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Physician Scheduling for Emergency Departments
Under Time-Varying Demand and Patient Return

Zixiang Wang , Ran Liu , and Zhankun Sun

Abstract— Emergency departments (EDs) are facing increasing
overcrowding and long patient waiting time, which is mainly
caused by the time-varying demand of new and returning
patients. In this paper, we focus on scheduling ED physicians
to reduce the patient waiting time and the physician working
hours. We consider the ED network as a time-varying queuing
system with returns and provide an analytical methodology to
approximate the system state and patient waiting time of this
system. The computation of the system state is based on the
pointwise stationary fluid flow approximation method, while we
compute the patient waiting time by classifying the patients
into groups and individually calculating the waiting time of
each group. Because of the nonlinearity of the approximation
methods, we propose a linearization technique to formulate
the physician scheduling problem as a mixed-integer program-
ming (MIP) model. Since the MIP model is hard to be solved
by an optimization solver, a tabu search algorithm is designed.
Numerical experiments show that our proposed methods can
reasonably approximate the system state and patient waiting time
of this complex queueing model. The scheduling computed by the
heuristic algorithm can improve the physician schedule without
increasing the number of physicians.

Note to Practitioners—This article is motivated by the emer-
gency department of our collaborative hospital in Wuhan, China.
The emergency department wishes to use a “flexible shifts” strat-
egy to obtain a better physician scheduling plan. Different from
the traditional “three shifts” strategy, the “flexible shifts” strategy
has more available shifts and more flexible physician assignments
to accommodate the fluctuation of the patient demands. However,
the managers generally have difficulty providing high-quality
schedules to physicians, since they usually lack the understanding
of the impact of the time-varying patient demands with returns.
Thus, we propose a set of approaches to solve this problem.
Especially, a computational approach for calculating the patient
waiting time that considers the stochastic and time-varying
arrivals of patients and their returns is proposed. Experiments
with hospital’s real-life data show the methods proposed in this
paper are useful for generating reasonable scheduling plans that

Manuscript received 30 December 2021; revised 2 March 2022; accepted
25 March 2022. Date of publication 14 April 2022; date of current version
6 January 2023. This article was recommended for publication by Associate
Editor S. Gao and Editor J. Li upon evaluation of the reviewers’ comments.
This work was supported by the National Natural Science Foundation of China
under Grant 71972133 and Grant 71672112. (Corresponding author: Ran Liu.)

Zixiang Wang and Ran Liu are with the Department of Industrial Engi-
neering and Management, School of Mechanical Engineering, Shanghai Jiao
Tong University, Shanghai 200240, China (e-mail: zixiang_wang@sjtu.edu.cn;
liuran2009@sjtu.edu.cn).

Zhankun Sun is with the Department of Management Sciences, Col-
lege of Business, City University of Hong Kong, Hong Kong (e-mail:
zhankun.sun@cityu.edu.hk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TASE.2022.3163259.

Digital Object Identifier 10.1109/TASE.2022.3163259

can reduce the patient waiting time and system state without
increasing the physician numbers.

Index Terms— Emergency departments, time-varying
demands, service with returns, physician scheduling, queuing
theory.

I. INTRODUCTION

EMERGENCY departments (EDs) in China have been suf-
fered from a shortage of physicians. Due to the physician

shortage, overcrowding and long waiting time have become a
common problem in hospital emergency departments (EDs)
in China. This problem is not unique to China. According
to Kennedy et al. [1], over half of the patients in the USA
report experiencing long waiting times. Similarly, research
from France also reports problems like overcrowding in the
ED and excessive patient waiting time [2].

There are several underlying reasons for the overcrowding
and long waiting time. One reason is that the patient’s arrivals
are strongly stochastic and time-varying. Unlike outpatient
departments, where the appointment mechanism smoothes the
patient arrival rate’s fluctuation, emergency patients cannot
make an appointment and arrive randomly. Moreover, the
arrival rate of emergency patients fluctuates dramatically dur-
ing a day. We use our collaborative hospital in Wuhan, China,
as an example. Fig. 1 shows a typical pattern of the arrival rate
of emergency patients in one day in 2017. The arrival rate of
emergency patients in this hospital is low in the nighttime
and fluctuates intensively during the daytime. The arrival rate
increases dramatically at 6:00 and reaches the first peak at
about 7:00, remains low in the next few hours, and reaches
the second peak at about 14:00. The physician scheduling
plan in EDs often lacks flexibility and fails to offer adequate
physicians in these peak hours, which leads to overcrowding
and excessive patient waiting time.

Another critical reason leading to the overcrowding and
excessive waiting time is the return of patients. Generally,
physician’s medical decisions are based on the results of var-
ious examinations, such as blood tests, urine tests, etc. Thus,
after the first physician consultation, patients usually need to
go through a series of medical tests and then return to the
physicians to get diagnosed and treated again. In some special
cases, patients may need to examine and revisit the physician
multiple times. Time-varying and stochastic arrivals of new
and returning patients superpose each other, exacerbating the
overcrowding and increasing patient waiting time. During
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Fig. 1. Hourly ED patient arrival rate in an ED.

TABLE I

THE PHYSICIAN WORKING SHIFTS IN ONE ED

the emergency patient’s medical process, various departments,
staff and equipment together form a complex queuing network,
which makes the physician scheduling more challenging.

Although the EDs are in a stochastic and complex envi-
ronment where the number of new patients varies over time
and patients often require repetitive services, the planning and
scheduling of physicians are carried out intuitively in many
hospitals. For example, a widely used scheduling pattern is
the “three shifts” strategy, in which only three working shifts
are used, namely morning shift, afternoon shift, and night shift,
and the only decision is to assign the physicians to these shifts.
This strategy is easy to be implemented, but it is hard to
cope with the fluctuations of patient demands. To improve
emergency services, hospital managers have been devoting
increasing attention to the “flexible shifts” strategy. Compared
with the traditional scheduling method, the “flexible shifts”
strategy introduces more available shifts. With more possi-
ble working shifts, the physicians’ assignments can become
more flexible and the resulting scheduling can better match
the time-varying demands of emergency patients, which can
reduce the waiting time of patients at different hours and the
potential waste of the service capacity in the periods with few
patients. Table I shows the available candidate shifts in our
cooperative ED.

The “flexible shifts” strategy offers an opportunity for a
more flexible physician schedule, yet it presents many diffi-
culties. First, physician scheduling becomes more complicated
since there are more shifts available. Second, the time-varying
and stochastic nature of new arrivals and reentrants must
be carefully considered in the physician scheduling. Third,
the patient waiting time is a critical performance metric for
emergency service systems. The computation of the patient

waiting time with a given scheduling plan is the basis for
the physician scheduling optimization. How to effectively
evaluate the patient waiting time of such a system remains
to be investigated. In this paper, motivated by the physician
scheduling problem of our partner hospital in Wuhan, China,
we address the weekly ED physician scheduling problem
with the “flexible shifts” strategy. We summarize the main
contributions of this paper as follows.

First, we develop analytical approaches to approximate
the system state and patient waiting time of a time-varying
queuing system that serves both newly-arrived and returning
patients. The accuracy of the proposed computation method is
observed numerically. Second, we design a tabu search (TS)
algorithm to effectively solve the physician scheduling prob-
lem under the time-varying demands of patients with returns.
The effectiveness of the algorithm in real-life scenarios is
verified through a set of numerical experiments.

The remaining paper is organized as follows. We give a
brief literature overview in section II. In section III, we intro-
duce our queuing model and our system state and waiting
time computation methods. In section IV, we develop a MIP
model for the physician scheduling problem based on our
proposed approximation methods and a pointwise linearization
method. Section V describes the design of our TS algorithm.
Section VI validates our proposed approximation approaches
and conducts numerical experiments. Section VII summarizes
in conclusion and identifies further research directions.

II. RELATED LITERATURE

Numerous studies have investigated the physician
staffing/scheduling problem. In the existing literature,
most researchers use standard mathematical programming
techniques, i.e., linear programming, integer programming,
and mixed-integer programming, to formulate models for the
physician staffing/scheduling problem, while little research
uses nonlinear programming, constraint programming, etc.
to address the problem [3]. The solution technique also varies
among researchers. Exact solution algorithms are a typical
solution approach for solving mathematical programming
models. Researches using this approach can be generally
divided into two sub-groups. Some studies use mathematical
optimization solvers such as CPLEX [4] or Gurobi [5], while
others design exact solution algorithms, e.g., Branch-and-Cut
[6], Branch-and-Price [7], etc., to solve the models. The
exact solution algorithms can get the optimal solution of the
model, but the approach’s weakness is that it cannot even
get a solution of the model with high complexity or large
size within a reasonable time, which is the dominant area
of heuristics. Heuristics can get a good solution (usually
not the optimal solution) within a reasonable computational
time. Heuristics such as genetic algorithm [8], simulated
annealing [9], variable neighborhood search [10], column
generation-based heuristic [11], etc., have been used to
solve the physician staffing/scheduling problem. For more
reference about physician scheduling, we refer the reader to
Erhard et al. [3].

Since EDs have to confront stochastic and time-varying
demands of new and returning patients, the performance
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evaluation of non-stationary service systems with returns
is the second related topic of our paper. While many
researchers have analyzed the performance evaluation methods
for non-stationary queuing systems in hospitals [3], only a
few researchers have investigated the performance measures
of time-varying service systems with returns in healthcare
units. Among the different performance evaluation method-
ologies, simulation is a frequently used method to get the
performance metrics of complex ED systems. For example,
Ghanes et al. [12] use simulation to calculate the length
of stay (LOS) and service level of emergency patients. The
same performance metrics are also simulated by Guo et al.
[13]. Vanbrabant et al. [14] use simulation to compute the key
performance indicators, such as the patient waiting time before
getting the first physician’s consultation and the patient LOS,
of an ED. Kuo [15] uses an ED simulation model to assess the
average patient waiting time. Ahmed and Alkhamis [16] use
simulation to compute the ED patient’s throughputs. Simula-
tion can approximate the exact value of performance metrics
of complex ED systems, but the validation and computation
of a simulation model are usually time-consuming. For more
reference about the simulation, we refer readers to Vanbrabant
[17], Kuo et al. [18], Ghanes et al. [19] and Zeltyn et al. [20].

Because of the interaction between different medical
processes and the superposition of newly arrived and returning
patients, analytical methods to estimate the performances of
non-stationary service systems with returns in hospitals are
thus far a less investigated topic. In the existing literature,
the sample average approximation (SAA) method has been
commonly used to evaluate the performance of such a system.
For example, EL-Rifai et al. [2] use SAA to model the
patient waiting time of an ED system. The basic idea of
the method is to estimate the mathematical expectations of
waiting time by their sample averages. Based on this esti-
mation, a scheduling model with time-varying and stochastic
demand of new and returning patients can be approximated
by a deterministic optimization problem. Xiao et al. [21] also
use SAA to compute the patient waiting time in a clinical
department with revisits. Zaerpour et al. [22] use SAA to
calculate the mismatch between the demand of emergency
patients and the service productivity of physicians. When the
number of samples is enough, SAA can well approximate
the performance metrics of a complex queuing system, but
increasing the number of samples will increase the size of the
model linearly, which makes the model hard to solve. The
second alternative is the fluid approximation method, which
uses deterministic fluid models to approximate the stochastic
models [23]. Whitt [23] reveals that the fluid approximation
is particularly useful for the evaluation of the system that
is temporarily overloaded. Yom-Tov and Mandelbaum [24]
analyze the time-varying modified offered load (MOL) of a
system, called the “Erlang-R” system, using a fluid model
and designed a physician staffing algorithm based on the
“Square Root Staffing Rule” with the offered load as inputs.
The “Erlang-R” system is characterized by station 1 with n
servers and station 2 with infinite servers. Customers who
leave station 1 will either leave the system or go to station
2 with a given possibility, while customers who leave station

2 will return to station 1. Their experiments show that their
method is effective to model the offered load of such a system.
Chan et al. [25] also use the fluid model to investigate the
effects of state-dependent service rate and return probability
of an “Erlang-R” system. Ingolfsson et al. [26] use the
fluid approximation method to compare the equilibrium state
and the transient behavior of two different queuing systems
with state-dependent service time and return probability. The
difference between the two models is the time to decide
whether a customer returns for services. Queuing theory is also
a common tool in the system evaluation of service systems
with returns. For instance, Huang et al. [27] investigate the
policy of patient flow control in an ED from a queueing theory
perspective and demonstrate that it is optimal to prioritize
returning patients over newly-arrived patients while adhering
to their deadlines in emergency department under heavy traffic.
Besides, data-driven approaches are also frequently used in
the estimation of system performances. For example, Whitt
and Zhang [28] study the distribution of patient LOS in an
ED based on data-driven models. Stefanini et al. [29] also use
data-driven models to evaluate the performance indicators such
as patient LOS, patient waiting time for treatment, admission
rate, etc.

In the existing literature, to our knowledge, the paper by
Yom-Tov and Mandelbaum [24] is the only work that considers
both the analytical evaluation of the performance of non-
stationary service systems with returns and the physician
staffing problem. This paper will present our performance
evaluation methods of our queuing model and a mathematical
formulation to address the physician scheduling problem.
Instead of evaluating the offered load as Yom-Tov and Man-
delbaum [24], we analyze the system state and patient waiting
time, which can intuitively reflect the service system’s perfor-
mances. We propose a new method based on the pointwise
stationary fluid flow approximation (PSFFA) to compute the
system state of a time-varying queue with returns. Based on
the system state computation, we propose a novel method to
calculate the patient waiting time, which is used as the basis
of the physician scheduling model. Since the model is hard to
solve, we propose additionally an effective heuristic algorithm
to solve it.

III. QUEUING MODEL IN THE ED

Since various hospitals may have different ED medical
processes, we first summarize the service process of our
collaboration ED. Upon the patients’ arrival, they are reg-
istered and triaged by nurses. Urgent patients (with severe
conditions) are immediately sent to the resuscitation room via
a separate “acute care” track and resuscitated by paramedics,
while non-urgent patients will go to the waiting area of the
ED and wait until getting evaluated in the first consultation of
physicians. After the first consultation, only a few patients
complete the service process: either leave the ED or are
admitted to the hospital. In contrast, most patients need to
go to medical examination departments for medical tests such
as X-rays, blood tests, B-ultrasonic, etc. After getting medical
checks, the patients go back to the waiting area and wait to
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Fig. 2. Queuing network model in the ED.

revisit the physician. Note that a patient may be requested
medical tests more than once. Finally, a decision is made to
release the patient from the ED (home or hospitalized).

According to our observation of the ED, the portion of
urgent patients with severe conditions is limited, and the
overcrowding is not primarily caused by these urgent patients.
Therefore, we focus on the services of the non-urgent patients,
whose services can be modeled as a queuing network with two
stations, as shown in Fig. 2. We denote the physicians and
examination servers “station 1” and “station 2”, respectively.
The planning horizon is divided into several periods, each of
which has a time length of �. In each period, the patient
arrival rate, the number of physicians and examination servers,
and the service rate of servers are assumed unchanged. The
return probability, i.e., the probability that a patient needs
medical examinations and returns to physicians for further
consultation, is p. Patients who leave without being served
are not considered.

To simplify the problem, we additionally make the following
assumptions in our paper:

A1. In each period t , patients arrive at the physician’s
according to a Poisson distribution with rate λt and are served
under a first-come-first-serve (FCFS) rule. This assumption is
supported by the data from our partner hospitals when intervals
are selected appropriately.

A2. All physicians are homogeneous, i.e., with the same
skills and service rate. The service time of physicians is
exponentially distributed with service rate μ1. The assumption
of exponential service times is reasonable and common in
healthcare settings [2], [24], [30].

A3. All the medical examinations are homogeneous, and
the examination time is exponentially distributed with service
rate μ2. In practice, as stated above, there are different types
of examinations with varying service times, while patients
need various tests. We assume that the service rate μ2 is the
examination’s average service rate, i.e., the examination has a
stochastic duration with a mean of 1/μ2.

With the above assumptions, our queuing model can be
considered as an Mt /M/ct queuing system with returns. The
returning patients make our queuing model different from the
classical model and more complicated.

A. System State Computations

We first discuss the computation methods of the system state
with a given physician staffing, i.e., assess the expected total
number of patients in the system under the condition that the

Fig. 3. Fluid equilibrium in an Mt /M/ct queuing system.

number of servers is known. Our computation methods are
built based on PSFFA [31]. We briefly explain the principles
of the PSFFA for approximating the system state for an
Mt /M/ct queuing system, then we introduce the system state
computation method for our queuing model.

1) Mt /M/ct Queuing System: According to the fluid model,
as shown in Fig. 3, the system state at the beginning of the
period t plus the number of patients arrived in the period t
equals the system state at the end of the period t plus the
number of patients served in the period t . Let ut represent
the expected number of patients served in the period t, qt−1
and qt be the system state at the beginning and the end of the
period t, respectively. We have the following equation:

qt + ut = qt−1 + λt�. (1)

Let ρt be the average service intensity, then (1) can be
expressed as

qt + ctμρt� = qt−1 + λt�. (2)

If an M/M/c queue system has constant parameters (λ, μ,
c) with ρ = λ/(cμ) < 1 and c > 1, the queuing system can
reach the steady-state, and the steady-state system state can
be calculated by

l M/M/c(ρ, c) = ρc+1cc

c!(1 − ρ)2 π0 + ρc, (3)

where

π0 =
�

c−1�
i=0

(ρc)i

i ! + (ρc)c

c!(1 − ρ)

�−1

. (4)

Note that (3) and (4) are used in the steady queuing system
[32]. We assume that the queue system can reach steady-state
at the end of each period, so we can use the stationary formula
with parameters ρt and ct to compute the system state at the
end of the period t , i.e., in our approximation approach,

qt ≈ l M/M/c(ρt , ct ). (5)

In PSFFA, ρt is not the service intensity λ/(cμ) in the
queuing theory, but the average service intensity (ut /�)/(cμ)
of the service system. Thus, even if the system is overloaded,
i.e., λ/(cμ) > 1, the average service intensity ρt does not
exceed 1. Since ρt is in the range of [0, 1) and qt is
monotonically increasing and convex function of ρt [23], ρt

can be solved using the bisection method [31]. By substituting
the value of ρt into (5), we can calculate the system state at
the end of the period t . We call this computation the “APP-
length-1” method.
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Fig. 4. Fluid equilibrium in our queuing model.

2) Our Queuing Model: We extend the PSFFA to our
queuing network. We add the number “1” and “2” in the
subscript to represent two stations, while the meaning of
symbols remains the same. For example, q1,t and q2,t denote
the system state at the end of period t in station 1 and station 2,
respectively. Assume that the number of examination servers
c2 is a constant. Note that the patients in the physician’s queue
consist of the newly arrived and returning patients. In some
EDs, returning patients may have higher priority than the
new patients, but such priority is not adopted in some other
hospitals. In our computation, returning patients’ priority is not
considered, i.e., all patients are served by an FCFS rule. The
fluid equilibrium of our queuing model of period t is shown
in Fig 4.

Similar to an Mt /M/ct queuing system, the fluid balance of
our queuing model can be expressed as following (6) and (7):

q1,t + c1,tμ1ρ1,t� = q1,t−1 + λt� + c2μ2ρ2,t� (6)

q2,t + c2μ2ρ2,t� = q2,t−1 + pc1,tμ1ρ1,t� (7)

When c1,t and c2 are given, only two variables ρ1,t and
ρ2,t are unknown in (6) and (7), since q1,t and q2,t can
be approximated by l M/M/c(ρ1,t , c1,t ) and l M/M/c(ρ2,t , c2),
respectively. We give an initial value to ρ1,t . Substituting ρ1,t

into (7), similar to the solution procedure of the “APP-length-
1” method, ρ2,t can be computed by the bisection method.
In the same way, substituting the computed ρ2,t into (6), ρ1,t

can be calculated. This process is repeated until (6) and (7)
hold. Then the system states q1,t and q2,t can be obtained.
In part A of the appendix, we use a simple numerical example
to show the solution process of the equations. Furthermore,
in part B of the appendix, we demonstrate that the unique
solution of (6) and (7) always exists and can be solved using
the proposed bisection method.

The key of the system state computation for an Mt /M/ct

queuing system and our queuing network is the estimation of
the average service intensity. We consider three scenarios:

Case 1 (Severely Overloaded System): For a queueing
system, if the system is severely overloaded, i.e., the system’s
service capacity is much smaller than the demand of patients,
the system can be considered working continuously (ut =
ctμ�), and the average service intensity can therefore be

approximated by one. In our system, the examination such as
blood test, urine test, etc. can be performed simultaneously,
so the examination’s service capacity is usually large enough
to cover the patients’ demands. Since the number of physicians
is limited and physicians’ service capacity may be temporarily
inadequate, we define the “severely overloaded system” as that
physicians’ service capacity is much smaller than the demand
of patients. In period t, we introduce a parameter ρ̄ when the
system is critically overloaded: if ρ̂ = (q1,t−1 + λt )

�
c1,tμ1is

larger than the predefined ρ̄, the average service intensity ρ1,t

can be approximate to one and ρ2,t is calculated by solving (7).
The system state q1,t can be then calculated by

q1,t = max(q1,t−1 + λt� + c2,tμ2ρ2,t� − c1,tμ1�, 0). (8)

Case 2 (Relatively Low Service Intensity): In such a case,
the stationary queueing formulas are more appropriate to
describe the system, i.e., ρ̂ = (q1,t−1 + λt )

�
c1,tμ1is smaller

than a predefined parameter ρ. In such a case, the intensities
of ρ1,t and ρ2,t can be computed from (6) and (7). Then, the
system states at each station can also be obtained from the
results of such two formulas.

Case 3 (The Service Intensity Is Between the Above Two
Cases): I.e., the system is neither overloaded nor with low
service intensity. We combine the numerical results of them
to calculate the system states.

In summary, the system state in the physician’s queue at the
end of period t is calculated as follows:

q1,t =

⎧⎪⎨
⎪⎩

the result from (6) ∼ (7) ρ̂ < ρ

the average of both values ρ ≤ ρ̂ ≤ ρ̄

the result from (8) ρ̂ > ρ̄.

(9)

where ρ̂ = (q1,t−1 + λt )
�

c1,tμ1, ρ̄ and ρ are two parame-
ters. This computation is referred to as the “APP-length-2”
method.

B. Waiting Time Computations

Besides the system state, the waiting time is also a critical
metric of the system performance. Given the system state at
the beginning and the end of a period obtained by the above
APP-length-2 method, we try to propose a method to compute
the patient waiting time in the period. Similar to Liu and
Xie [10], our method divides the patients into three groups:
(i) patients who arrived before period t and get served in period
t , (ii) patients who arrived and get served in period t , and (iii)
patients who get served after period t , who are denoted as
the first-, second- and third-group patients, respectively. The
waiting times of three groups of patients in period t are
referred to as wt1, wt2, and wt3, and the number of three
groups of patients in period t is denoted as u1, u2, and u3,
respectively. The waiting time of each group of patients is
computed individually. The total waiting time Wt in period t
can then be calculated by Wt = wt1 +wt2 +wt3. Note that Wt

is not the total waiting time of patients who arrived in period
t but the total waiting time of patients in period t . Because
the capacity of examination (such as blood test, urine test,
etc.) is usually adequate and the patient waiting time at the
examination servers is generally short, we only focus on the
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patient waiting time in the physicians’ queue in each period in
this section. We call the waiting time computation the “APP-
time-1” method.

1) Computation of wt1: We first propose the waiting time
computation method for an Mt /M/ct queuing system that
does not consider the returning patients as the basis. Next,
we extend it to our time-varying system with returning
patients. For an Mt /M/ct queuing system, the number of the
first-group patients u1 in period t is dependent on the number
of served patients ut and the initial state of the system qt−1
in period t . If ut > qt−1, all qt−1 patients get served in
the period t , i.e., u1 equals qt−1. Otherwise, u1 equals ut .
In summary,u1 = min(qt−1, ut ). Assumed that all c servers
are not occupied at the beginning of period t , so the first ct

patients do not wait and (u1 − ct )
+ patients wait in period

t , while the (ct + n)-th patient has to wait until n patients
leave the system. So the waiting time of the (ct +n)-th patient
is equivalent to the occurrence time of the departure of the
n-th (first-group) patient. Since the departure of the patient is
according to a Poisson process with rate (ctμ), the average
waiting time for (ct + n)-th patient is n/(ctμ). Therefore, the
waiting time wt1 can be computed by

wt1 =
(u1−ct )

+�
n=1

n

ctμ
= ((u1 − ct )

+ + 1)(u1 − ct )
+

2ctμ
.

In our model, the computation of wt1 is more complicated
than the Mt /M/ct model because of the returning patients.
As stated in Yom-Tov and Mandelbaum [15], for a stationary
M/M/c with returning patients model, two strategies can
be used to modify the model to the basic M/M/c model:
increase the arrival rate to λ/(1−p), or reduce the service
rate to (1−p)μ. Using the first option as an example, the
amplification of the arrival rate is due to the effect of returns:
the amplified number of arrivals equals the sum of the number
of new arrivals and returning patients, which can be computed
by

λ + λp + λp2 + · · · = λ

∞�
k=0

pk = λ/(1 − p).

We compute the amplification for our queuing model in
a similar way. Considering that our system cannot reach a
steady state and the number of returns in one period is finite,
we denote v as the average return number of one patient in a
period, so the modified arrival rate of our model should be

λ + λp + λp2 + · · ·λp�v� = λ

�v��
k=0

pk .

Since the average service time in station 1 and station 2 are
μ−1

1 and μ−1
2 , so v equals (μ−1

1 + μ−1
2 )−1. Correspondingly,

the second alternative for our system is to minify the service
rate, i.e., a minified service rate μ�, computed by μ


��v�
k=0 pk .

Because the second alternative turns out to be a superior fit
for our queuing model in numerical experiments, we propose
methods based on the second strategy to compute the waiting
time for our system. Thus, we calculate the patient waiting

time wt1 of period t by

wt1 =
(u1−c1,t )

+�
n=1

n

c1,tμ� = ((u1 − c1,t )
+ + 1)(u1 − c1,t )

+

2c1,tμ� ,

where μ� = μ

��v�

k=0 pk .
2) Computation of wt2: The number of the second-group

patients u2 equals ut − u1. Assumed that a (second-group)
patient j arrives in the service system and finds that the system
state is q j (excluding this patient j) and patients leave the
system at a rate of c1,tμ

�. Then the waiting time of patient j
can be calculated by

t j =
⎧⎨
⎩

0 q j < c1,t − 1
q j − c1,t + 1

c1,tμ� otherwi se.
(10)

Thus, wt2 can be computed by adding up the waiting
time of all second-group patients, and the critical issue is
to calculate q j in (10). The q j computation depends on the
change tendency of the number of patients, for example,
if the arrival time of the j -th patient τ j is known and the
patients depart at a constant rate of c1,tμ

� before τ j , then
q j should equal q1,t−1 + (λt − c1,tμ

�)τ j . We discuss the q j

computation in the following three cases. In all three cases,
we assume that the arrival time of the first (second-group)
patient is zero and the inter-arrival time of patients is 1/λt ,
i.e., τ j = ( j − 1)/λt ( j = 1, . . . , �u2�).

Case 1: λt ≥ c1,tμ
�. This means the system state is

increasing in a period. In this case, we assume that the system
state grows at a rate of (λt − c1,tμ

�), so the system state when
patient j arrives is

q j = q1,t−1 + �
λt − c1,tμ

�
 τ j . (11)

Case 2: λt < c1,tμ
� and q1,t−1 > qsteady, where qsteady

denotes the steady-state system state of an M/M/c queuing
system with constant parameters (λt , μ�, c1,t ). This condition
means the system state tends to first decrease from q1,t−1 to
qsteady and then keeps stable. We further divide this case into
three different subcases. The classification is according to the
relationship among q1,t−1, qsteady, and c1,t , which influences
the change rate of the system state.

Case 2.1: q1,t−1 > qsteady > c1,t . This case implies that the
initial system state first falls to qsteady at a rate of (c1,tμ

� −λt )
and keeps stable at qsteady for the rest of time of this period
(as shown in Fig. 5). Let tsteady be the time needed to reduce
the system state from q1,t−1 to qsteady.

So, tsteady can be computed by

tsteady = q1,t−1 − qsteady

c1,tμ� − λt
.

So the system state q j is

q j =
�

q1,t−1 + (λt − c1,tμ
�)τ j τ j < tsteady

qsteady otherwi se.

Case 2.2: q1,t−1 > c1,t > qsteady. This case implies that
the initial system state of patients falls to c1,t at a rate of
(c1,tμ

� −λt ), then is declined to qsteady at a rate of (qμ� −λt )
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Fig. 5. Change tendency of the system state in case 2.1.

Fig. 6. Change tendency of the system state in case 2.2.

and keeps stable at qsteady for the rest of the time (shown in
Fig. 6).

Let tc be the time when system state q1,t−1 reduces to c1,t ,
which can be computed by

tc = q1,t−1 − c1,t

c1,tμ� − λt
.

The dynamics of the reduction of system state q from c1,t

to qsteady can be expressed as

dq
�

dt = λt − qμ�.

Integrating both sides with respect t ,

− ln
��λt − qμ��� /μ� = t + C0,

where C0 is a constant of integration. Considering the initial
state: q = c1,t when t = tc, then:

− ln
��λt − qμ��� /μ� = t − ln

��λt − c1,tμ
��� /μ� − tc.

So, tsteady can be computed by

tsteady = −(ln
��λt − qsteadyμ

��� − ln
��λt − c1,tμ

���)/μ� + tc.

When tc < τ j < tsteady, the system state falls at the rate of
(qμ� − λt ), so q j can be obtained from the following equality

− ln
��λt − q jμ

��� /μ� = τ j − ln
��λt − c1,tμ

��� /μ� − tc. (12)

To sum up, the system state q j can be computed by

q j =

⎧⎪⎨
⎪⎩

q1,t−1 + �
λt − c1,tμ

�
 τ j τ j ≤ tc
q j obtained from (12) tc < τ j < tsteady

qsteady otherwi se

Case 2.3: c1,t > q1,t−1 > qsteady. In this case, the system
state of patients falls to qsteady at a rate of (qμ� − λt ) and is

stable at qsteady during the rest time of the period. The process
of the reduction of system state is similar to case 2.2 and can
be presented by the following differential equation:

dq

dt
= qμ� − λt .

Integrating both sides with respect t ,

− ln
��λt − qμ��� /μ� = t + C0,

where C0 is a constant of integration. Considering the initial
state: q = q1,t−1 when t = 0,

− ln
��λt − qμ��� /μ� = t − ln

��λt − q1,t−1μ
��� /μ�.

Let tsteady be the time needed to reduce the system state
from q1,t−1 to qsteady, so tsteady can be computed by

tsteady = −(ln
��λt − qsteadyμ

��� − ln
��λt − q1,t−1μ

���)/μ�.

When τ j < tsteady, the system state falls at the rate of (qμ−
λ), so q j can be obtained from the following equation

− ln
��λt − q jμ

��� /μ� = τ j − ln
��λt − q1,t−1μ

��� /μ�. (13)

So, the computation of system state q j can be summarized
as follows:

q j =
�

q j obtained from (13) τ j < tsteady

qsteady otherwi se.

Case 3: λt/(c1,tμ
�) < 1, q1,t−1 ≤ qsteady. This condition

indicates that the system state tends to first increase from
q1,t−1 to qsteady and then keeps stable. In this case, for the
first-arriving second-group patient, q j = q1,t−1. We assume
that the change rate of the system state keeps unchanged in
each patient inter-arrival time. The change rate of the system
state is (λt − c1,tμ

�) if q j−1 > c1,t , while the change rate
is (λt − q j−1μ

�) if q j−1 ≤ c1,t . So for other second-group
patients, q j = q j−1 + �

λt − μ̂


/λt . To sum up, the value of

q j is computed by

q j =
�

q1,t−1 j = 1

q j−1 + �
λt − μ̂



/λt otherwi se,

where

μ̂ =
�

c1,t u
� q j−1 > c1,t

q j−1u� otherwi se.

3) Computation of wt3: The number of the third-group
patients u3 is equivalent to the system state q1,t . To calculate
wt3, we first introduce the following theorem.

Theorem 1: {N(t), n ≥ 0} is a Poisson process with
parameter λ, within time interval [0,t], N(t) patients arrived,
the total expected waiting time of all patients from each arrival
to instant t is λt2/2.

Proof: Let X (t) be the expected waiting time of all
patients, so

X (t) =
N(t)�
k=1

(t − τk).
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According to the law of total expectation,

E[X (t)]= E[E[X (t)|N(t)]= E

�
E

�
n�

k=1

(t − τk)|N(t)=n

��
.

Assume that (U(1), U(2), . . . , U(n)) be the order statistics
corresponding to independent random variables uniformly
distributed on the interval [0,t]. According to Theorem 5.2 in
[33], “given that N(t) = n, the n arrival time τ1, . . . , τn

have the same distribution as the order statistics corresponding
to independent random variables uniformly distributed on the
interval [0, t]”. So,

E[
n�

k=1

(t−τk)|N(t)=n] = E[
n�

k=1

(t−U(k))]= tn−E[
n�

k=1

U(k)]

= tn−E[
n�

k=1

Uk] = tn − tn

2
= tn

2
.

So, E[X (t)|N(t)] = t N(t)/2, E[X (t)] = t E[N(t)]/2 =
λt2/2. Q.E.D.

We consider two scenarios for the computation of wt3.
If q1t < λt�, which indicates that all the third-group

patients arrived in the queuing system in period t and the
time interval of all these patients’ arrival is [(1−q1,t/(λt�))�,
�]. So the waiting time wt3 can be computed according to
Theorem 1 by

wt3 = λt

2

�
� − (1 − q1,t

λt�
)�

�2

= λt

2
(
q1,t

λt
)2 = q2

1,t

2λt
.

If q1,t ≥ λt�, in this case, λt� third-group patients arrived
in the queuing system in period t and (q1,t −λt�) third-group
patients arrived in the queuing system before period t . These
(q1,t − λt�) third-group patients wait for the entire period,
while the waiting time of the rest λt� third-group patients
can be computed according to Theorem 1, so the waiting time
wt3 can be calculated by

wt3 = (q1,t − λt�)� + λt�
2

2
= q1,t� − λt�

2

2
.

To sum up, the waiting time wt3 can be computed by

wt3 =

⎧⎪⎪⎨
⎪⎪⎩

q2
1,t

2λt
q1,t < λt�

q1,t� − λt�
2

2
otherwi se.

IV. PHYSICIAN SCHEDULING MODEL

Based on the waiting time computations method, we formu-
late the ED physician scheduling problem as a mathematical
model. The objective of the scheduling model is to minimize
the total waiting time of patients and the total working time of
physicians. The ED needs to assign the physicians to different
predefined shifts to address the time-varying patient demands.

According to our field survey in our collaboration hospital,
the following physician scheduling constraints are considered
in our model:

1) Each physician can work only one shift in a day;
2) Each physician’s working time cannot be interrupted;

3) The total working time of each physician cannot exceed
H hours in a week;

4) Each physician performs no more than Cmax and no less
than Cmin night shift in a week;

5) A physician rests at least 24 hours after completing a
night shift;

6) At least one physician is working in each period of a
week.

The planning horizon of the scheduling model is cyclic with
|T | periods, and each period has a length of �. In this paper,
� is one hour. The total available number of ED physicians is
|K |. Each day has |N | available shifts, which are predefined
by the ED, i.e., the ED predefines the start time and end time
of each shift, such as the physician working shifts shown in
Table I. The daily shift pattern remains the same, and it is
assumed that the night shift is the last shift of a day. We use
the binary parameter rn,t to express the working time of each
shift. rn,t equals 1 only if period t is in the working hours of
shift n, otherwise rn,t equals 0.

Sets and Indices
i ∈ I: index of physicians, I = {1, 2, . . . , |K |}
m ∈ M: index of days, M = {1, 2, . . . , 7}
n ∈ N : index of shifts, N = {1, 2, . . . , 7|N |}
t ∈ T : index of periods, T = {1, 2, . . . , |T |}
Parameters
Cmax: maximum number of night shifts assigned to a

physician during one week
Cmin: minimum number of night shifts assigned to a physi-

cian during one week
H : maximum number of working periods of a physician

during one week
rn,t : 1, if period t is in the working hours of shift n; 0,

otherwise
α: the parameter to balance two terms of the objective
� : length of a period
|K |: number of available physicians
|N |: total number of one day’s shifts
|T |: total number of periods
Decision variables
xi,n : 1, if physician i is assigned to shift n; 0, otherwise
The physician scheduling model can be formulated as

follows:

Obj : min z =
|T |�
t=1

W1,t + α

|T |�
t=1

c1,t� (14)

s.t.
m·|N |�

n=m·|N |−(|N |−1)

xi,n ≤ 1, ∀m ∈ M, i ∈I (15)

xi,m·|N | +
(m+1)·|N |�

n=m·|N |+1

xi,n ≤ 1, ∀m ∈ M\{7},

i ∈ I (16)

xi,7|N | +
|N |�
n=1

xi,n ≤ 1, ∀i ∈ I (17)
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7�
m=1

xi,m·|N | ≤ Cmax, ∀i ∈ I (18)

7�
m=1

xi,m·|N | ≥ Cmin, ∀i ∈ I (19)

7|N |�
n=1

|T |�
t=1

xi,nrn,t ≤ H, ∀i ∈ I (20)

c1,t =
7|N |�
n=1

|K |�
i=1

xi,nrn,t , ∀t ∈ T (21)

c1,t ≥ 1, ∀t ∈ T (22)

q1,t = L1(c1,t , q1,t−1, q2,t−1, t), ∀t ∈ T
(23)

q2,t = L2(c1,t , q1,t−1, q2,t−1, t), ∀t ∈ T
(24)

W1,t = W1(c1,t , q1,t−1, q2,t−1, t), ∀t ∈ T
(25)

q1,0 = 0 (26)

q2,0 = 0 (27)

The objective function (14) minimizes the total patient
waiting time in the physicians’ queue and the staffing cost,
where α is the parameter to balance two terms of the objective.
Constraint (15) ensures that each physician works at most on
one shift in one day. Constraint (16) and (17) guarantee that
a physician rests at least 24 hours after performing a night
shift. Note that constraint (17) ensures that a physician does
not work on the first day of a week if the physician selects
the night shift on the last day of the week. Constraints (18)
and (19) ensure the limitation of the number of night shifts
in one week of each physician. Constraint (20) ensures that
the total working time of each physician is no more than H
hours. Constraint (21) gives the number of physicians in each
period. Constraint (22) guarantees that at least one physician is
on duty for each period of the week. The function L1, L2, and
W1 in constraints (23)∼(25) denote our computation approach
of q1,t , q2,t , and w1,t , respectively. Constraints (23) and (24)
specify the computation of q1,t and q2,t . Constraint (25)
specifies the computation of W1,t . Constraints (26) and (27)
provide the initial state of the ED system.

The objective function is highly nonlinear because of the
constraints (23)∼(25), in which the system state q1,t and q2,t ,
and the waiting time W1,t are computed. Because optimization
solvers such as CPLEX or Gurobi cannot be used to solve the
nonlinear model, we design a pointwise technique to linearize
the scheduling model.

The linearization is implemented by assuming that the value
of the initial states of station 1 and station 2 are integer
multiple of a base constant ϕ. The linearization is performed
with the help of the following parameters and variables:

Sets and Indices
j : index of the system state in station 1, j ∈

{0, 1, 2, . . . , U/ϕ}
k: index of the system state in station 2, k ∈

{0, 1, 2, . . . , V/ϕ}

l: index of shifts, l ∈ {1, 2, . . . , |K |}
Parameters
U : possible maximal system state in station 1
V : possible maximal system state in station 2
ϕ: base constant of system state
Decision variables
a j,t : 1, if q1,t = jϕ; 0, otherwise
bk,t : 1, if q2,t = kϕ; 0, otherwise
yl,t : 1, if c1,t = l; 0, otherwise
d j,k,l,t : 1, if q1,t = jϕ, q2,t = kϕ and c1,t = l; 0, otherwise
U/ϕ and V/ϕ should be integers. The constraints (23)∼(25)

can be represented by linear constraints (28)∼(38).
U/ϕ�
j=0

a j,t = 1 ,∀t ∈ T (28)

U/ϕ�
j=0

a j,t · jϕ = q1,t , ∀t ∈ T (29)

V/ϕ�
k=0

bk,t = 1, ∀t ∈ T (30)

V/ϕ�
k=0

bk,t · kϕ = q2,t , ∀t ∈ T (31)

|K |�
l=1

yl,t = 1, ∀t ∈ T (32)

|K |�
l=1

l · yl,t = c1,t , ∀t ∈ T (33)

|K |�
l=1

U/ϕ�
j=0

V/ϕ�
k=0

d j,k,l,t = 1, ∀t ∈ T (34)

d j,k,l,t ≥ a j,t + bk,t + yl,t − 2, ∀t ∈ T ,

j ∈ {1, . . . , U/ϕ},
k ∈ {1, . . . , V/ϕ}, l ∈ 1, . . . , |K |}

(35)

q1,t+1 =
|K |�
l=1

U/ϕ�
j=0

V/ϕ�
k=0

d j,k,l,t L1( jϕ, kϕ, l, t),

∀t ∈ T \{|T |} (36)

q2,t+1 =
|K |�
l=1

U/ϕ�
j=0

V/ϕ�
k=0

d j,k,l,t L2( jϕ, kϕ, l, t),

∀t ∈ T \{|T |} (37)

W1,t =
|K |�
l=1

U/ϕ�
j=0

V/ϕ�
k=0

d j,k,l,t · W1( jϕ, kϕ, l, t),

∀t ∈ T (38)

Constraints (28)∼(31) ensure that q1,t and q2,t patients
are at the beginning of period t in station 1 and station 2.
Constraints (32) and (33) ensure that ct physicians work at
the period t . Constraints (34) and (35) ensure that only one
combination of q1,t , q2,t , and ct is available. L1( jϕ, kϕ, l, t),
L2( jϕ, kϕ, l, t) and W1( jϕ, kϕ, l, t) in constraints (36)∼(38)
give the value of q1,t+1, q2,t+1, and W1,t when the initial
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states and the number of physicians of period t are jϕ,
kϕ and l, respectively. Constraints (36) and (37) specify the
computation of q1,t and q2,t , while constraint (38) specifies
the computation of W1,t . As an illustration of the pointwise
linearization method, we provide an example in part C of the
appendix.

With the system state q1,t , q2,t and the waiting time
W1,t computation being substituted by the linearized con-
straints (28)∼(38), the model can be transformed into a
linearized model. Let MIP1 be the linearized physician
scheduling model, which can be summarized as follows:

Minimize (14)

s.t. (15) ∼ (22), (26) ∼ (38).

Physician scheduling problems are NP-hard problems and
computationally challenging even for small-size instances [11],
[34], [35]. Because of the pointwise linearization, the size of
the model increases dramatically. We take the second instance
(week 2) of part C in section VI (numerical experiments)
as an example: We use Gurobi as the mathematical solver
and see that the MIP1 model has more than 9,982,700 rows
and 11,126,300 columns with about 500 continuous variables
and 11,125,800 integer variables. The huge size of the model
makes it challenging for the commercial solver to solve the
model, which is further shown in section VI. Therefore,
we additionally design a heuristic algorithm to solve the
physician scheduling problem.

V. ALGORITHM DESIGN

In this section, we design a TS algorithm to solve the
physician scheduling problem. The TS algorithm is a com-
monly used algorithm to solve discrete optimization problems.
Successful examples of the TS algorithm’s application in the
physician scheduling problem can be found in Niroumandrad
and Lahrichi [36] and Liu and Xie [37]. The general structure
of the TS algorithm is shown in Fig. 7. The algorithm starts
from an initial solution s0. After that, the tabu list gets
initialized, and s0 is set as the current solution s. In each
iteration, the algorithm generates the neighborhood of the
current solution s and finds the best neighborhood solution
s�, which is either non-tabu or satisfies a specific aspiration
criterion. Then the algorithm updates the tabu list and sets
s = s�. The algorithm stops once a predefined stopping
criterion is met.

A. Initial Solution, Neighborhood Structure and Tabu Move

The initial solution s0 is generated by a greedy algorithm.
First, we assign a physician to the first shift of the week and
then randomly assign each time one physician to the shift
that starts from the end of the last working shift, concerning
the constraints of physician assignment (e.g., no physician
works more than one shift in one day or two successive night
shifts). This procedure is repeated until each period of a week
has at least one physician working. Then, without violating
the assignment constraints, we add the physician one by one
to the shift that minimizes the objective function until no
improvement is found by assigning a physician to any shift.

Fig. 7. Structure of the TS algorithm.

After generating the initial solution, we set it as the first
current solution s and generate its neighborhood solutions.
All neighborhood solutions of the current solution are gen-
erated by following two moves: (1) to assign one physician
additionally to one shift; (2) to eliminate one assigned shift
of one physician. The neighborhood solution, which satisfies
the physician scheduling constraints, will be reserved, and the
best feasible neighborhood solution s� will be identified and
set as the new current solution.

To avoid the algorithm getting trapped in local optima
during iterations, we define tabu moves in the algorithm. The
principle of the tabu move is defined as follows: assume that in
one iteration, s is the current solution and s� is the best feasible
neighborhood solution at the end of the iteration, then the
move that makes solution s� back to solution s are forbidden
in the following θ iterations.

B. Solution Evaluation

The first trick is to use a rough evaluation. As stated in
section III.A.2, the system state under a given staffing plan
is computed by the bisection method, which makes the com-
putation time of APP-length-2 highly dependent on the given
tolerance of the bisection method: a small tolerance will bring
an accurate result with a long computation time. In contrast,
a bigger tolerance will cause a less accurate result but with
a shorter computation time. Since the APP-time-1 method
relies on the system state results computed by APP-length-2,
we design two evaluations to accelerate the evaluation process.
When calculating the patient waiting time by APP-time-1,
we use the evaluation with 10−5 absolute errors in APP-
length-2 as the “exact” evaluation and the evaluation with
10−1 absolute errors as the “semi-exact” evaluation. As shown
in Fig. 8, a feasible neighborhood solution will get first
semi-exact evaluated. If the objective value of the solution
is better than that of the current best neighborhood solution,
the solution will then be evaluated exactly. Numerical results
show that the result of “semi-exact” evaluation approximates
the value of the “exact” evaluation when evaluating the same
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Fig. 8. Solution evaluation process.

Fig. 9. Computation method in “semi-exact” evaluation.

solution, while the “semi-exact” evaluation is 5-6 times faster
than the “exact” evaluation.

The second trick is that in the “semi-exact” evaluation we
do not compute the system state and patient waiting time from
the first period of a week but the first-changed period. In our
algorithm, a neighborhood solution is obtained by changing
one shift of one physician. This change has no impact on
the system state and waiting time computation before the
first-changing period and little impact on the system state
and waiting time far from the changing periods. As shown
in Fig. 9, we only recompute the system state and waiting
time of changing periods and the consecutive L periods after
the change. Through experiments, we set L to 32 to guarantee
the evaluation precision of the system state and patient waiting
time.

C. Aspiration and Stop Criterion

The algorithm uses a simple aspiration criterion. If the
objective value of one neighborhood solution generated by
a tabu move is better than the best-known solution, the tabu
of the solution will be disabled. The stop criterion of the TS
algorithm is the number of iterations. The algorithm will stop
and output results after η iterations.

VI. NUMERICAL EXPERIMENTS

In this section, we first implement experiments to validate
our proposed approximation methods of the system state and
patient waiting time. The results of our approximations and
simulations are compared. Next, we present computational
experiments designed to assess the performance of the pro-
posed TS algorithm. We compare the solutions of Gurobi
9.0 solver with the scheduling solutions of our TS algorithm.
Furthermore, we compare our TS solutions with the real-life
physician schedule and another method in the literature. The
real-life physician schedule and patient arrival patterns are

TABLE II

PARAMETERS OF EXPERIMENTS TO VALIDATE THE APPROXIMATION
METHOD

used in the numerical experiments except for part C, in which
we cut the patient arrival rate by half to make it possible
to solve the model by a MIP solver. All simulations are
performed by simulation software Anylogic 8.5 with 50,000
replications. The TS algorithm is implemented in C++. All
algorithms are run on a 3.1 GHz CPU, 512 GB memory
computer and Win10 operation system.

A. System State Approximations vs. Simulation

e first compare system state approximations (APP-length-
1 and APP-length-2) with simulation results to check the
accuracy of approximation methods. We use real-life data from
Wuhan hospital to perform the numerical experiments. Six
weeks of operation data are selected. The typical pattern of
the daily arrival rates of patients is shown in Fig. 1. The ED
takes a four-shift working schedule for the physicians. Four
shifts are 8:00-16:00, 9:00-17:00, 17:00-1:00, and 1:00-9:00,
while one, two, one, and two physicians are assigned to such
four shifts, respectively. Other parameters of the experiments,
e.g., the duration of a period and the service rate, are listed
in Table II. We use the actual physician staffing to implement
the experiments. All experiments begin with null patients in
both stations. For each week, the system states at the end of
each period are obtained by three methods (APP-length-1 and
APP-length-2, and simulation).

Table III presents the numerical results. Columns “APP-
length-1”, “APP-length-2”, and “Simulation” represent the
total system state (i.e., the sum of system states at the end
of each period) in the physicians’ queue computed by two
approximations and simulation. Column “Gap1−s” gives the
percentage deviation between the total system state of APP-
length-1 and the simulation results, and “Gap2−s” indicates
deviation between APP-length-2 and simulation. The devia-
tion between APP-length-1 and simulation is computed by
100×|APP-length-1−Simulation|/Simulation, while a similar
formula is used to calculate Gap2−s. To show the hourly
system states of different methods, we use week 2 and week
3 as examples, and the results are illustrated in Fig. 10 and 11.

Note that APP-length-1 can only evaluate the system state
of an Mt /M/ct queuing system without returns, so we modify
our model to an Mt /M/ct queuing system when applying the
APP-length-1 method. As stated in section III.B.1, the effect of
the returning patients can be taken as either the amplification
of the patient arrival rate or the minification of the physician
service rate [16]. Therefore, we consider our queuing model
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TABLE III

TOTAL SYSTEM STATE BY APPROXIMATIONS AND SIMULATION

Fig. 10. Hourly system state in the physicians’ queue of week 2.

Fig. 11. Hourly system state in the physicians’ queue of week 3.

as an Mt /M/ct queuing system with a minified service rate in
the experiments, i.e., the APP-length-1 method evaluates the
system state with parameters (λt , μ�, c1,t ).

From the results, we find that APP-length-2 is close to
the simulation and has higher accuracy than APP-length-1.
As shown in Table III, the total system state of APP-length-2
is close to the simulation results for each week’s data, with
a relative deviation below 3%. For all six weeks of data, the
average total system state over six weeks is 1674.24, while
the simulation result is 1698.31. The average gap of all six
instances is 1.46%. Meanwhile, from Table III we observe
that APP-length-2 tends to overestimate the total number
of patients slightly, but such overestimates are acceptable.
Such results verify that our APP-length-2 can approximate the
real system states well. On the contrary, the system state of
APP-length-1 is not as good as APP-length-2. With a mean
deviation of 37.17%, the APP-length-1 method underestimates
the system state, which demonstrates that the APP-length-1
cannot reasonably approximate the system state for our model.

From Fig. 10 and 11, we can further observe that APP-
length-2 is very close to the simulation results in terms of the
system state and much better than APP-length-1 results. Thus,
the APP-length-2 approximation method is adopted as the
system state evaluation method in our optimization algorithm.

TABLE IV

TOTAL WEEKLY WAITING TIME BY APP-TIME-1 AND SIMULATION

Fig. 12. Hourly waiting time of patients in the physicians’ queue of week 1.

Fig. 13. Hourly waiting time of patients in the physicians’ queue of week 2.

B. Waiting Time Approximations vs. Simulation

This subsection compares APP-time-1 with simulation
results to present the precision of our waiting time computation
method. We also use the real patient arrival rate and the actual
hospital staffing to validate APP-time-1. All experiments begin
with null patients in both stations. In Table IV, columns “APP-
time-1” and “Simulation” are the total waiting time in the
physicians’ queue of each week (i.e., the sum of waiting
time of each period) computed by APP-time-1 and simulation,
respectively; column “Gap” gives the percentage difference
between the total waiting time of APP-time-1and simulation.
Fig. 12 and 13 use week 1 and week 2 as examples to show
the hourly patient waiting time in the physicians’ queue using
APP-time-1 and simulation.

The experiment results show that the total waiting time
computed by APP-time-1 is very close to the simulation. The
average gap of the total weekly patient waiting time is 1.41%.
Fig. 12 and 13 show that APP-time-1 can well approximate the
hourly patient waiting time. From the results we can conclude
that APP-time-1 can be used as the evaluation method in our
TS algorithm.

C. Compare With Commercial MIP Solver

This subsection addresses the physician scheduling acquired
by the TS algorithm and Gurobi solver. Due to the model size
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TABLE V

PARAMETERS OF NUMERICAL EXPERIMENTS

limitation of Gurobi, we reduce the actual patient arrival rate at
each period by half to limit the size of the MIP1 model. Based
on such reduced arrival rates, we set ϕ = 1, U = 160, and
V = 40 in MIP1. Besides the parameters shown in Table II,
other parameters used in the numerical experiments are listed
in Table V. However, not surprisingly, even for such small-size
instances, we find Gurobi still very hard to obtain the optimal
solution. So, we set a stopping criterion to Gurobi that it stops
once the relative MIP gap is smaller than 3% or the solution
time reaches 12 hours.

Table VI shows the comparison between TS and Gurobi
solutions. For the TS algorithm, the objective value of for-
mula (14) (column “Objective value”), total patient waiting
time in the physician’s queue (“Waiting time”), and compu-
tation time of the solutions (“CPU”) are given. The relative
MIP gap (“Rel. gap”), which is the gap of the lower and
upper bound computed by Gurobi, is also listed. Column
“Gap-1” shows the percentage deviation of the objective value
between the TS and Gurobi solution, which is computed
by 100×|objective value of TS solution−objective value of
Gurobi solution|/objective value of Gurobi solution. With a
similar formula, “Gap-2” gives the deviation of patient waiting
time between the TS and Gurobi solution. Note that the results
of the total patient waiting time in the physicians’ queue is
obtained by simulation, based on the staffing derived from TS
and Gurobi solutions.

Table VI shows that Gurobi can get solutions within a
solution time of 12 hours in all six instances, but none of
the solutions is optimal, while the TS solutions are much
better than Gurobi solutions in both computation time and
solution quality. For all six instances, the average computation
time of the TS algorithm is 0.53 hours, which is about 95%
less than Gurobi when solving the same instance. In terms
of the objective function composed of patient waiting time
and physician working time, the TS algorithm can get an
averagely 44.3% smaller objective value than that of Gurobi.
The TS algorithm’s superiority is even more obvious when
only regarding the patient waiting time: the total waiting time
of the TS solution is averagely 74.9% less than the Gurobi
solution. These results show that our TS algorithm can get
better solutions than Gurobi in our scheduling problem.

Fig. 14. Hourly patient waiting time of TS solution and actual hospital
scheduling of week 1.

Fig. 15. Hourly system state of TS solution and actual hospital scheduling
of week 1.

D. Compare With Actual Hospital Schedule

We compare the physician scheduling of TS solutions and
the real-life scheduling used in the hospital. Real-life patient
arrival data are used to conduct the experiments. Table VII
shows the objective value ( column “Objective value”) and
total patient waiting time in the physician’s queue (“Waiting
time”) of the TS solutions and the real-life scheduling. The
computation time (“CPU”) of the TS is also shown in Table.
The results of total patient waiting time in the physicians’
queue are obtained by simulation. Columns “Gap-1” and
“Gap-2” show the percentage deviation of the objective value
and total waiting time between the TS solution and the actual
hospital schedule.

The hourly patient waiting time and system state in the
physicians’ queue of week 1 of the TS solution and the
actual hospital scheduling are shown in Fig. 14 and 15. The
hourly number of physicians of the TS solution and the actual
scheduling with daily patient arrival patterns are shown in
Fig. 16 and 17. We compare the staffing levels because the
system state and patient waiting time are determined by the
physician staffing levels.

Table VII shows that the TS solutions have smaller objective
values and total patient waiting time than the actual schedul-
ing. The average objective value of TS solutions is 52.8% less
than that of the actual scheduling. The average total patient
waiting time of six instances is 390.3, which is over 70% lower
than that of the actual scheduling. The average computation
time of our TS algorithm is about 0.6 hours. Among all
six instances, week 6 has the longest computation time with
0.67 hours.

The TS scheduling can effectively reduce not only the
patient waiting time but also the expected number of patients,
as shown in Fig. 14 and 15. Compared with the actual hospital
schedule, the TS solution achieves a shorter patient waiting
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TABLE VI

COMPARISON BETWEEN TS AND GUROBI SOLUTIONS

TABLE VII

COMPARISON BETWEEN TS SOLUTIONS AND ACTUAL HOSPITAL SCHEDULING

Fig. 16. Patient arrival rate and physician staffing of day 1 of week 1.

time in most periods except for a small number of periods
(like periods 9-14, 33-38, 77-84). The maximal hourly waiting
time is reduced from 26.3 to 12.9, while the maximal hourly
system state is reduced from 27.4 to 17.4. The number of
periods where the system state is greater than 15 is reduced
from 39 to 1.

Fig. 16 and 17 show that the TS scheduling can better
match the fluctuation of the patient arrival rate than the actual
hospital scheduling. The TS scheduling increases the number
of physicians in periods with high patient arrival rates (such
as periods 15 and 16) and decreases the number of physicians
in periods with low patient arrival rates (like periods 9, 10,
and 11). These physicians’ assignments make it possible to
reduce the total number of patients and waiting time of patients
without increasing the available number of physicians.

Fig. 17. Patient arrival rate and physician staffing of day 2 of week 1.

E. Compare With the Method in the Literature

Although numerous studies address the physician staffing
and scheduling problem, there is little research that addresses
the physician scheduling problem under time-varying demands
of patients with returns. To show the performance of our
method, we compare our TS algorithm with the method in
Yom-Tov and Mandelbaum [24].

The queuing model in Yom-Tov and Mandelbaum [24] is
similar to ours, i.e., the planning horizon is divided into several
periods, and for each period the patient arrives according to a
Poisson distribution and returns probably after an exponential
delay. Yom-Tov and Mandelbaum [24] study the computational
methods of the offered load R1,t and R2,t of their queuing
model and propose a staffing method based on the square-
root-staffing (SRS) formula: st = R1,t +β

�
R1,t , where β is a

parameter related to the waiting probability of patients in the
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TABLE VIII

COMPARISON BETWEEN TS AND ERLANG-R STAFFING

Fig. 18. Patient arrival rate and physician staffing of day 3 of week 1.

physician’s queue. The staffing level is obtained by rounding
up the computed st . Particularly, if the number of physicians
of a period is zero, we set the staffing level of the period to
one. Evidently, the bigger the parameter β is, the greater the
total labor time and the smaller the total patient waiting time
is. In this part, we set β to 0.5 to avoid getting a too large or
too small staffing level.

Compared with our work, Yom-Tov and Mandelbaum [24]
do not consider the physician scheduling constraints. There-
fore, considering the difference, we implement the comparison
experiments by comparing the staffing plan. The staffing plan
of our method is obtained from the TS algorithm by relaxing
the scheduling constraints. The minimal number of physicians
in each period constraint is the only reserved constraint.

Table VIII presents the objective value, total waiting time
and percentage deviation between our TS staffing and the
Erlang-R method. The total labor time of both methods is
also presented. The deviation of the objective value between
the TS solution and the Erlang-R staffing is calculated by
100×|TS−Erlang-R|/TS and shown in column “Gap-1”. Col-
umn “Gap-2” shows the deviation of the total patient waiting
time between both methods. The hourly number of physicians
of the TS solution and Erlang-R staffing, as well as the daily
patient arrival patterns, are shown in Fig. 18.

From Table VIII, we can see that the TS algorithm can
get better staffing than the Erlang-R method in terms of the
objective value and the total waiting time. In all six instances,
the patient waiting time of the TS solution is considerably
shorter than the Erlang-R method. The deviation of the patient
waiting time between both methods is surprisingly over 130%
on average, although our TS solutions have 54.5 hours (about

13.5%) higher labor time averagely. Besides, compared with
the Erlang-R staffing plan, the TS solution reduces the objec-
tive value by 20.2% on average. Figure 18 shows that our TS
staffing plan can better fluctuate with the time-varying arrival
rates of patients, while the Erlang-R staffing plan cannot well
follow the fluctuation of the patient arrivals. The results show
that our proposed TS algorithm is more effective for solving
our physician scheduling problem.

F. Extension to Non-Exponential Service Time

In the above model, the patients’ inter-arrival time and
service time are assumed exponentially distributed, which
is a common assumption in many relative works. However,
the data from our partner hospital show that the exponential
distribution (especially the service time distribution) assump-
tion is sometimes invalid. We individually use the degenerate
distribution and general distribution to model the service time
distributions of both stations. Based on the TS solutions in
the previous subsection and the actual hospital scheduling,
we obtain the system performance metrics, i.e., the total
waiting time of patients, under non-exponential service time by
simulation. In our simulation, we generate a distribution pool
for the general distribution by mixing five different distribu-
tions: Erlang distributions, gamma distributions, beta distribu-
tions, Pareto distributions and truncated normal distributions.
The mean and variance of the five distributions as well as the
degenerate distribution are all adjusted to the corresponding
exponential distributions (i.e., μ1 and μ2 in TABLE II). For
each patient, the general service time is generated by selecting
a random distribution from the distribution pool and creating a
corresponding service time. In other words, five distributions
are combined to represent the general distribution of patient
service times in the simulations.

Table IX shows the objective value (column “z”) and total
waiting time of patients in the physicians’ queue (“Waiting
time”) with TS schedule and actual scheduling when the ser-
vice time of both stations are degenerately distributed; Table X
gives the results with the generally distributed service times.
Columns “Gap-1” and “Gap-2” show the percentage deviation
of the objective value and total waiting time between the TS
solution and the actual hospital scheduling, respectively.

We observe when the service time is degenerately distrib-
uted, the TS solution reduces on average 53.1% objective value
and 74.2% total waiting time of the actual scheduling. Table X
shows that when the service time is generally distributed, the
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TABLE IX

COMPARISON BETWEEN TS SOLUTIONS AND ACTUAL HOSPITAL
SCHEDULING FOR DEGENERATE SERVICE TIME

TABLE X

COMPARISON BETWEEN TS SOLUTIONS AND ACTUAL HOSPITAL
SCHEDULING FOR GENERAL SERVICE TIME

objective value and total waiting time decrease correspond-
ingly by 52.8% and 72.7% on average. The results indicate
that the TS solutions are still better than the actual scheduling
when the service time is non-exponentially distributed.

VII. CONCLUSION

We address the ED physician scheduling problem with time-
varying patient arrivals and returns. To evaluate the system
performance of the ED system, we model the ED as a
time-varying queuing network system with returns and propose
a set of approximation methods to compute the system state
and patient waiting time. For the system state computation,
we extend the PSFFA method to our queuing model and
design different approximation methods for various cases. The
calculation of patient waiting time is based on the computed
system state. By classifying the patients into three groups,
we analyze the computation of each group’s patient waiting
time and then obtain the total patient waiting time. Based
on the approximation methods and a pointwise linearization
technique, we formulate a MIP model for the physician
scheduling problem and design a TS algorithm to solve the
model. Numerical results prove the precision of our proposed
approximation methods and the efficiency of our TS algorithm.
Results on real-life data show that our TS scheduling can
effectively improve the real-life hospital schedule and reduce
the patient waiting time.

This work can be extended in several directions. First, many
hospitals adopt the monthly scheduling of their physicians.
An extension of the planning horizon will make the scheduling
problem more complicated because of expanding the scale
and adding more scheduling constraints. Second, emergency
patients are classified after triage. Even within the non-urgent

patient group, some patients will have higher priority because
of worse conditions. An extension of our method to cope with
the prioritized patients is an interesting research topic.

APPENDIX

A. Toy Example of “APP-Length-2” Computation Method

To explain the “APP-Length-2” computation method clearly,
We take the computation of two periods as an example.
Assume that the length of each period is one hour. During
each hour, patients arrive according to a Poisson process.
The external patient arrival rates λ1 and λ2 are 15.6 and 5.1,
respectively. In the first period, the number of physicians is
two, while one physician works in the second period. The
examination department has ten servers working for each
period. The service times are exponentially distributed with
mean service rate μ1 = 10.93 and μ2 = 2.5. The probability
that a patient returns is 0.55. Assume that the system state at
the initial moment is zero at both stations.

In our computation method, q1,t and q2,t are approximated
by l M/M/c(ρ1,t , 2) and l M/M/c(ρ2,t , 10). Therefore, Eq. (6)
and (7) for the first period can be rewritten as follows:

l M/M/c(ρ1,t , 2) + 2 × 10.93 × ρ1,t × 1

= 0 + 15.6 × 1 + 10 × 2.5 × ρ2,t × 1

l M/M/c(ρ2,t , 10) + 10 × 2.5 × ρ2,t × 1

= 0 + 0.55 × 2 × 10.93 × ρ1,t × 1

Using the “bisection method”, we can numerically solve
ρ1,t and ρ2,t , and then compute q1,t and q2,t by substituting
ρ1,t and ρ2,t into l M/M/c(ρ1,t , 2) and l M/M/c(ρ2,t , 10), respec-
tively. The results are as follows: ρ1,t = 0.813, ρ2,t = 0.279,
q1,t = 4.805, q2,t = 2.794 (t = 1).

For the second period, Eq. (6) and (7) can be rewritten as
follows:

l M/M/c(ρ1,t , 1) + 1 × 10.93 × ρ1,t × 1

= 4.805 + 5.1 × 1 + 10 × 2.5 × ρ2,t × 1

l M/M/c(ρ2,t , 10) + 10 × 2.5 × ρ2,t × 1

= 2.794 + 0.55 × 1 × 10.93 × ρ1,t × 1

Similarly, the equations for the second period can also be
solved numerically. The results are as follows: ρ1,t = 0.861,
ρ2,t = 0.228, q1,t = 6.188, q2,t = 2.277 (t = 2). Using the
same way, we can calculate the system states q1,t and q2,t

from the first period to the last one.

B. Analysis of the Computation Method of “APP-Length-2”

Eq. (6) and (7) can be rewritten from the functional per-
spectives as follows:

C1 = f1(ρ1,t ) − k2ρ2,t , (i)

C2 = −k1ρ1,t + f2(ρ2,t ), (ii)

where Ci ≥ 0, and ki > 0 (i ∈ {1, 2}). In (i) and
(ii), f1(ρ1,t ) = l M/M/c(ρ1,t , c1,t ) + c1,tμ1ρ1,t�, f2(ρ2,t ) =
l M/M/c(ρ2,t , c2) + c2μ2ρ2,t�.

Because ρt is in the range of [0, 1) and l M/M/c(ρt , ct )
is monotonically increasing and convex function of ρt , fi
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Fig. 19. Graph of f1(ρ1,t ) and k2 f −1
2 (C2 + k1ρ1,t ).

Fig. 20. Graph of fi and f −1
i .

is also monotonically increasing and convex function of ρt .
Therefore, fi is reversible, i.e., f −1

1 and f −1
2 exist, and it is

clear that f −1
1 and f −1

2 are also monotonically increasing, but
concave (as depicted in Fig. 19).

From (ii), we can have

ρ2,t = f −1
2 (C2 + k1ρ1,t ). (iii)

Substituting (iii) into (i), we have

C1 + k2 f −1
2 (C2 + k1ρ1,t ) = f1(ρ1,t ). (iv)

Let g(ρ1,t ) = C1 + k2 f −1
2 (C2 + k1ρ1,t ) and h(ρ1,t ) =

f1(ρ1,t ). Since ρ1,t ∈ [0, 1), we have

g(ρ1,t) ∈
�
C1 + k2 f −1

2 (C2), C1 + k2 f −1
2 (C2 + k1)

�
,

h(ρ1,t ) ∈ [0,+∞).

Because g(0) > h(0) and g(1−) < h(1−), there exists
exactly one ρ1,t such that (iv) holds. Because of (iii), there
exists exactly one ρ2,t .Therefore, the unique solution of (6)
and (7) always exists. Next, we show that the solution can be
solved using the proposed bisection method.

From (iv), C1 can be rewritten as follows:
C1 = f1(ρ1,t ) − k2 f −1

2 (C2 + k1ρ1,t ) ≥ 0. (v)

The graph of f1(ρ1,t ) and k2 f −1
2 (C2 + k1ρ1,t ) over [0, 1)

is shown in Fig. 20. From Fig. 20, we can see that f1(ρ1,t ) −
k2 f −1

2 (C2 + k1ρ1,t ) is monotonically increasing in the range
that f1(ρ1,t ) ≥ k2 f −1

2 (C2 + k1ρ1,t ). Therefore, ρ1,t can be
solved by the bisection method. In the same way, ρ2,t can
also be solved by the bisection method.

TABLE XI

VALUE OF q1,t+1

C. Toy Example of the Pointwise Linearization Method

We use the linearization of q1,t+1 as an example of our
pointwise linearization method. We assume a period t with the
length of one hour. During each hour, patients arrive according
to a Poisson process with a mean of 2.8. The examination
department has ten servers working for each period. The
service times are exponentially distributed with mean service
rate μ1 = 10.93 and μ2 = 2.5. We assume that ϕ is equal
to one and set the maximal system state in stations 1 and
2 to two, i.e., U = V = 2, so j ∈ {0, 1, 2}, k ∈ {0, 1, 2}.
Assume that |K | = 2, therefore, l ∈ {1, 2}. Constraint (36)
specifies the value of q1,t+1 by multiplying variable d j,k,l,t by
the pre-calculated value of q1,t+1 with different combinations
of j , k, l and t . We calculate the value of q1,t+1 using our
“APP-Length-2” computation method.

Table XI shows the different values of q1,t+1 (the system
state of the period’s end) with different inputs. For example,
for period t , if the MIP solver get the following results:
d0,1,2,t = 1 while the rest variable d j,k,l,t = 0, i.e., the system
states at the start of the period j = 0, k = 1 and the number
of physicians l = 2. The MIP solver calculates the value of
q1,t+1 as follows:

q1,t+1 = 0 × 0.523 + 0 × 0.725 + · · · + 1 × 0.525 + · · ·
+ 0 × 0.946

= 0.525.
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