing rule (plus arbitrary scheduling rules satisfyifdl) and(d2)), both the queue
length proces§(Q; (t),i € 1,j € J), t = 0) and the unfinished work procegsJ; (t),
j € J),t=0) arestable as long as the vector of mean rates within the system
stability regionM?°, defined in Section 3n fact, as explained ifi14], the analysis
of the FSPgSection 9, required to establish the heavy traffic respissessentially
a “superset” of the analysis needed to prove stabilitye do not provide details of
the stability proof as it is not the focus of this article

Thus the above rule is able to both keep queues stédddong as\ € M)
and minimize system workload in the heavy traffic limiihe Gcpischeduling rule
for the 1Q system possesses the same propeeg[12]) and so does the Max-
Weight scheduling rule for a differenbut closely related“generalized switch”
model(see[14]). All of these results may suggest the intuition that a dynamic ser-
vice discipline that keeps queues stafals long as\ € M9), “typically” will also
minimize system workload in heavy traffiSuch a “conjecture” cannot be formally
correct because it is not hard to devise socmntriveddisciplines for which it
does not holdWe note however that this conjecture does not hold even fery
natural service disciplingsas the following example demonstrates

Consider a service discipline for our OQ systevhich strives to minimize the
drift of the cost(Lyapunoy function

1 2
% EQij(t)~

Then the discipline has the following foritit is close to the class of network sched-
uling disciplines introduced ifl5].)

Routing rule (“Join the shortest queue of your type”): Route an arriving type i
customer to a server j such that

jEarg min Q;(t). (112)
j€J:p;; >0

Scheduling rule (Gep within each server”): Server j picks a customer of type i
such that

i €arg mE?XQij () b - (113)
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This discipline ensures stability of the quepsbeni € MPO. (Again, the approach
and techniques dfl,2,6,14,15] can be applied

However it is not hard to see thatinder this discipline and under the condi-
tions of Theorem 4condition(55) cannot possibly holdas long agy; > 0 for at
least one nonbasic activifyj ). We do not provide a formal proof herEhe key part
of a proof is showing the following very intuitive facivhich is implied by the
nature of the routing ruteFSPs under this discipline are such that if the initial
workload is nonzero, then after some finite time, all nonbasic queue lengths are
bounded away from zerde also exploit the fact that since the limiting workload
process is lower bounded by an RBEt any timet > 0 the limiting workload is
nonzero with nonzero probabilityhus by Theorem 4none of the workload min-
imization propertie$52)—(54), can hold
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APPENDIX
The One-Dimensional Skorohod Problem

The following proposition describes standard properties of solutions to the one-dimensional
Skorohod problem(Seg for example [5] for the proof The proof is also contained in the
proof of Theorem 8l of [18]).

ProrosiTION 1: Let w= (w(t), t = 0) be a continuous function in @0,), R) such that
w(0) = 0. Then the following hold:

(i) There exists a unique pailx, y) of functions in [0,c0), R), such that the follow-

ing hold:

(@) x(t) =w(t) +y(t)=0,t=0.

(b) y is nondecreasing and nonnegative.

(c) y(0)=o0.

(d) For any t= 0, if x(t) > 0, then t is not a point of increase of y; that is, there
existsd > 0 such that y¢) is constantift — 6,t + 6] N R,.. This unique pair
is (x°,y°), where

yo(t) = —[O O Oiﬁrlfﬁlw(u)], x°(t) = w(t) +y°(t), t=0.

(i) For any pair (x,y) of functions in 0{[0,0), R) satisfying (a) and (b), we have
y(t) =y°(t), x(t)=x°(t), t=0.
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