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• A general pyramid taxonomy for integrated designs and operations of SHEM. 
• An integrated SHEM model for residential houses with PV-battery systems. 
• A two-stage stochastic programming model to address uncertain loads/PV generations. 
• A distributed asynchronous scheduling and iterative pricing algorithm for PV power-sharing.  
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A B S T R A C T   

Smart home energy management (SHEM) with residential photovoltaic (PV)-battery systems is a complicated 
issue with different facets. An integrated SHEM model covering the essential functions is missing. Meanwhile, 
residential PV-battery systems’ optimal operations with renewable energy exchanges and imperfect forecasts are 
still open challenges. In this study, the research activities in SHEM are firstly organized by a pyramid with four 
functional layers: (i) Monitoring; (ii) Analyzing and forecasting; (iii) Scheduling; and (iv) Coordinating, which 
can serve as a standard pathway for developing SHEM. Second, guided by the pyramid taxonomy, an integrated 
SHEM model is developed for residential houses with PV-battery systems. Assuming a perfect Monitoring layer, 
we obtain the probabilistic load/PV forecasts and user preference vectors of shiftable appliances based on his-
torical data. Then, we develop a two-stage stochastic programming model for optimal scheduling of single houses 
with a grid-connected PV-battery system, incorporating the probabilistic forecasts and user preference vectors. A 
retail electricity market with day-ahead (DA) and real-time (RT) markets is employed for leveraging imperfect 
forecasts. Finally, we design a distributed coordinating algorithm - Asynchronous Scheduling and Iterative 
Pricing for PV power-sharing among multiple prosumers based on the single-house scheduling model. Numerical 
simulations based on realistic loads and PV generation data validated the two-stage stochastic programming 
model’s economic superiority and the distributed PV power-sharing approach compared with the rule-based 
dispatching and selfish scheduling strategies. We concluded that 1) the modeling of load/PV forecast un-
certainties is valuable than averaging or ignoring them, 2) the two-stage stochastic programming model and the 
DA-RT retail electricity market are beneficial for utilizing imperfect forecasts, and 3) coordinating multiple 
prosumers could benefit each household by sharing PV and battery investments for revenue or trading with local 
small prosumers for cost reductions.   

1. Introduction 

The residential sector shares a significant portion of overall energy 
and electricity consumption. For example, the residential sector 
consumed nearly 21% of the total energy consumption in Hong Kong in 

2016, and over 70% of these demands were supplied by electricity [1]. 
From 2006 to 2016, residential buildings’ energy and electricity con-
sumption increased with an annual average rate of 1.3% and 2.0%, 
respectively. It is projected that the proportion of electricity consump-
tion will continue to grow due to the electrification of end-use, such as 
the penetration of heat pumps and electric vehicles. 
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Nomenclature 

Abbreviations 
A&F Analyzing & Forecasting 
DA/RT Day-ahead / Real-time 
DR Demand response 
EEV The expectation of the expected value 
EVPI The expected value of perfect information 
ILM Intrusive load monitoring 
LOT Length of operation time 
MILP mixed-integer linear programming 
NILM Non-intrusive load monitoring 
PLF Probabilistic load forecasting 
PSF Pattern sequence forecasting 
P2P Peer-to-peer 
PTR Preferred time range 
RP Recourse problem 
SHEM Smart home energy management 
SP Stochastic programming 
SOC State of charge 
TSP Total selling power 
TBP Total buying power 
UTR Utilization time range 
UPV User preference vector 
VSS Value of the stochastic solution 
WS Wait-and-see 

Symbols 
i/I Time slot set I enumerated by index i 
j The iteration index for iterative PV power-sharing 

algorithm 
k/K Shiftable appliance set K enumerated by index k 
M A big positive value for disjunct constraints 
m/M The coordinating round M and its index m 
n/N The total number of households N and its index n 
s/S The scenario set S enumerated by index s 
ξ Realizations of uncertain parameters 

Parameters 
capB The battery installation capacity 
capPV The PV installation area of the houses 
Lnon.

i,ξ The uncertain non-controllable household load 
Limport upper lim The upper limit for importing electricity from the RT 

market 
Lexport upper lim The upper limit for exporting electricity to the RT 

market 
LOTk The length of operation time for kth shiftable appliance 
PTRk

lower Lower bound of the user preferred time range for appliance 
k 

PTRk
upper Upper bound of the user preferred time range for appliance 

k 
Prate

k The rated power of kth shiftable appliance 
UPVapp

k,i The user preference value for using appliance k at time slot 
i 

PPVunit
i,ξ The PV output of unit panel (1m2) rated at 200 W 

PPV
i,ξ The PV output with uncertainty parameters ξ realized 

ps The probability of scenario s 
SOCmin/SOCmax The lower and upper bounds of the state of charge of 

the battery 
SOCinitial/SOCend The initial and final state of charges of the battery 
SOCi The state of charges of the battery at time slot i 

UTRk
lower Lower bound of the allowed utilization time range of 

appliance k 
UTRk

upper Upper bound of the allowed utilization time range of 
appliance k 

wk The factors weighing the significance of appliance k 
λbuy

i /λsell
i The buying and selling prices in the DA market 

μbuy
i /μsell

i The buying and selling prices in the RT market 
η The weighting factor for trading off between electricity 

bills and user comfort 
ηc/d The battery (dis-)charging efficiency 
∊ The tolerance value for terminating the iterative PV- 

sharing algorithm 
ρ The maximum (dis-)charging power of the battery inverter 
ΔT The time interval for programming 

Variables 
comforti The total comfort value for using shiftable appliances at 

time slot i 
dapp

k,i /uapp
k,i Two auxiliary binary variables to model ’turn on/off’ 

actions of controllable and non-interruptible appliances 
eapp

k,i /sapp
k,i Two auxiliary binary variables to calculate the starting and 

finishing time slots of shiftable appliance k 
Ei,ξ The battery energy level with uncertainty parameters ξ 

realized 
hi,ξ A binary auxiliary variable for concurrency forbidden 

constraints 
Lshift.

i The shiftable household loads 
Li,ξ The household load at time slot i with uncertainty 

parameters ξ realized 
qi,ξ A binary auxiliary variable for concurrency forbidden 

constraints 
startk/endk The starting and finishing time slots of kth appliance 
uB

i,ξ Binary indicator variables of either importing or exporting 
energy 

xapp
k,i The “ON /OFF” states of kth shiftable appliance at time slot 

i 
ximport

i /xexport
i The imported and exported electricity from the DA 

retail market 
yimport

i,ξ /yexport
i,ξ The imported and exported electricity in the RT market 

ydis
i,ξ /ych

i,ξ The battery (dis-)charging power in the RT market 
yRB

i,s The power flows from the PV panel to the battery in the RT 
market 

yRC
i,s The power flows from the PV panel to the grid in the RT 

market 
yRL

i,s The power flows from PV panel to household load in the RT 
market 

yBL
i,s The power flows from battery to household load in the RT 

market 
yBC

i,s The power flows from the battery to the grid in the RT 
market 

yCB
i,s The power flows from grid to battery in the RT market 

yCL
i,s The power flows from grid to household load in the RT 

market 
αbuy

i,ξ ,αsell
i,ξ The non-negative auxiliary variables for balancing the DA 

imported electricity with real-time realizations 
βbuy

i,ξ ,βsell
i,ξ The non-negative auxiliary variables for balancing the DA 

exported electricity with the real-time realizations  
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Research report [2] shows that nearly 15–40% of energy consump-
tion can be reduced by adopting smart home energy management sys-
tems (SHEM). Nevertheless, smart home energy (electricity) 
management is a systematic issue, which needs to combine different 
functional layers to put it into practice. Zhou et al. [3] presented an 
overview of the architecture, functional modules, and infrastructures of 
SHEM. Five functional modules are defined: monitoring, logging, con-
trol, management, and alarm. Nevertheless, these modules are not 
representative as some terms are technical and seldom discussed in the 
literature (i.e., logging and alarm), or some terms are more inclusive and 
abstract (i.e., control and management). Yildiz et al. [4] summarized the 
methods and techniques for using smart meter data and proposed a 
general guide for comparing different studies in smart metering data 
applications. Their work justified the necessity for standard-based 
development, implementation, and evaluation codes of SHEM. There 
have been many research efforts focusing on various topics of SHEM. For 
example, the load monitoring concepts and methods in households were 
reviewed in [5]. The probabilistic load forecasting techniques, meth-
odologies, evaluation methods, and common misunderstandings were 
studied [6]. Beaudin et al. focused on the different modeling approaches 
for household devices, uncertainties, objectives, and scheduling strate-
gies and discussed the computational issues associated with the 
modeling complexities [7]. The neighborhood-level coordination and 
negotiation techniques for managing demand-side flexibility in resi-
dential microgrids were reviewed [8]. However, the relations among 
different topics were neglected and not thoroughly researched. An in-
tegrated study considering all essential components is significant to 
move SHEM forward and foster practical applications. There is still no 
single study integrating all the primary functions of SHEM to our best 
knowledge. 

Meanwhile, the residential PV-battery system is becoming econom-
ically viable due to technological advances and cost reductions. Recent 
research shows that solar electricity has achieved grid parity in several 
countries in both plant-side and user-side, even without government 
tariff support [9]. According to the annual battery price survey of 
BloombergNEF [10], the lithium-ion battery pack prices have fallen 89% 
from above $1100/kWh in 2010 to $137/kWh in 2020. By 2023, the 
average prices will be close to $100/kWh. Thus, a further and constant 
increase of distributed PV-battery installation is projected in the near 
future. The distributed residential PV-battery system could provide 
many techno-economic benefits, such as solving the mismatch between 
varying household loads and PV generations and improving solar en-
ergies’ self-consumption and demand self-sufficiency [11]. However, 
residential PV-battery systems’ operation strategies under uncertain 
loads and PV generations are still the challenges faced by house owners. 
The current rule-based dispatch strategy may not exploit the advantages 
of forecasting information and optimization-based scheduling. Besides, 
the SHEM with energy transaction capability would be the trend, as the 
growing number of households are equipped with PV-battery systems. 
Nevertheless, the proper electricity market for distributed energy sys-
tems is still in its infant stage, and many policy issues remain to be 
solved. 

Therefore, we firstly propose a specialized taxonomy for the inte-
grated design and operation of SHEM. We permutate the sub-objectives 
or technologies in different SHEM developing stages by a pyramid, 
covering load monitoring, analyzing, forecasting, scheduling and coor-
dinating. By analyzing and clarifying the relationships between the 
SHEM pyramid’s functional layers, one can investigate the prerequisites 
necessities and the constructive expectations of a single layer to prevent 
the research efforts’ regressive trend and foster the achievable SHEM. 
Then, guided by the pyramid taxonomy, we design an integrated SHEM 
model for residential houses with PV-battery systems. Advanced topics, 
including probabilistic household load/PV forecasting, occupant pref-
erence inference, two-stage stochastic scheduling for DA purchase 
commitment and RT optimal power flows of single households, and 
power-sharing among multiple prosumers in a community energy 

market, are integrated into a single model. 
The core contributions of this paper are two folds: 1) developing a 

specialized pyramid taxonomy for standard-based development and 
implementation of SHEM, which provide an overview of SHEM for 
novice researchers and general guidance for practitioners; 2) presenting 
an integrated SHEM model for residential houses with PV-battery sys-
tems including essential functions, such as probabilistic forecasting of 
household loads and PV generations, the user’s preference vector 
modeling for comfort-aware appliance scheduling, two-stage stochastic 
programming for energy scheduling and distributed coordinating for PV 
power-sharing among prosumer communities. 

2. Literature review 

2.1. A taxonomy for smart home energy management 

Smart home energy management is a broad research area with 
different sub-objectives and knowledge domains. To help novice re-
searchers and practitioners quickly obtain an overview of this field and 
find a standard pathway to practical deployment, a pyramid taxonomy 
for smart home energy management is designed, as shown in Fig. 1. The 
taxonomy consists of four primary layers: monitoring, analyzing & 
forecasting (A&F), scheduling, and coordinating, and their functions 
and probably involved knowledge domains have also been listed. 

The home energy consumption details lay the foundation of home 
energy management, as it tells us where the invisible energy comes from 
and goes away. Based on the sensor installations (distributed sensing or 
single point sensing), the monitoring approaches can be divided into two 
categories: intrusive load monitoring (ILM) and non-intrusive load 
monitoring (NILM). Abubakar et al. [5] formalized the load monitoring 
concepts and reviewed the approaches for both ILM and NILM. ILM 
requires the installation of measuring devices at every appliance of in-
terest. In contrast, NILM uses a single-point smart meter to measure the 
household’s total electricity consumption and disaggregates it into in-
dividual appliance usage by data mining [12]. 

’Analyzing & forecasting’ layer reprocesses the measured or dis-
aggregated appliance energy consumption details for further informa-
tion or knowledge. Appliance usage pattern mining can infer users’ 
preferences and quantify their comfort requirement, which is critical for 
comfort-aware home energy scheduling. Stephen et al. [13] proposed a 
machine learning solution based on the Kalman filter for online learning 
of appliance usage characteristics from no prior knowledge. Zhang et al. 
[14] estimated daily occupant activities from home appliance usages 
and learned a context-aware personal model to evaluate appliance usage 
priorities. In [15], several piecewise linear models were applied for 
quantifying comfort sensitivities of air conditioning systems, electric 
vehicles, and water heaters in the demand response of a commercial 
building. Instead of handcraft comfort models, Trinadh et al. [16] esti-
mated the user preference matrix by averaging and standardizing the 
historical daily appliance ON/OFF states. Rocha et al. [17] applied the 
K-means clustering to historical daily appliance energy consumptions 
for characterizing the occupant’s appliance usage comfort degree. 

Forecasting also plays a vital role in proactive building energy sys-
tem planning and operation. The advantages are two folds. On the one 
hand, it can reflect whether the previous understanding of the building 
energy systems is correct (e.g., model calibration). On the other hand, it 
can provide additional future information for decision support (e.g., 
model predictive control). However, obtaining accurate household load 
forecasts is intractable. The source of the problem is the considerable 
uncertainty involving human behavior and weather conditions. The 
bottom-up approach [18,19] and probabilistic load forecasting [6,20] 
are promising solutions to these issues. In comparison with the top-down 
approach, the bottom-up method aggregates the forecasts made at a 
higher spatial granularity level instead of directly forecasting the overall 
values. Prior research results [18,19,21,22] showed that the measured 
or disaggregated energy consumption details could improve household 

Z. Zheng et al.                                                                                                                                                                                                                                   



Applied Energy 298 (2021) 117159

4

load forecasting accuracy. On the other hand, probabilistic load fore-
casting can provide additional information on the variability and un-
certainty of future load/PV values. Wang et al. [23] proposed a pinball 
loss-guided long-short term memory (LSTM) model for individual con-
sumers’ probabilistic load forecasting. Zhang et al. [24] proposed a day- 
ahead probabilistic load forecasting method with probability densities 
using multiple quantile forecasts and kernel density functions. 

Scheduling is the core task for SHEM with intermittent renewable 
energy resources, flexible demands, and energy storage devices. It al-
lows intricate couplings among local energy generation, consumption, 
and storage. Generally, the scheduling methods can be characterized 
into two categories: rule-based control and optimization-based control. 
The former is straightforward, fast, and widely deployed in practice as it 
does not need forecasting information and has a less computational 
burden. The latter takes advantage of the forecasting information and 
generates optimal control actions by solving an optimization problem. 

Coordinating is motivated by the distributed intelligence in the 
multiagent systems, where multiple intelligent agents’ goals are aligned. 
The neighborhood or community energy system is a typical multiagent 
system. The SHEM of each house has to address both local objectives and 
the overall objective or constraints. Prior research results reveal that the 
coordination of energy management in multiple households can benefit 
both the utility (i.e., auxiliary services) and the consumers (i.e., cost 
minimization and comfort maximization). While independently taken 
decisions may induce undesired effects, such as the rebound peaks, 
contingencies, and instabilities in the network. 

The integration of four layers has arisen interests from researchers 
recently. Rocha et al. [17] integrated renewable energy forecasting, 
appliance usage preference quantification, and genetic algorithm (GA)- 
based home appliance scheduling into a single case study, which has 
significant practical implications. Nevertheless, the load uncertainties 
and the coordinating of multiple SHEMs were neglected. Trinadh et al. 
[16] inferred occupant comfort sensitivities from household non- 
intrusive load monitoring (NILM) data for comfort-aware appliance 
scheduling. Hosseini et al. [25] analyzed NILM approaches from the 
stakeholders’ perspective to select employed techniques, such as 
determining what appliances should be monitored (i.e., the high-power 
consumption devices and shiftable appliances). Lusis et al. [26] evalu-
ated the impact of different monitoring temporal granularities on 
household load forecasting. Overall, it is acknowledged that insightful 
findings can be obtained by combining different layers in a single case 
study. Nevertheless, there is still no single case study integrating fore-
casting, analyzing, scheduling, and coordinating layers together to our 
best knowledge. 

2.2. SHEM with residential PV-battery systems 

2.2.1. Uncertainty modeling 
The optimal operation of residential PV-battery systems is a short- 

term (day-ahead or real-time) programming problem involving many 
uncertain parameters (e.g., demands, weather conditions, and electricity 
prices). Robust optimization and stochastic programming are two pop-
ular frameworks to account for uncertainties in optimization problems. 
The former models the uncertain parameters by uncertain sets and tends 
to generate risk-averse solutions. Hosseini et al. [27] proposed an 
adjustable robust optimization model for a residential microgrid 
comprising active smart users and flexible end-use devices. The un-
certainties from demands and renewable power generations were 
considered by defining the uncertainty sets and incorporating the pro-
tection functions into the original deterministic scheduling model. 
However, multiple users’ scheduling problem was formulated in a 
centralized way, which may be extended in a distributed fashion for 
scalability. Shi et al. [28] modeled the uncertain EV (dis-)charging be-
haviors and wind turbine generations by variance intervals and devel-
oped a multi-objective adjustable robust optimization model for a 
microgrid with a group of wind turbines, diesel engines, and grid- 
responsive electric vehicles to minimize the operation cost and the net 
environmental emissions. The centralized formulation limits the large- 
scale deployment, and the robust solution may reduce the economic 
performance. Since the household demands usually cover a wide range 
in a day, the uncertainty sets of robust optimizations become pretty 
broad, producing conservative solutions with inferior economic per-
formance. Thus, this study applied the stochastic programming para-
digm for uncertainty modeling. Stochastic programming (optimization) 
[29] is another modeling framework for uncertainties in optimization 
problems, where the realizations of uncertain parameters are addressed 
by scenario analysis. Since the household load forecasting accuracy is 
still low, the combination of day-ahead (DA) and real-time (RT) markets 
is a promising solution for leveraging the imperfect household load 
forecasts and satisfying the uncertain real-time demands. Correa-Florez 
et al. [30] proposed a two-stage stochastic approach for the day-ahead 
(DA) operation of home energy management systems with batteries, 
PV panels, and electric water heaters. The first-stage decision is associ-
ated with the DA purchase commitment and the second-stage expected 
costs are related to the imports/exports imbalance and the battery 
cycling cost. Though their approach considered both battery degrada-
tion effect and uncertain loads and PV generations, the scenarios 
generated by the 10%,50%,90% quantiles, and their combinations 
cannot entirely reflect the actual distributions of uncertain loads and PV 
generations. Liang et al. [15] proposed an optimal demand response 
framework to enable direct control of demand-side appliances to mini-
mize the total cost and maximize the customers’ comfort levels. A two- 
stage stochastic optimization is modeled by optimizing over the DA 
electricity market and RT market. Nevertheless, the same real-time 
buying and selling electricity prices is a strong assumption. 

2.2.2. PV power-sharing of multiple SHEMs 
As the penetration of distributed PV-battery systems, the SHEM with 

Fig. 1. A taxonomy for smart home energy management.  
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energy transaction capability would be the trend. The peer-to-peer (P2P) 
electricity market, a new proposal for the distributed electricity mar-
ket’s design and operation, has recently raised huge interest from re-
searchers [31,32]. It allows the prosumers with production and storage 
capabilities to directly share their electric energy and investment. While 
the schedules of multiple SHEMs must be coordinated for efficient PV 
power-sharing, considering the heterogenous households’ load profiles 
and energy systems. Since centrally solving the coordinating problem 
induces computation and communication overhead and privacy con-
cerns, the distributed coordination approaches are promising, such as 
distributed optimization [31,33–35], game theory [36,37], and mar-
keting mechanism designs. In [34], the alternating direction method of 
multipliers (ADMM) technique was used for distributed load scheduling 
to coordinate the operations of multiple home energy management 
systems in a residential neighborhood. Carli et al. [35] developed a 
decentralized control approach for residential energy management with 
renewable energy sharing by extending the ADMM method to a non-
convex and decentralized setting. A deep theoretical analysis was pro-
vided for optimality and convergence analysis for the developed 
algorithm. Nevertheless, the uncertainties in load and renewable en-
ergies were not incorporated. Paudel et al. [36] proposed a game- 
theoretic model for P2P energy trading in a prosumer-based commu-
nity microgrid. In [37], Mohsenian-Rad proved that as long as the cost 
functions are increasing and strictly convex, the unique Nash equilib-
rium of the energy consumption game is the optimal solution of the 
centralized problem. Scarabaggio et al. [38] proposed a rolling-horizon 
distributed stochastic control approach for demand side management of 
a smart grid with multiple active users and a shared wind turbine. The 
optimization problem was formulated as a noncooperative game and the 
uncertainty of stochastic wind power is described by defining proba-
bility density functions (PDFs) based on the forecast and historical data. 
Nevertheless, only uncertainties of wind turbines were modeled without 
considering the uncertainty of household loads and distributed energy 
sources. 

Coordinated PV power-sharing can also be realized by designing 
marketing mechanisms [37,39–42]. Mohsenian-Rad et al. [37] proposed 
a pricing and billing model to coordinate each household’s energy 
consumption. The retail prices of electricity are proportional to the time- 
dependent generation cost, which would depend on how the user and 
others schedule their consumptions. Yang et al. [40] solved the problem 
in a parallel distributed way. After receiving the updated prices from the 
utility, the users could execute their local scheduling algorithm simul-
taneously. In [41], Yang et al. developed an iterative pricing method for 
coordinating multi-house appliance scheduling. Penalty terms were 
induced in the optimization function to penalize significant schedule 
changes between successive iterations for guaranteeing convergence. 
Liu et al. [39] developed an energy-sharing model for a microgrid with 
multiple P2P PV prosumers. A dynamic internal pricing model is 
formulated for the energy sharing zone based on the local sup-
ply–demand ratio (SDR). Zhou et al. [42] proposed two techniques (step 
length control and learning process involvement) to guarantee the 
convergence of the iterative pricing methods. Nevertheless, all these 
power-sharing methods were formulated as an independent problem 
without integrating the other major functions of SHEM. 

3. Methodology 

This section presents an integrated SHEM model for operating resi-
dential PV-battery systems based on the proposed pyramid taxonomy in 
Section 2. Since the Monitoring layer can be treated separately, we as-
sume a perfect Monitoring layer and integrate the Analyzing & Fore-
casting (A&F), Scheduling, and Coordinating layers into one single 
model. The methodology is organized into four subsections. The first 
three subsections talk about the A&F layer and Scheduling layers by 
handling a single-house stochastic energy scheduling problem, incor-
porating the imperfect forecasts and user preference vectors of shiftable 

appliances. The final subsection designs a community energy market for 
coordinated PV power-sharing of multiple households with PV-battery 
systems and heterogeneous load profiles. Fig. 2 shows an overview of 
the integrated SHEM model for multiple homes equipped with resi-
dential PV-battery systems. The details are presented in later 
subsections. 

3.1. Day-ahead probabilistic household load/PV forecasting 

First, we apply the pattern sequence forecasting (PSF) algorithm in 
[43] for day-ahead probabilistic household loads / PV generations 
forecasting based on only historical data. This algorithm was developed 
for univariate time series forecasting and suited to time series fore-
casting with sequence patterns like daily loads and PV generations. 

As shown in Fig. 3, three steps are involved: (historical data) clus-
tering, forecasting, (forecasts) clustering. In step one, the historical data 
is normalized and split into ordered pieces (by days), and the K-means 
clustering is applied to label each piece. After clustering and labeling, 
the original time sequence is converted into a series of labels used as 
input for the forecasting step. In step two, a search window size is 
selected by cross-validation, and the label subsequence in the window is 
searched in the label sequence obtained by step one. The label presented 
just after the matched subsequence is noted in a vector. After the whole 
searching process ends, the future time series is obtained by averaging 
the discovered labels’ actual values in the vector. In step three, multiple 
sister forecasters are generated by varying historical training data length 
(i.e., three-day, one-week, one-month historical data). The forecasts set 
of these sister forecasters by step two are clustered to generate several 
typical scenarios with probabilities for usage in the Scheduling layer. 

3.2. User preference quantification 

Two approaches are usually used to quantify the user comfort degree 
for home appliance scheduling problems: 1) manual comfort or dissat-
isfaction functions (named as generative approach) [15,44], and 2) 
historical data-based preference vectors (called observative approach) 
[16,17]. 

We apply the observative approach for single-house appliance 
scheduling. The historical data-based observative approach estimates 
the user preference vectors (UPV) from the one-month historical appli-
ance energy consumptions. Fig. 4 is an illustration for obtaining the user 
preference vector of the washer in an example household, involving 
three steps as below. 

1) Obtain the appliance power profiles by non-intrusive load moni-
toring or directly measuring the appliances of interest.  

2) Formulate the daily appliance state profiles (’1′ for ON mode and ’0′

for OFF mode) by binarizing the results of step 1.  
3) Calculate the user preference vector by summing, averaging, and 

normalizing the one-month state profiles from step 2. 

As for the community energy management problem with multiple 
households, we apply the generative approach for simulation conve-
nience. We define the comfort sensitivity function as (1), where UPVapp

k,i 

is the user preference value for using appliance k at time slot i, UTRlower 
and UTRupper denote the lower and upper user-allowed utilization range, 
PTRlower and PTRupperdenote the lower and upper user-preferred utiliza-
tion range, and i represents the time slot index of one day. 

UPVapp
k,i =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

i − UTRk
lower

PTRn
lower − UTRn

lower
i ∈ [UTRk

lower,PTRk
lower)

1 i ∈ [PTRk
lower,PTRk

upper)

i − UTRk
upper

PTRk
upper − UTRk

upper
i ∈ [PTRk

upper,UTRk
upper]

(1) 
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The extracted or defined appliance user preference vectors can be 
used for comfort-aware appliance scheduling later. Note that in this 
study, we set the length of the control interval as five minutes, and 
therefore there is a total of 288-time slots for a sample day. 

3.3. Two-stage stochastic scheduling for a single house 

A retail electricity market is designed first in this subsection, fol-
lowed by a brief theory related to scenario-based two-stage stochastic 

programming. Then, the detailed two-stage stochastic programming 
model is developed based on an AC-coupled grid-connected residential 
PV-battery system. 

3.3.1. The electricity markets 
We assume a retail electricity market with both day-ahead (DA) and 

real-time (RT) energy markets, as shown in Fig. 5. The user could buy or 
sell electricity from/to the DA market at better prices than that of the RT 
market to leverage the forecasted information and proactive actions. 
The deviations of RT energy consumption from the DA planning ones are 
punished − the real-time buying prices are higher than the day-ahead 
buying prices, and the real-time selling prices are lower than the day- 
ahead selling prices. 

3.3.1.1. The general two-stage stochastic programming method. Since the 
energy procurement and real-time scheduling decisions need to be made 
at different stages and the house demands and PV generations are sto-
chastic, the two-stage stochastic programming (SP) is a promising 
approach to solve this scheduling problem. The general scenario-based 
two-stage SP method can be explained as (2). 

minF(x, ξ) = f (x) +
∑

s∈S
ps⋅Q(x, ξs)

subject to g1(x)⩽0, h1(x) = 0
Q(x, ξs) = min

y(ξs)
q(y(ξs), ξs)

subject to g2(x, y(ξs), ξs)⩽0, h2(x, y(ξs), ξs) = 0, ∀s ∈ S

(2)  

where x is the vector of first-stage decision variables, y is the vector of 
second-stage decision variables, ξ represents the uncertain parameters, 
s ∈ S is the index of possible realizations of ξ and ps are the corre-
sponding probabilities. g1(x)andh1(x) are the inequality and equality 
constraints of the first-stage decision variables. The second-stage opti-
mization model, Q(x, ξs) = min

y(ξs)
q(y(ξs), ξs), is solved by fixing the first- 

stage variables and hedging the effect of uncertainty with recourse de-
cisions. The two stages are integrated by link constraints given in g2(x,
y(ξs), ξs) and h2(x, y(ξs), ξs). The goal of SP is to find the policy that is 

Fig. 2. An integrated SHEM model for residential houses with PV-battery systems for day-ahead (DA) and real-time (RT) stochastic energy scheduling and PV 
power-sharing. 

Fig. 3. Diagram of day-ahead probabilistic load/PV forecasting.  

(a) (b) (c)

Fig. 4. Illustration for obtaining the user preference vector of washer in an example house: (a) the historical daily appliance energy consumptions; (b) the binarized 
daily appliance state profiles; (c) the user preference vector. 
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feasible for all scenarios and minimize the objective cost function, given 
uncertain data instances. 

3.3.1.2. Mathematic modeling for energy scheduling. We developed the 
mathematical programming model based on a single household energy 
system’s layout in Fig. 6. The electricity market in Fig. 5 is applied in this 
study where the house owner could import electricity from and export 
surplus electricity to the grid in both DA and RT markets. 

Fig. 6 shows the physical links of the grid-connected AC-coupled 
residential PV-battery system and the corresponding power flows. The 
four components − PV panel, battery, household load, the grid are 
denoted by R, B, L, C, respectively. Then, we designate, for example, the 
RT power flows from PV panel to battery at time slot i and scenario s as 
yRB

i,s (kW). Besides, the ximport
i (kW)and xexport

i (kW) denote the imported 
and exported electricity from the DA retail market. They are constrained 
as non-negative real values, and they cannot be positive simultaneously. 
yimport

i,ξ (kW) and yexport
i,ξ (kW) denote the imported and exported electricity 

in the RT market after the uncertain household load and PV generations 
are realized. They are also constrained as non-negative real values, and 
they cannot be positive simultaneously. Ei,ξ(kWh) denotes the battery 
energy level, PPV

i,ξ (kW)andLnon.
i,ξ (kW) denote the forcing terms of PV output 

power and the house non-controllable loads at time slot i with uncer-
tainty parameters ξ realized. The single household energy system model 
is detailed as follows. 

1) Household load modeling 
First, we assume that the household incorporates a number K of 

controllable uninterruptable appliances denoted as κ≜{1,⋯,k,⋯,K}. We 
define K column vectors of I binary decision variables xapp

k ≜{xapp
k,1 ;⋯;

xapp
k,i ;⋯; xapp

k,I } representing the ON/OFF states of these shiftable appli-
ances during a day. The energy consumption vectors of these appliances 
and their aggregation are then obtained by multiplying with their rate 
powers (3), where Lshift.

i (kW) denotes the aggregated energy consump-
tion of shiftable home appliances and Prate

k (kW) denotes the rated power 
of kth appliance. 

Lshift.
i =

∑K

k=1
Prate

k ⋅xapp
k,i , xapp

k,i ∈ {0, 1} (3) 

We mimic the realistic operation of these shiftable appliances by the 
transition function (4a), where uapp

k,i and dapp
k,i are the binary control var-

iables representing the turning on/off (’1′/‘0′) actions. Equality 
constraint (4b) ensures the required operation time length is satisfied 
within the UTR, and the operations are uninterruptable, where LOTk(h)
denotes the required operation time of kth appliance. Equality constraint 
(4c) provides that the appliances’ states and control actions remain “off” 
outside the UTR. Inequality constraint (4d) requires that the turning on/ 
off actions cannot happen simultaneously. 

xapp
k,i+1 = xapp

k,i + uapp
k,i − dapp

k,i , uapp
k,i , d

app
k,i ∈ {0, 1} (4a)  

∑

i∈Ωk

xapp
k,i = LOTk,

∑

i∈Ωk

uapp
k,i = 1,

∑

i∈Ωk

dapp
k,i = 1, Ωk = [UTRk

lower UTRk
upper]

(4b)  
∑

i∈I,i∕∈Ωk

uapp
k,i = 0,

∑

i∈I,i∕∈Ωk

dapp
k,i = 0 ,

∑

i∈I,i∕∈Ωk

xapp
k,i = 0 (4c)  

uapp
k,i + dapp

k,i ⩽1 (4d) 

To calculate the starting and finishing time slots of kthappliance, we 
define two auxiliary binary variables, sapp

k,i and eapp
k,i (5). 

sapp
k,i − sapp

k,i− 1⩾uapp
k,i− 1, eapp

k,i − eapp
k,i− 1⩾dapp

k,i− 1 (5a)  

sapp
k,i ⩾sapp

k,i− 1, eapp
k,i ⩾eapp

k,i− 1, sapp
k,i , eapp

k,i ∈ {0, 1} (5b)  

startk = 288 −
∑288

i=1
sapp

k,i , endk = 288 −
∑288

i=1
eapp

k,i (5c) 

Second, we assume that the household also has some non- 
controllable loads such as lights and laptops denoted by Lnon.

i,ξ (kW), 
which is uncertain and dependent on the realization of parameters ξ. 
Since the shiftable appliances are predictable, the stochastic demands in 
this study refer to the non-controllable loads. Finally, the total house-
hold load is the aggregated energy consumption of shiftable appliances 
and non-controllable loads. The energy balance for the load node is 
described as (6). 

yRL
i,ξ + yBL

i,ξ + yCL
i,ξ = Lnon.

i,ξ + Lshift.
i (6) 

2) PV generation modeling 
We also assume each household is equipped with a PV panel with a 

nominal capacity of capPV(m2). The PV outputs PPV
i,ξ (kW) are modeled by 

multiplying the nominal capacity with the PV output of unit panel (1)m2 

as (7a), where PPVunit
i,ξ (kW/m2) is the known forecasted output of a unit 

PV panel tested under standard conditions during the day. The energy 
balance for the PV node is described as (7b). 

PPV
i,ξ = capPV ⋅PPVunit

i,ξ (7a)  

yRC
i,ξ + yRB

i,ξ + yRL
i,ξ = PPV

i,ξ (7b) 

The feasible domain of yRL
i,ξ (kW) is also related to the household loads 

and PV generations available: 

Fig. 5. The retail electricity market with a combination of the DA market and 
RT market. 

/
,
import export
iy

/import export
ix

.
, ,
app shift
k i ix L

, , , ,, , ,RB RL RC PV
i i i iy y y P

/
, ,

, ,

, ,

,

BL BC CB
i i

RB
i i

y y

y E

, , ,, ,BL CL RL
i i iy y y

.
,
non
iL

( )thk k K

Fig. 6. Single household energy system with energy from the PV panel, battery, 
and the grid to serve a time-varying household load. 
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0⩽yRL
i,ξ ⩽min(PPV

i,ξ ,L
non.
i,ξ + Lshift.

i ) (7c) 

3) Battery dynamic modeling 
To model the charging/discharging activities of the battery during a 

day, we define two real decision variables ych/dis
i,ξ (kW) as (8) 

ydis
i,ξ = yBL

i,ξ + yBC
i,ξ , y

ch
i,ξ = yCB

i,ξ + yRB
i,ξ (8) 

The battery dynamics can be modeled as the transition function (9a), 
where Ei,ξ(kWh) denotes the battery energy level, ηc and ηd denote the 
charging and discharging efficiencies, respectively, and ΔT( 1

12 h) is the 
control interval length. Constraint (9b) bounds the battery charge level 
between the minimum and maximum state of charges SOCmin and 
SOCmax, where capB(kWh) is the nominal capacity of the installed 
battery. 

Ei+1,ξ = Ei,ξ + [ych
i,ξηc − ydis

i,ξ /ηd]⋅ΔT (9a)  

capB⋅SOCmin⩽Ei,ξ⩽capB⋅SOCmax (9b) 

Moreover, we assume that the charging energy during the day is 
equal to the discharging energy so that the final energy level is also the 
initial condition for the next day of the scheduling: 

∑I

i=1
(ych

i,ξηc − ydis
i,ξ /ηd) = 0 (9c) 

Besides, there is usually a maximum (dis-)charging power rate ρ for 
battery inverters (10a) and the feasible domains of yBL

i,ξ ,yRB
i,ξ are also 

related to uncertain loads and PV generations available (10b), where 
Lnon.

i,ξ and Lshift.
i are the non-controllable and shiftable home loads and PPV

i,ξ 

is the uncertain PV output at time slot i. 

yCB
i,ξ + yRB

i,ξ ⩽ρ, yBC
i,ξ + yBL

i,ξ ⩽ρ (10a)  

0⩽yBL
i,ξ ⩽min(ρ,Lnon.

i,ξ + Lshift.
i ), 0⩽yRB

i,ξ ⩽min(ρ,PPV
i,ξ ) (10b) 

And, the battery cannot simultaneously be charged or discharged 
from/to the grid (11), where vB

i,ξ is the binary variable for indicating the 
power flow direction between the battery and the gird: 

0⋅vB
i,ξ⩽yCB

i,ξ ⩽ρ⋅vB
i,ξ, vB

i,ξ ∈ {0, 1} (11a)  

0⋅(1 − vB
i,ξ)⩽yBC

i,ξ ⩽ρ⋅(1 − vB
i,ξ) (11b) 

Considering the losses that happened during battery (dis-)charging, 
the PV output should supply directly to the loads with higher priority 
than the battery as constrained by (12), where qi,ξ is an auxiliary binary 
variable for concurrency prevention and M is a big positive value for 
disjunct constraints modeling (i.e., 10000): 

0⋅qi,ξ⩽ yRB
i,ξ ⩽M⋅qi,ξ, qi,ξ ∈ {0, 1} (12a)  

0⋅(1 − qi,ξ)⩽ yBL
i,ξ ⩽M⋅(1 − qi,ξ) (12b) 

4) Supply-demand balance 
The supply–demand balance of the whole household is represented 

as (13). The left-hand side includes the energy supplies from the PV 
generation, the imported electricity from both DA and RT market, and 
the battery discharging power ydis

i,ξ . The right-hand side includes the non- 
controllable loads, shiftable appliance loads, exported electricity in both 
DA and RT markets, and the battery charging power ych

i,ξ. 

PPV
i,ξ + ximport

i + yimport
i,ξ + ydis

i,ξ = Lnon.
i,ξ + Lshift.

i + xexport
i + yexport

i,ξ + ych
i,ξ (13) 

The imported and exported electricity in the RT market can be 
written as (14). Here, we define two non-negative auxiliary variables 
αbuy

i,ξ (kW),αsell
i,ξ (kW) for balancing the DA imported electricity with real- 

time realizations (14a). For example, when ximport
i is larger than yCL

i,ξ +

yCB
i,ξ , surplus quotasαsell

i,ξ are sold to the grid in the RT market. When ximport
i 

is less than yCL
i,ξ + yCB

i,ξ , insufficient demands are satisfied by importing 

electricity from the RT market with the amount of αbuy
i,ξ . Similarly, 

βbuy
i,ξ (kW), βsell

i,ξ (kW) are the non-negative auxiliary variables for balancing 
the DA exported electricity with the real-time realizations (14b). The 
real-time imported and exported electricity can thus be calculated by 
(14c). 

yCB
i,ξ + yCL

i,ξ +αsell
i,ξ = ximport

i + αbuy
i,ξ (14a)  

yRC
i,ξ + yBC

i,ξ + βbuy
i,ξ = xexport

i + βsell
i,ξ (14b)  

yimport
i,ξ = αbuy

i,ξ + βbuy
i,ξ , yexport

i,ξ = αsell
i,ξ + βsell

i,ξ (14c) 

Besides, the upper limits for imported/exported electricity are 
imposed as (15), where hi,ξ is a binary variable for preventing the 
simultaneously importing and exporting electricity from the grid. 

0⋅hi,ξ⩽yimport
i,ξ ⩽Limport upper lim⋅hi,ξ, hi,ξ ∈ {0, 1} (15a)  

0⋅(1 − hi,ξ)⩽ yexport
i,ξ ⩽Lexport upper lim⋅(1 − hi,ξ) (15b) 

5) Optimization objective 
We formulate the two-stage stochastic scheduling model with two 

goals. The first-stage goal is to determine the day-ahead power pro-
curement (ximport

i ,xexport
i ) in the DA electricity market and the operation 

schedules of shiftable home appliances (xapp
k,i , Lshift.

i ). These values are 
determined before the stochastic demands and PV generations are 
realized. The second goal is to determine the optimal power flows and 
battery control strategies (yimport

i,ξ , yexport
i,ξ , yRL

i,ξ , yRB
i,ξ , yRC

i,ξ , yBL
i,ξ , yCL

i,ξ , yCB
i,ξ , yBC

i,ξ ) 
during the real-time stage, which dependent on the realization of sto-
chastic demands and PV generations. 

To incorporate the impact of appliance scheduling on occupant 
comfort, we quantify the occupant comfort for using the shiftable ap-
pliances at time slot i as (16), where comforti is the total comfort value 
for using shiftable appliances at time slot i, UPVapp

k,i is the user preference 
vector obtained in Section 3.2, wk are the factors weighing the signifi-
cance of different appliances k ∈ {1,2, ...,K}. 

comforti =
∑K

k

UPVapp
k,i ⋅xapp

k,i ⋅wk

LOTk (16) 

The final optimization objective is given by: 

minx∈X,y∈Y F(x, y) = E[
∑I

i=1
(λbuy

i ximport
i − λsell

i xexport
i − η⋅comforti)

+(μbuy
i yimport

i,ξ − μsell
i yexport

i,ξ )]s.t. (3) − (16) (17)  

where λbuy
i ($/kWh)andλsell

i ($/kWh) are the buying and selling prices in 
the DA market, μbuy

i ($/kWh)andμsell
i ($/kWh) are the buying and selling 

prices in the RT market, η is the weighting factor for trading off between 
electricity bills and user comfort, whose values are dependent on house 
owners. We can also write it into the standard two-stage stochastic 
program as: 
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f (x) =
∑I

i=1
(λbuy

i ximport
i − λsell

i xexport
i − η⋅comforti) (18a)  

q(y(ξs), ξs) =
∑I

i=1
(μbuy

i yimport
i,ξs

− μsell
i yexport

i,ξs
) (18b) 

The complete formulation of the two-stage stochastic programming 
model for single-house energy scheduling has been given in Appendix A. 
The overall problem is a nonconvex optimization problem that consists 
of determining the 5KI + 3IS binary decision variables in xapp

k,i , u
app
k,i , d

app
k,i ,

sapp
k,i , e

app
k,i , vB

i,ξ, hi,ξ, qi,ξ and 4I + 2 K + 14IS non-negative real decision 

variables in ximport
i , xexport

i , Lshift
i , comforti, startk, endk

, yRL
i,ξ , yRB

i,ξ , yRC
i,ξ , yBL

i,ξ , yCL
i,ξ ,

yCB
i,ξ , yBC

i,ξ , ydis
i,ξ , ych

i,ξ,Ei,ξ,αbuy
i,ξ , αsell

i,ξ , βbuy
i,ξ , βsell

i,ξ which minimize the objective 
function in (17) and meet the 12IS bounding constraints in (7c), (9b), 
(10)-(12), (15), the 5KI inequality constraints in (4d), (5a), (5b), and the 
I + KI + 10 K + 11IS + S equality constraints in (3),(4a-c), (5c), (6), (7a, 
b), (8), (9a,c), (13), (14a-c). In particular, I is the number of time slots 
during a sample day, K is the number of shiftable appliances in a single 
house, and S is the number of scenarios for possible realizations of un-
certain parameter ξ. 

3.4. Energy sharing-enabled multi-house stochastic energy scheduling by 
iterative internal pricing 

In Section 3.3, single houses directly transact energy in the retailer 
market with fixed DA/RT buying and selling prices. In this subsection, 
we consider a local energy community formed by a group of households 
willing to coordinate. Each house is equipped with a distributed PV- 
battery system and becomes a prosumer (an individual who both con-
sumes and produces electricity). Since the household loads are hetero-
geneous, the assets of PVs and batteries may be shared among multiple 
households for efficiency and benefit. 

Fig. 7 is the microgrid scheme for PV power-sharing. It is assumed 
that N active households with shiftable appliances and PV-battery sys-
tems of different configurations are willing to coordinate and formulate 
a local community energy market. The community energy market’s 
initial internal prices are determined by the grid distribution operator or 
utility companies. A community energy manager collects the DA- 
imported/exported electricity from each house, calculates the internal 
buying and selling prices, and broadcasts them to each home. According 
to the broadcasted prices, the households sequentially change their 
schedules and report the changes to the community manager. The 

community manager then updates the internal prices in a repeated 
process. Note that the internal prices only apply to the DA market for 
simplification, and the RT market prices are not affected. 

The distributed coordination is realized iteratively. At mth coordi-
nating round (m ∈ {1, 2, ⋯, M}) each house n (n ∈ {1, 2,⋯,N}) 
sequentially makes DA energy procurement (ximport,(j)

n,i , xexport,(j)
n,i ) through 

the local SHEM by using the internal prices at jth iteration (λbuy,(j) =
[
λbuy,(j)

1 ,⋯, λbuy,(j)
i ,⋯, λbuy,(j)

I

]
, λsell,(j) =

[
λsell,(j)

1 ,⋯, λsell,(j)
i ,⋯, λsell,(j)

I

]
,

j ∈ {1,2, ⋯, M× N}) and solving the two-stage stochastic scheduling 
model. After each single household updates the energy schedules, the 
community manager collects the updated schedules, calculates and 
broadcasts new internal prices (λbuy,(j),λsell,(j)) to all users iteratively. 
Finally, the terminal criteria are checked to decide the final trading in-
ternal prices. The detailed algorithm is shown in Table 1, named 
’asynchronous iterative pricing’ because the users cannot simulta-
neously change their schedules. 

The internal prices updating mechanism is given in Table 2, 
following Liu’s internal pricing model [39], in which the internal prices 
are functions of the supply–demand ratio (SDR) and the internal selling 

,( ) ,( )
, ,/import j export j
n i n ix x ,( ) ,( )

, ,/import j export j
N i N ix x,( ) ,( )

1, 1,/import j export j
i ix x

,( ) ,( ),sell j buy j
i i

( ) ( ) ( ), ,j j j
i i iSDR TSP TBP

,(0) ,(0),sell buy
i i

Fig. 7. Scheme of energy and information flows within a community microgrid for multi-house stochastic energy scheduling and power-sharing.  

Table 1 
Asynchronous scheduling iterative pricing algorithm.  

Initialize ximport,(1)
n,i ,xexport,(1)

n,i , i ∈ [1,2,⋯, I],n ∈ [1,2,⋯,N]

Initialize λbuy,(1) ,λsell,(1) , j = 1, j ∈ [1,2,⋯,M × N]

for m = 1 to M, do  
for n=1 to N, do 

Local optimization at nth house HEMS center. 
Update DA energy procurement ximport

n,i , xexport
n,i from house n;  

Update internal prices by Internal Price Updating Algorithm in Table 2; 
if‖λbuy,(j+1) − λbuy,(j)‖2 ≤ ∊ and ‖λsell,(j+1) − λsell,(j)‖2 ≤ ∊ , then 

Stop the whole iterative process 
end if 
j = j + 1 

end for  
end for 
if j≥MN, then 

The energy-sharing model cannot converge within the required coordinating 
rounds, and the houses trade with the last iteration’s internal prices. 
else 

The internal price is settled as the convergent prices. 
end if   
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and buying prices at the last iteration (i.e.,λbuy,(j), λsell,(j)), as given by 
(19). 

λsell,(j+1)
i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

λsell,(j)
i ⋅λbuy,(j)

i

(λbuy,(j)
i − λsell,(j)

i )⋅SDR(j)
i + λsell,(j)

i

, 0⩽SDR(j)
i ⩽1

λsell,(j)
i , SDR(j)

i > 1

λbuy,(j+1)
i =

⎧
⎪⎨

⎪⎩

λsell,(j+1)
i ⋅SDR(j)

i + λbuy,(j)
i ⋅(1 − SDR(j)

i ), 0⩽SDR(j)
i ⩽1

λsell,(j)
i , SDR(j)

i > 1

SDR(j)
i =

TSP(j)
i

TBP(j)
i

, TSP(j)
i =

∑N

n=1
xexport,(j)

n,i , TBP(j)
i =

∑N

n=1
ximport,(j)

n,i

(19)  

where λsell,(j)
i and λbuy,(j)

i are the internal prices in the DA market at jth 

iteration and ith time slot, SDR(j)
i denotes the supply–demand ratio of the 

local community, TSP(j)
i and TBP(j)

i are the total selling and buying power 
for the community. ximport

n,i and xexport
n,i are the imported and exported DA 

electricity of nth household at time slot i. 

4. Simulation setup and data sources 

Two set of simulations were conducted to validate the proposed 
methodology. Simulation I study the single-house stochastic energy 
scheduling problem, integrating forecasting, appliance usage preference 
inference, and two-stage stochastic scheduling issues. It applied the 
sample household loads and PV generations data from IEEE Open Data 
Set – Consumption [45] and IEEE Open Data Set – PV Generation [46] 
and the realistic appliance energy consumption data from the SMART* 
dataset [47]. The parameters for the residential PV-battery system are 
referred to from literature, as given in Table 3. 

Simulation II investigates the coordinated PV power-sharing prob-
lems when ten houses are equipped with PV-battery systems and willing 

to collaborate. The houses are involved in the designed community 
energy market for local energy transactions and power-sharing. They 
share the same scheduling model with Simulation I and the same pa-
rameters in Table 3. One difference is that the generative approach in 
Section 3.2 was applied for defining the appliance usage preference 
vectors due to the large number of appliances involved. The number of 
shiftable appliances of each house is randomly selected between the 
range of 5 and 15. The integer PV and battery capacities are chosen 
randomly within ranges of (5m2, 60m2) and (5kwh, 20kwh). The other 
operational parameters, including PTR, UTR, LOT, w and Prate, are 
determined similarly. The load and PV generation data of multiple 
households source from the SMART* dataset [47]. 

5. Results and discussion 

This section introduces the simulation results for both single house 
stochastic energy scheduling and multi-house coordinated scheduling. 

5.1. Simulation I: single-house stochastic energy scheduling 

5.1.1. Load / PV forecasting results 
The one-month (July 2016) historical data of the SMART* dataset 

was used for load/PV forecasting. Fig. 8(a) and 9(a) shows the fore-
casting results for loads and unit PV panel generations of PSF forecaster 
based on one-month historical data. A set of sister forecasters were 
generated by varying the length of trained historical data (i.e., three- 
day, one week, one month) to obtain probabilistic load/PV fore-
casting. There was a total of 26 sister forecasters for day-ahead load/PV 
prediction in the final. The corresponding predictions are plotted in 
Figs. 8(b) and 9(b). 

Then, the typical forecast scenarios were produced by applying K- 
means clustering. Fig. 10 shows the predicted scenarios for household 
load and unit PV panel production (1m2, rated at 200 W), and Table 4 
lists their corresponding probabilities. It is observed that the variations 
of PV generations are much higher than that of load variations. The 
former faces issues of sudden output drop and more significant varia-
tions. The latter shows a smaller variation in the night but higher vari-
ations in the daytime, especially in the evening periods due to the more 
stochastic human behavior during the occupancy time. Note that since 
the household load and PV generation are considered independent 
variables, there were 36 scenarios incorporated into the scheduling 
model. 

5.1.2. Appliance usage preference mining and appliance scheduling 
Realistic appliance energy consumption data of a typical household 

from the SMART* dataset [47] were used to infer appliance usage 
preference vectors for five shiftable appliances employing the observa-
tive technique in Section 3.2. Then, these preference vectors were 
incorporated into the stochastic scheduling model in Section 3.3. Fig. 11 
shows the scheduling results of five appliances and their corresponding 
preference vectors. It is observed that each appliance is operated at 
periods with relatively high user preference values to maximize comfort 
and near to the PV primary output time to reduce electricity bills. 

5.1.3. Two-stage energy scheduling 
Fig. 12 shows the two-stage stochastic scheduling results for a 

household with a low PV installation at scenario one. Fig. 12(a) shows 
the imported and exported electricity in the DA market (upper plot) and 
the differentiated buying and selling prices in the DA and RT markets 
(lower plot). It is seen that no surplus energy would be exported to the 
DA market due to the low local generations, and most imported elec-
tricity is intended for the usage of the shiftable appliance loads and the 
stable fixed load in the morning and evening periods. Fig. 12(b) shows 
the balance of flowing-in power and flowing-out power for the load 
node. It is seen that the grid, PV generator, and battery work together to 
support the fixed and shiftable loads. Fig. 12(c) shows the balance of 

Table 2 
Internal prices updating at jth iteration.  

Collect DA energy procurements ximport
n,i , xexport

n,i , n ∈ [1,2,⋯,N] from all houses at jth 

iteration  

Calculate TSP(j)
i and TBP(j)

i by TSP(j)
i =

∑N
n=1xexport

n,i ,TBP(j)
i =

∑N
n=1ximport

n,i  

if TBP(j)
i = 0 and TSP(j)

i > 0, then: 

λsell,(j+1)
i = λbuy,(j+1)

i = λsell,(j)
i 

else if TBP(j)
i = 0 and TSP(j)

i = 0, then: 

λsell,(j+1)
i = λsell,(j)

i ,λbuy,(j+1)
i = λbuy,(j)

i 
else: 

SDR(j)
i =

TSP(j)
i

TBP(j)
i 

if 0 ≤ SDR(j)
i ≤ 1,then: 

λsell,(j+1)
i =

λsell,(j)
i ∙λbuy,(j)

i(
λbuy,(j)

i − λsell,(j)
i

)
∙SDR(j)

i + λsell,(j)
i

, λbuy,(j+1)
i = λsell,(j+1)

i ∙

SDR(j)
i + λbuy,(j)

i ∙(1 − SDR(j)
i )

else: 
λsell,(j+1)

i = λsell,(j)
i , λbuy,(j+1)

i = λsell,(j)
i  

end if   

Table 3 
Techno-economic parameters of the considered PV-battery model.  

Denotations Description Value 

ηc/d  Battery (dis-)charging efficiency 0.85 
ρ  Maximum (dis-)charging power of battery charger 3 kW 
SOCmin ,SOCmax  State of charge limits of battery (0.1,0.9) 
SOCinitial,SOCend  The initial and final state of charges of the battery (0.5,0.5)  
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flowing-in power and flowing-out power for the PV node. It is seen that 
the PV generations are used for direct consumption of house load, bat-
tery charging, and exporting to the grid. Fig. 12(d) shows the sup-
ply–demand balance of the system. The demand-side includes fixed 
load, shiftable loads, exported electricity in both DA and RT market, and 

the battery charging energy. The supply-side consists of the PV gener-
ations, the imported electricity from the DA market, and the battery 
discharging power. There is no imported electricity in the RT market due 
to its high buying prices. Considerable demand is supplied by battery 
discharging energy. Most PV energy supplies to the house load directly 
or stores in the battery and only a little PV electricity is exported to the 
RT market due to the low selling prices. 

Fig. 13 shows the two-stage stochastic scheduling results for a 
household with a high PV installation at scenario one. A significant 
difference can be observed compared with Fig. 12. In Fig. 13(a), only a 
little electricity is imported in advance for supporting the high and 

(a) (b)

Fig. 8. Load forecasts (a) the sister forecaster’s forecasts with one-month training data; (b) the forecasts set by all the sister forecasters.  

(a) (b)

Fig. 9. Unit PV panel generation forecasts (a) the sister forecaster’s forecasts with one-month training data; (b) the forecasts set by all the sister forecasters.  

Fig. 10. Typical scenarios for household load and PV generation forecasts.  

Table 4 
Probabilities of forecasted scenarios.  

Scenario 1 2 3 4 5 6 

PV probability  0.3846  0.0769  0.1154  0.1154  0.1538  0.1538 
Load probability  0.1154  0.3462  0.1154  0.0769  0.3077  0.0384  

Fig. 11. Shiftable appliances scheduling with appliance usage prefer-
ence vectors. 
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(a) (b)

(c) (d)

Fig. 12. Scheduling results for low PV-installation household (capB = 10kWh, capPV = 10m2, scenario one) (a) first-stage day-ahead energy procurement, and 
differentiated pricing scheme; (b) flowing-in and flowing-out powers of load node; (c) flowing-in and flowing-out powers of PV node; (d) balancing of energy de-
mands and supplies; (positive and genitive values denote power flows with different directions). 

(a) (b)

(c) (d)

Fig. 13. Scheduling results for high PV-installation household (capB = 10kWh, capPV = 100m2, scenario one) (a) first-stage day-ahead energy procurement, and 
differentiated pricing scheme; (b) flowing-in and flowing-out powers of load node; (c) flowing-in and flowing-out powers of PV node; (d) balancing of energy de-
mands and supplies; (positive and genitive values denote power flows with different directions). 
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predictable evening load. Though the morning load is also stable and 
predictable, there is no imported electricity in that periods due to the 
battery discharging actions. Meanwhile, a large amount of electricity is 
exported to the DA market in the daytime due to the high local gener-
ations. In Fig. 13(b)(c), the flowing-in and flowing-out power of load 
and PV node share the same components as Fig. 12(a)(c). However, the 
gird-side load supply reduces, and the exported PV electricity to the DA 
market increases significantly. In Fig. 13(d), the exported electricity to 
both DA and RT market take up a large proportion. A large proportion of 
PV electricity is exported to the RT market instead of the DA market, 
which indicates that a predictable PV generation is significant in our 
retail electricity market. 

Fig. 14 shows the battery control strategies under two situations: low 
PV installation and high PV installation. In the low PV installation case 
(left picture), part of the battery energy is supplied to the local load. The 
battery is then recharged to its initial SOC level using power from sur-
plus solar energy and the grid-side energy. It is interesting that yCB is not 
zero, though the buying prices in the RT market are much higher. This 
may because the imported electricity in the DA market has a surplus, and 
it would be better to store the surplus imported electricity than re-selling 
to the RT market. In the high PV installation case (right picture), the 
battery is charged in the daytime using the surplus solar energy and 
discharged in the early morning and evening to support the household 
load. It is also observed that the final values of both SOC curves keep the 
same as the initial values. 

In the stochastic programming field, three solutions are usually 
defined and compared together to verify the value of the stochastic so-
lutions: wait-and-see solution (WS), recourse problem solution (RP), and 
the expectation of the expected value solution (EEV). In our context, The 
RP solution is the solution of our two-stage scheduling model. The 
detailed definitions and calculation methods of another two solutions 
are described in Appendix B for space concerns. Then, we calculated the 
three solutions with different PV sizes (the battery capacity is always 10 
kWh). 

In Table 5 and Fig. 15, we can observe that the RP solutions always 
lie between the values of WS and EEV solutions and satisfy the relations 
of WS ≤ RP ≤ EEV. The first relation WS ≤ RP states that it is always 
better to get the prior information of uncertainties. The second relation 
RP ≤ EEV envisions that it is always better to have recourse actions after 
the uncertainties are revealed than the results of merely averaging un-
certainties [29,48]. Therefore, we now verified our two-stage stochastic 
scheduling model’s effectiveness and the value of modeling un-
certainties. Note that the first-row values in Table 5 denote the Comfort 
values of appliance scheduling in the RP solutions, relatively indepen-
dent of the PV sizes. The other three rows’ values are obtained by sub-
tracting the comfort of RP from the objective values. 

5.1.4. Comparison between stochastic scheduling and rule-based scheduling 
To validate our model’s usefulness, we compare our method (RP 

approach) with the basic rule-based energy dispatch (RBC) strategy 
(detailed in Appendix C). The RBC method assumes that the user cannot 
participate in the DA market, and all relevant variables are determined 
in real-time. The load is filled with PV, battery, and grid priorities, and 
the battery is only used to store surplus PV energy in the noon and 
release energy in the evening periods. In contrast, the RP method could 
determine the amount of buying and selling powers in both DA and RT 
markets and the RT battery (dis-)charging actions. Both approaches 
apply the same realistic load and unit PV output profiles, as shown in 
Fig. 10 (black curves). 

Fig. 16 shows the cost values of two approaches in a sample day 
under different PV sizes (capPV = 5,10,25,50,75,100m2) and the same 
battery sizes (capB = 10kWh). It is found that the RP method can achieve 
less or comparable cost values than the RBC method in most cases. 
However, when the PV size equals 25m2, the RBC solution has a lower 
cost value, though not so significant. To interpret this result, we plot the 
DA/RT importing/exporting power profiles and the battery (dis-) 
charging powers of two approaches under the PV size of 25m2, as shown 

(a) (b)

Fig. 14. Battery control strategies under (a) low PV-installation and (b) high PV-installation.  

Table 5 
The objective values of different solutions (WS, RP, and EEV) under different PV 
sizes.  

PV size (m2)  5 10 25 50 75 100 

Comfort of RP(-)  3.93  3.93  3.58  3.53  3.93  3.93 
WS* ($)  33.36  25.71  5.36  − 18.05  − 39.39  − 60.22 
EEV* ($)  35.82  29.11  11.57  − 5.22  − 18.8  − 30.86 
RP* ($)  35.58  28.61  10.24  − 7.1  − 21.48  − 35.5 

’-’ means dimensionless, and ’*’ denotes the cost values obtained by subtracting 
Comfort of RP from the objective values. 

Fig. 15. The values of WS, RP, and EEV solutions under different PV sizes.  
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in Fig. 17. Comparing Fig. 17(a) and 17(c), the RP method exports more 
surplus PV energy to the RT market at low prices in the noon and imports 
more electricity from the RT market at high prices in the evening than 
that of the RBC approach. Fig. 17(d) shows the battery was never 
charged to its full capacity for the RP method. In contrast, the RBC 
approach can charge to its full capacity using the surplus solar energy in 
the noon and release them to support the evening load, as shown in 
Fig. 17(b). It is concluded that the buffering potential of the battery is 
fully exploited in the RBC method. The inefficient usage of batteries in 
the RP method may offset the benefit of participating in the DA market. 

To enhance the economic performance, we hybrid the RP method 
with the RBC method for leveraging the benefit of participating in the 
DA market and the battery buffering potential, as shown by Fig. 27 in 
Appendix D. The hybrid approach utilizes the RP method for DA power 
procurements and the RBC method for battery (dis-)charging control 

based on the original RP solutions. Fig. 18 plots the DA/RT importing 
and exporting power profiles and battery (dis-)charging profiles for the 
hybrid approach with PV size of 25m2. Comparing Fig. 18(a) and 17(c), 
a large proportion of surplus PV energy was stored in the battery in the 
noon instead of selling them in the RT market at low prices. Then, these 
stored energies were released in the evening periods to avoid buying 
electricity from the RT market at high prices. Thus, the cost values are 
significantly reduced. Comparing Fig. 18(a) and 17(a), a large portion of 
the morning and evening loads were supplied by the DA-imported 
electricity, which induces less costs than importing from the RT mar-
ket. Fig. 19 plots the cost values of three approaches (the RP, RBC, 
hybrid approaches) in terms of different PV sizes. It is observed that the 
hybrid approach can achieve the least cost values under all cases. 

5.2. Simulation II: PV power-sharing of multiple households 

Fig. 20 shows the evolutional DA internal buying (green) and selling 
(yellow) prices obtained by the asynchronous scheduling and iterative 
pricing method. Each price trace fades as the iteration goes on. It is seen 
that as the iterations go on, the prices can converge to stable tracks. 
Compared to the retail market, the stable internal buying price tracks are 
much lower than the original buying prices. The stable internal selling 
price tracks are higher than the original ones in the daytime. Thus, all 
electricity consumers and prosumers can expectedly benefit from this 
community energy market. 

Fig. 21 plots the Euclidean distances of consecutively updated 
selling/buying prices and the total microgrid objective (cost) values for 
M × N = 10 × 10 = 100 iterations (M coordinating rounds for N hous-
es). It is seen that the price deviations between consecutively updated 
internal prices reduced quickly at first and then the distances fluctuated 
around $0.1. The total cost values also reduce dramatically at first and 
get stable after the initial big fluctuations. The determination of the final 
trading prices is dependent on the terminal conditions. Note that Fig. 20 
is obtained for a divergent case with the terminal condition of 
max(‖λbuy,(j+1) − λbuy,(j)‖2,

Fig. 16. Cost values of RBC and RP approaches in a sample day under different 
PV sizes. 

(a) (b)

(c) (d)

Fig. 17. DA/RT importing and exporting power profiles and battery (dis-)charging profiles for RBC approach (a)(b) and RP approaches (c)(d) with PV size of.25m2  
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‖λsell,(j+1) − λsell,(j)‖2) ≤ 0.01. If we set the terminal condition as 0.1, 
the algorithm would converge within ten iterations. Besides, the final 
trading prices can also be decided with the help of market regulations. 
For example, the internal prices must be determined within limited it-
erations or periods. Since the coordinating algorithm is not based on a 
global optimization problem, this algorithm’s optimality is not guar-
anteed. The authors intend to leave the deep theoretical convergence 
and optimality analysis of the distributed algorithm for feature work. 
The readers may refer to [37,40,49] for more information about this 

algorithm. 
Fig. 22 shows the cost values of ten houses in the microgrid with 

selfish and coordinated scheduling. The ’selfish’ households were 
charged by the initial buying and selling prices. The ’coordinated’ 
homes were billed by the settled internal buying and selling prices 
(determined as the last iteration prices). The positive bars denote the 
cost, and the negative bars indicate the revenue. It is observed that 
coordinating the multiple prosumers can reduce the overall cost, and 
each household can benefit from the power-sharing by either selling 
electricity at higher prices or buying electricity at lower prices. 

However, the scalability to a large number of users is limited due to 
each user’s sequential scheduling. Fortunately, the general shape of 
internal prices can be stable within a few iterations, even though the 
involved number of households is large. For example, for a microgrid 
with 100 end-users, each user’s sequential scheduling may take a long 
time for one coordinating round (nearly half a day on a laptop with Intel 
(R) Core TM i7-7700HQCPU @ 2.80 GHz). Nevertheless, the general 
shapes of internal prices and the errors between consecutively updated 
prices become stable within fifty iterations, as shown in Fig. 23. Since 
the internal pricing is applied to the DA market, the maximum coordi-
nating time is a whole day. Thus, the maximum number of household 
members can be estimated as 200 houses if the iterative process goes on 
for at most one coordinating round. The possible solutions to improve 
the scalability may include synchronous or semi-asynchronous sched-
uling. The former uses synchronous scheduling and introduces penalty 
factors on the changes of consecutively updated schedules [40]. The 
latter combines synchronous and asynchronous scheduling by clustering 
similar users into representative groups and doing synchronous sched-
uling within intra-groups and asynchronous scheduling between inter- 
groups. 

6. Conclusion and future development 

This paper proposed a specialized taxonomy for integrated designs 
and operations of smart home energy management systems. The primary 
functional layers are organized by a pyramid starting from basic to 
advanced topics: monitoring, analyzing & forecasting, scheduling, and 
coordinating. Guided by the taxonomy, an integrated SHEM model is 
developed for energy management of smart homes with grid-connected 
residential PV-battery systems under uncertain loads and PV genera-
tions, which is the core contribution of this paper. 

First, we apply a scalable and robust algorithm - Pattern Sequence 
Forecasting for day-ahead probabilistic household load and PV fore-
casting relying on only historical measurement. Second, we quantify the 
users’ comfort preference for comfort-aware appliance scheduling by 
estimating user preference vectors from historical daily appliance en-
ergy consumption data. Third, we develop a two-stage stochastic pro-
gramming model for single households’ energy scheduling with PV- 
battery systems, incorporating the probabilistic load / PV forecasts 

(a) (b)

Fig. 18. DA/RT importing and exporting power profiles (a) and battery (dis-)charging profiles (b) for the hybrid approach with PV size of.25m2  

Fig. 19. Cost values of the RBC, RP, and hybrid approaches in a sample day 
under different PV sizes. 

Fig. 20. Evolutional DA internal prices for a microgrid with ten households.  
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and user preference vectors of shiftable appliances. The first stage de-
termines the optimal day-ahead (DA) energy procurement and the DA 
scheduling of shiftable appliances. The second stage optimizes the real- 
time (RT) power flows and battery (dis-)charging actions after the un-
certain household loads and PV generations are realized. By designing a 
retail electricity market with DA and RT markets, the accuracy 
improvement of forecasting is motivated by the scheduling layer since 
the RT market’s worse prices will punish the inaccurate forecasts. 
Finally, we propose a distributed coordinating approach for power- 
sharing among multiple households with PV-battery systems through 
establishing a community energy market. The distributed power-sharing 
is realized by iteratively updating internal prices and asynchronously 

rescheduling each home, which reduces the computational burden 
without revealing private information. Numerical simulations based on 
realistic datasets validated the integrated SHEM model’s effectiveness 
and the practical guidance meaning of the SHEM pyramid taxonomy. 
The value of modeling stochastic load and PV generations is also veri-
fied. Compared with the basic rule-based energy dispatch strategy, the 
two-stage stochastic scheduling model could achieve less or comparable 
cost values by leveraging the benefit of participating in the DA market. A 
hybrid of both methods could enhance the economic performance by 
fully exploiting the battery buffering potential. The coordinated sched-
uling can benefit each household by sharing PV and battery investments 
for revenue or trading with local small prosumers for cost reductions. 

Overall, this paper provides a pyramid taxonomy for standard-based 
development and implementation of SHEM and an integrated SHEM 
model for residential communities with distributed PV-battery systems. 
Future development may include the deep theoretical analysis of the 
distributed power-sharing algorithm’s convergence and optimality 
properties, the extension to interruptible thermal appliances and electric 
vehicles, and other uncertainty modeling methods like robust 
optimization. 
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(a) (b)

Fig. 21. Euclidean distances of consecutively updated prices (a) and total cost alues (b) for a microgrid with ten households under ten coordinating rounds.  

Fig. 22. Cost values of ten houses in the microgrid with selfish and coordinated 
scheduling, respectively. 

(a) (b)

Fig. 23. Evolutonal DA internal prices (a) and Euclidean distances of consecutively updated prices(b) for a microgrid with 100 households under one coordi-
nating round. 
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Appendix A. . Two-stage stochastic scheduling model 

min
x∈X,y∈Y

F(x, y) = E[
∑I

i=1
(λbuy

i ximport
i − λsell

i xexport
i − η⋅comforti) + (μbuy

i yimport
i,ξ − μsell

i yexport
i,ξ )]
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i,ξ + yBL
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i,ξ + Lshift.
i
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Appendix B. The value of stochastic solutions 

1) Wait-and-see solutions 

This case is when the household loads and PV outputs are known before buying or selling energy in the DA market. A perfect information solution 
would choose optimal first-stage energy scheduling and procurement decisions for each realization of ξ. The expected value of this solution is known in 
the literature as the ’wait-and-see’ (WS) solution, where: 

WS = Eξ

[

min
x∈X

F(x, ξ)
]

This case will achieve the minimum costs due to perfect information, though it is impossible to make perfect forecasts in practice. 

2) Recourse problem (RP) solution 

An alternative problem, a stochastic program with fixed recourse or the recourse problem (RP), is written as: 

RP = min
x∈X

Eξ[F(x, ξ)]

In this case, possible realizations of uncertainty parameters are looped over, and balanced decisions with recourse are made. Note that when the 
uncertainty is revealed, additional or second stage actions can hedge the effect of uncertainty, so-called ’recourse actions.’ 

3) Expected value solution 

The expected value (EV) problem is an approximation of the RP problem, where: 

EV = min
x∈X

F(x, ξ)

This problem produces the first-stage solutions, x(ξ), which become inventories to the second-stage optimization problem. The second-stage 
optimization must then be performed after ξ is realized. 

Q(x(ξ), ξs) = min
y(ξs)

q(y(ξs), ξs)

subject to g2(x(ξ), y(ξs), ξs)⩽0, g2(x(ξ), y(ξs), ξs) = 0, ∀s ∈ S 

In our context, the DA energy scheduling decisions are made based on the expectations of the forecasting results of sister forecasters. The house 
owner needs to import/export energy from/to the real-time retail market for balancing. The obtained day-ahead scheduling variables (x[ξ]) are used in 
the second stage for balancing. 

F(x(ξ), ξ) = minf (x(ξ)) + yimport
i,ξ ⋅μbuy

i − yexport
i,ξ ⋅μsell

i

yRL
i,ξ + yBL

i,ξ + yCL
i,ξ = Lfix

i,ξ + Lshift
i

yRL
i,ξ + yRB

i,ξ + yRC
i,ξ = PPV

i,ξ

PPV
i,ξ + ximport

i + yimport
i,ξ + ybat disch

i,ξ = Lfix
i,ξ + Lshift

i + xexport
i + yexport

i,ξ + ybat ch
i,ξ 

The expected result of using the EV solution is then 

EEV = Eξ[F(x(ξ), ξ)]

4) The value of the stochastic solution 

The following relations hold [29,48]: 

WS ≤ RP ≤ EEV  

EVPI = RP − WS  

VSS = EEV − RP 

The first relation WS ≤ RP states that it is always better to get the prior information of uncertainties. The second relation RP ≤ EEV envisions that it 
is always better to have recourse actions after the uncertainties are revealed than the results of simply averaging uncertainties. The difference between 
RP and WS is known as EEPI (>0), the expected value of perfect information. It is the maximal amount a decision-maker should spend to get the in-
formation in advance. The difference between EEV and RP is known as the VSS (>0), the value of the stochastic solution. It shows that dealing with 
uncertainties bring benefit than ignoring them. 

Appendix C. The rule-based energy dispatch strategy 

Rule-based PV-battery control (RBC) is straightforward and easy to implement in practice. In this study, a basic rule-based energy dispatch strategy 
is employed for benchmarking, and the flow chart of operation principle is depicted in Fig. 24. 

The RBC approach in Fig. 24 utilizes priority-based energy dispatch strategies. When PV generation is higher than the demand, it will supply the 
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demand first, and then the surplus PV energy is stored in the battery if it is not fully charged. If there is still surplus PV energy, the remains would be 
sold to the grid based on the feed-in tariff policy. When the PV generation cannot meet the load demand, the battery would discharge to support part of 
the load if there is available energy. Here, we only use battery for buffering surplus PV energy. Thus, we assume the battery can only discharge when 
there was surplus PV energy charged into the battery before (SOCi > SOCinit). Otherwise, the household user will purchase electricity from the power 
grid. Note that we add a battery (dis-)charging power adjustment step by the condition of SOCi+1 < SOCinit&SOCi > SOCinit to keep the SOC values 
within allowed ranges. 

Fig. 25 shows the RBC energy scheduling results for the low PV installation home, and Fig. 26 shows the scheduling results for the high PV 
installation home using the same parameters and input data as the main content. 

PV
i iP L

maxiSOC SOC

i initSOC SOC

1

&
i init

i init

SOC SOC
SOC SOC

Fig. 24. Flow chart of the rule-based energy dispatch strategy.  

(a) (b)

Fig. 25. Rule-based energy scheduling results of low PV-installation household (capB = 10kWh,capPV = 10m2) (a) flowing-in and flowing-out components of Load 
and PV nodes, respectively, and (b) battery energy flows and its state of charge curve. 
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Appendix D. The hybrid control of RP and RBC methods 

Fig. 27 shows the flow chart of the hybrid approach for battery (dis-)charging. The original battery (dis-)charging controls of the RP method is 
revised according to the rule that: 1) the surplus PV energy supplies the battery with higher priority than exporting to the RT market; 2) the original 
RT-imported electricity should be satisfied with battery discharging energy firstly. Similar to the RP and RBC approaches, the initial and ending 
battery SOCs are hold the same as 0.5 by readjusting in the final time slot. 

(a) (b)

Fig. 26. Rule-based energy scheduling results of high PV-installation household (capB = 10kWh,capPV = 100m2) (a) flowing-in and flowing-out components of Load 
and PV nodes, respectively, and (b) battery energy flows and its state of charge curve. 

0export
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maxiSOC SOC

1 max

max&
i

i

SOC SOC
SOC SOC
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min&
i

i

SOC SOC
SOC SOC

Fig. 27. Flow chart of the hybrid approach for the battery (dis-)charging control.  
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