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mergency department (ED) overcrowding and long patient wait times have become a worldwide problem. We pro-
E pose a novel approach to assigning physicians to shifts such that ED wait times are reduced without adding new
physicians. In particular, we extend the physician rostering problem (PRP) by including heterogeneity among emergency
physicians in terms of their productivity (measured by the number of new patients seen in 1 hour) and by considering
the stochastic nature of patient arrivals and physician productivity. We formulate the PRP as a two-stage stochastic pro-
gram and solve it with a sample average approximation and the L-shaped method. To formulate the problem, we perform
a data analysis to investigate the major drivers of physician productivity using patient visit data from our partner ED,
and we find that the individual physician, shift hour, and shift type (e.g., day or night) are the determining factors of ED
productivity. A simulation study calibrated using real data shows that the new scheduling method can reduce patient
wait times by as much as 13% compared to the current scheduling system at our study ED. We also demonstrate how to
incorporate physician preference in scheduling through physician clustering based on productivity. Our simulation results
show that EDs can receive almost the full benefit of the new scheduling method even when the number of clusters is

small.
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1. Introduction

The goal of emergency departments (EDs) is to pro-
vide immediate medical treatments to patients who
require urgent care. In recent years, these hospital
departments have become more crowded in many
countries (including the United States and Canada),
for various reasons: the aging of the population,
higher patient volumes, and the growing complexity
of patient conditions and treatments. Consequently,
patients who seek care in EDs may experience long
wait times. This phenomenon is known as ED over-
crowding, which results in prolonged pain and suffer-
ing, patient dissatisfaction, and dangers to public
safety (Bernstein et al. 2009, Hoot and Aronsky 2008,
Pines et al. 2011). As it is not always feasible to
increase ED treatment capacity, mainly due to budget

constraints, it is crucial to allocate existing resources
efficiently to alleviate ED overcrowding. To improve
patient flow in EDs, personnel schedules need to
match the time-varying demand for emergency care.
According to Defraeye and Van Nieuwenhuyse
(2016), the personnel scheduling process is often
decomposed into four subproblems (SPs): (i) forecast-
ing: predicting demand for each time period during
the scheduling horizon; (ii) staffing: determining the
required number of workers for each scheduling per-
iod to meet specific performance targets at minimal
cost; (iii) shift scheduling: creating shift schedules and
determining how many workers are needed for each
shift type to cover the staffing requirements; and (iv)
rostering (or employee scheduling): assigning employ-
ees to shifts. We focus on the fourth SP (i.e., the roster-
ing problem for ED personnel). This research is
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motivated by a case study in an ED in Calgary,
Alberta, Canada.

There are two major personnel rostering problems
in EDs, namely the nurse rostering problem (NRP)
and the physician rostering problem (PRP). The PRP
is fundamentally different from the NRP (Carter and
Lapierre 2001), especially in Canada. In most Cana-
dian EDs, nurses work under a collective agreement,
whereas physicians are not employed by hospitals
and do not have collective labor contracts. Conse-
quently, physician schedules are predominantly dri-
ven by the need to satisfy as much as possible a large
number of (often conflicting) rules and personal pref-
erences. Physicians are the most expensive ED
resource and are frequently considered the bottleneck
in the delivery of emergency care (Bucheli and Mar-
tina 2004). As a result, the scheduling of emergency
physicians is crucial for the delivery of high-quality,
timely care. In this study, we study a PRP in which
we include characteristics of real-life EDs, such as the
stochastic nature of time-varying arrivals and
physician-specific productivity levels. The productivity
of an emergency physician is defined as the number
of new patients seen by the physician in 1 hour, which
is commonly referred to as the patient-per-hour rate (or
PPH rate) in the emergency medicine literature
(Bukata et al. 2018, Joseph et al. 2018).

The combinatorial nature of the PRP makes it diffi-
cult to solve. Large sets of contractual and individual
constraints contribute to the complexity of the prob-
lem. According to Gendreau et al. (2007), the con-
straints of the PRP can be classified into four
categories: (i) supply and demand constraints define
how many physicians are available and how many
should work during different time periods of a day in
the planning horizon; (ii) workload constraints regulate
the number of shifts assigned to physicians during a
certain time period; (iii) ergonomic constraints cover
hospital rules regarding rest periods after a certain
(set of) shift(s); and (iv) fairness constraints aim at dis-
tributing the assignment of particular types of shifts
among the physicians during the scheduling horizon.
In addition to the hospital rules, individual physi-
cians may be allowed to express preferences concern-
ing their schedules. It is usually not possible to
respect all constraints and preferences. Therefore, a
distinction is made between compulsory rules that
have to be satisfied (known as hard constraints) and
flexible rules that can be violated (known as soft con-
straints). This study aims to develop a formulation of
the PRP to create a schedule that satisfies the hard
constraints. Our proposed formulation also takes into
consideration the uncertainties regarding patient vol-
ume, arrival times, service times, and physician
heterogeneity in their non-stationary productivity
levels. Including these practically relevant

characteristics requires an understanding of how pro-
ductivity may change during shifts and the develop-
ment of approaches to solve the new PRP. This has
been rarely studied in the literature, although effec-
tive physician scheduling that matches capacity with
demand for emergency care is crucial for reducing ED
overcrowding and prolonged patient wait times.

We make three contributions in this study. First,
through data analysis we find that it is sufficient to
consider shift hour, shift type (daytime or night shift),
and the individual physician to predict the productiv-
ity of an emergency physician. Second, we study a
PRP in which shifts are assigned to physicians based
on their non-stationary productivity levels to mini-
mize the mismatch between the available ED capacity
and the non-stationary demand for emergency care.
We propose a two-stage stochastic programming for-
mulation in which the productivity levels and the
time-varying patient demand are modeled as stochas-
tic variables. This has not been studied in the litera-
ture, as most rostering problems ignore the random
components and aim to satisfy hospital scheduling
rules and physician preferences (Erhard et al. 2018,
Van den Bergh et al. 2013). We use sample average
approximation to express the extensive form of the
stochastic programming formulation and subse-
quently use the L-shaped method to solve the prob-
lem. Third, we derive managerial insights based on a
case study at an ED in Calgary, Alberta, Canada. In
practice, ED physicians are allowed to exchange shifts
among themselves even after the schedule is created.
To mitigate the negative impact of such exchanges,
we group physicians into different clusters based on
their productivity so that physicians within the same
cluster have similar PPH rates. Our results suggest
that the performance of the schedule with clustering
is near optimal even when the number of clusters is
fairly small.

The outline of the study is as follows. In section 2,
we review the relevant literature on personnel
scheduling and worker productivity. In section 3, we
empirically investigate the determinants of physician
productivity. In section 4, we formulate the PRP as a
two-stage stochastic program and propose a solution
method. We investigate the impact of the optimal
schedule through a simulation study in section 5 and
study how to account for physician preferences
through physician clustering in section 6. We con-
clude our study in section 7.

2. Literature Review

Our research is relevant to multiple streams of the lit-
erature. In section 2.1, we discuss various personnel
rostering problems that have been studied in the liter-
ature with a particular focus on ED physician
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scheduling. Studies on physician productivity and ser-
vice times as a function of workload are discussed in
section 2.2. The notion of productivity levels in person-
nel scheduling problems is presented in section 2.3.

2.1. Personnel Rostering Problem in EDs

The problem of shift scheduling for physicians has
been studied extensively in the literature (see Erhard
et al. 2018 for an overview). We only focus on papers
that study physician rostering in EDs.

Beaulieu et al. (2000) are among the first to present a
mixed 0-1 mathematical programming formulation
for the assignment of emergency physicians to three
distinct 8-hour shifts during a day. They propose a
decomposition strategy to solve the problem. Carter
and Lapierre (2001) extract the characteristics of a gen-
eric emergency PRP from six hospitals in greater Mon-
treal, Canada. In contrast to Beaulieu et al. (2000),
Carter and Lapierre (2001), and Rousseau et al. (2002)
construct non-cyclic rosters and develop a solution
approach that is a hybrid of constraint programming,
local search, and genetic algorithms. Gendreau et al.
(2007) apply four solution techniques to solve the PRP:
mathematical programming, column generation, tabu
search, and constraint programming. A genetic algo-
rithm is proposed by Puente et al. (2009). The simulta-
neous creation and assignment of shifts (including on-
call services) is studied by Brunner et al. (2009), who
use a heuristic decomposition strategy. This work is
extended by Brunner et al. (2011) to incorporate part-
time workers and solve the problem by a branch-and-
price algorithm, and by Stolletz and Brunner (2012) to
include different measures of fairness. Brunner and
Edenharter (2011) extend the problem by including
the experience levels of physicians and specifying that
each patient requires treatment based on a minimum
experience level. Gunawan and Lau (2013) and Bruni
and Detti (2014) schedule physicians to cover the
demand for certain duties and/or departments in a
hospital. The only work that includes physician pro-
ductivity levels to the PRP is Camiat et al. (2021). All
formulations of the PRP in these papers are similar in
that they are multi-objective optimization problems
that incorporate a large number of constraints and
physician preferences, where the demand for physi-
cians or shifts is deterministic.

The stochastic components in patient arrivals and
service times are mostly included in the second and
third steps of personnel scheduling problems
(Defraeye and Van Nieuwenhuyse 2016). Common
approaches to solving these problems include queue-
ing theory and simulation; see Defraeye and Van
Nieuwenhuyse (2013) and EL-Rifai et al. (2015) for
recent developments. Another approach to accounting
for stochastic demand and service times in personnel
rostering problems is stochastic programming.

Bagheri et al. (2016) study a stochastic nurse schedul-
ing problem where they include ergonomic constraints
(nurses cannot work the day after a night shift) and
distribution constraints (each nurse should work a
minimum number of shifts). Campbell (2011) and
Gnanlet and Gilland (2014) investigate the workforce
planning over multiple departments with the consid-
eration of cross-training.

With regard to the PRP, we make two main contri-
butions. First, we include heterogeneity in physician
productivity levels (similar to Camiat et al. 2021) and
show that clustering physicians in three different cate-
gories is sufficient to capture the benefits to account
for differences between physician productivity.
Second, we formulate the PRP as a stochastic program
to capture the uncertainty in patient arrivals and
physician productivity in an ED.

2.2. Productivity of Physicians in EDs
Shift work is very common in healthcare. A number of
studies have analyzed the impact of shift duration on
the productivity of emergency physicians. Hart and
Drall (2007) conclude that shifts with a duration of 8 to
9 hours result in higher average PPH rates than 12-hour
shifts, and Foster et al. (2015) conclude that 7-hour
shifts are the best among 6-, 7-, and 8-hour shifts. In
contrast, in a pilot study, Yang et al. (2008) suggest no
difference in average PPH rate. Extended shift dura-
tion has also been associated with adverse effects on
patient outcomes and with increased accidents and
medical errors (e.g., diagnostic errors and medication
errors). Fatigue (both physical and mental) is one of
the most common concerns associated with shift work
and extended shift duration. Other factors also influ-
ence the productivity of emergency physicians during
their shifts. Chan (2018) study the end-of-shift phe-
nomenon and conclude that physicians accept fewer
patients in the last 2 to 4 hours of 9-hour shifts to avoid
handing more patients over to other physicians.
Finally, the impact of workload on patient service
times and physician productivity has attracted atten-
tion from the operations management (OM) commu-
nity. KC and Terwiesch (2009) are among the first to
conclude that a high load on the healthcare system
leads to decreased service times in a cardiothoracic
surgery setting. Kuntz and Siilz (2013) study the ser-
vice times of individual emergency physicians under
different workload levels. They conclude that the ser-
vice time of physicians with more professional experi-
ence is shorter when the system load is high and
longer when the system load is low. Other empirical
work on the impact of workload on service times
include Armony et al. (2015), Berry Jaeker and Tucker
(2017), and Delasay et al. (2016). These studies provide
insights into the impact of various factors on physician
productivity; however, these factors cannot be used
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directly to determine staffing levels or physician ros-
ters. More interestingly, we illustrate in our data
analysis that shift hour, the individual physician, and
the type of shift contribute more to the predictability
of physician productivity than workload measures
such as the number of patients in the ED or the
waiting area, or who are waiting to be admitted to the
hospital.

2.3. Productivity and Employee Heterogeneity in
Personnel Scheduling

The final stream of the literature combines workforce
planning and employee productivity (as discussed in
the two previous sections), but not necessarily in a
healthcare setting. One of the earliest works in the
area of personnel scheduling with consideration of
productivity levels is by Li et al. (1991), who study a
shift scheduling problem in which a relative produc-
tivity measure is included to distinguish between full-
time and part-time employees. A similar approach is
used in multi-skill workforce planning, where
employees can be cross-trained; for example, see
Brusco et al. (1998) and Brusco and Johns (1998) on
such staffing problems, where employees have a
lower productivity in secondary skills.

A productivity parameter for individual employees
is rarely included in rostering problems when work-
ers are assigned to shifts. Goodale and Thompson
(2004) take individual productivity levels from a nor-
mal distribution and the labor cost of each employee is
approximately proportional to their productivity
levels. Employees are grouped by their productivity
level in Thompson and Goodale (2006). In Akbari et al.
(2013), employees’ productivity level is exogenous
and dependent on the shift they are assigned. Further-
more, when they are scheduled to work consecutive
shifts on the same day, their productivity decreases
by a constant factor. Camiat et al. (2021) use a con-
stant productivity level for each employee (or physi-
cian), which is only dependent on the type of shift
and not on the hour of the shift. In these papers, the
authors formulate a deterministic optimization model
and use heuristic procedures to assign workers to
shifts. Campbell (2011) and Gnanlet and Gilland
(2014) are the exceptions as they use stochastic pro-
gramming.

Among the papers reviewed, the one closest to ours
is Camiat et al. (2021), which also study the PRP by
considering individual physician productivity in a
deterministic setting and assuming that each physi-
cian has a shift-hour-independent PPH rate. Next, we
explicitly discuss the differences between our work
and Camiat et al. (2021). First, we include the stochas-
tic nature of the problem in our optimization to better
match reality. Our simulation results show that by
considering stochastic factors, the average patient wait

time can be reduced by 8.4% compared to solving the
PRP in a deterministic setting (as in Camiat et al.
2021). Second, we perform an empirical analysis to
investigate the determining factors of PPH and to pre-
dict PPH, whereas Camiat et al. (2021) use the aver-
age of the PPH observed in historical data as the
predictor, which depends on the day of the week and
the shift type. Consequently, sufficient observations
where each physician is assigned to all combinations
of shift types and days of the week are required for
accurate prediction. Third, we incorporate shift-hour-
dependent PPH in our model, as suggested by our
empirical analysis, whereas Camiat et al. (2021) use a
constant PPH rate for each physician. Our simulation
results show that in a deterministic setting, as in
Camiat et al. (2021), when the shift-hour-dependent
PPH is considered in the PRP, the average wait time
can be reduced by 4.3%. When we further consider
the stochastic factors in the PRP, the average wait
time is reduced by 12.3% compared to the schedule
from Camiat et al. (2021). Finally, we demonstrate
that a schedule in which physicians with similar pro-
ductivity levels are clustered can achieve near optimal
performance, which makes our results more imple-
mentable compared to Camiat et al. (2021).

In conclusion, we are the first authors to include
heterogeneous employee productivity levels in per-
sonnel scheduling problems that are dependent on
the hour of the shift, in addition to considering the
stochastic nature of the PRP.

3. Empirical Study of Physician
Productivity

Our study is based on data from an ED in the city of
Calgary, Alberta, Canada. During our study period
(from August 2013 to July 2015), there were approxi-
mately 75,000 patient visits to the ED each year. Like
other EDs across North America, this ED was dealing
with physician shortages and increased patient vol-
umes, resulting in prolonged wait times. Our dataset
contains patient visit records from this ED over a
2-year period from August 2013 to July 2015. In this
section, we describe the patient flow and physician
scheduling rules in our study ED. We then investigate
factors that impact the PPH rates of ED physicians.

3.1. Patient Flow

The study hospital operates in a manner similar to
many hospitals in North America. Upon arrival, a
patient is seen by a triage nurse. The nurse performs a
quick assessment of the patient (e.g., measuring vital
signs and recording the chief complaint), assigns a
triage score indicating the acuity of the patient’s con-
dition, and then creates an electronic record for the
patient. Our study hospital follows a triage protocol
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called the Canadian Triage and Acuity Scale (CTAS), a
five-level scoring system with 1 being most urgent and
5 being least urgent. After triage, all patients wait in a
common waiting room and the patient’s electronic
record is placed in a virtual queue to be processed by
one of the emergency physicians. This marks the
beginning of the waiting phase. Physicians use a com-
puter terminal to access the information of patients
waiting to be seen, including their CTAS score, wait-
ing time so far, other clinical information (e.g., chief
complaint codes), and diagnostic test results. Based on
the patient information, a physician decides which
patient to see next (Ding et al. 2019, Li et al. 2021).
A physician’s selection of a new patient for an initial
assessment marks the end of the waiting phase
and the beginning of the treatment phase. During treat-
ment, the physician may order diagnostic tests and
re-assess the patient after the test results become avail-
able. This process may be repeated. The treatment
phase ends when the physician makes a decision to
either discharge the patient from the ED or admit the
patient to the hospital for further treatment. An admit-
ted patient has to wait in an ED bed before being trans-
ferred to an inpatient bed. This is referred to as ED
boarding, during which the patient may require some
attention from the nursing staff, but the physician is
effectively done with the patient.

3.2. Current Practice of Physician Scheduling
During the study period, there were 15 shifts (thus 15
physicians) scheduled every day, two of which were
dedicated to the fast track where patients with minor
conditions were treated. The remaining 13 physicians
worked in the main ED area during their scheduled
shifts. The shift lengths in the main area vary between
6 and 8 hours. See Figure 1 for the start and end times
for each of the 13 shifts in the main ED area. In this
study, we only focus on the main ED area, as it is the
most congested part of the ED and most physicians
are scheduled to work in this area.

Physicians were assigned to these shifts based on
a number of scheduling rules. The most common

Figure 1 The Start and End Times of the 13 Shifts in the Main Treat-
ment Area of Our Study ED

1 [ 12:00 AM-7:00AM |

2 [ 6:00AM-1:00PM |

3 [ 7:00AM-2:00PM |

4 [ 8:00 AM - 4:00PM |
5 [ 10:00 AM —4:00 PM |
6

7

8

9

[ 10:00AM-6:00PM |
[ 12:00 PM —8:00PM___ |
[ 2:00 PM —9:00 PM
[ 4:00PM-11:00PM |
10 [ 4:00 PM - 12:00 AM

Shift ID

11 6:00 PM — 1:00 AM
12(-3:00 AM 8:00 PM —
13| 11:00 PM - 6:00 AM

01 2 3 45 6 7 8 9 1011 12 13 14 15 16 17 18 19 20 21 22 23

Time of day

rules can be grouped into three categories: balance
rules, pattern rules, and weekend rules. Balance
rules ensure that physicians work an equal number
of shifts in total (e.g., at least 12 and at most 14
shifts) and by type (e.g., day or night), proportional
to full-time equivalent (FTE) and the amount of time
off requested. Pattern rules specify that physicians
need to be scheduled at least 2 and at most 4 days
in a row. Additionally, after a physician is scheduled
for a consecutive number of days, she should have
at least 2 and at most 4 days off. Night shifts should
be scheduled on consecutive days, because no day
shift is allowed for 3 days after a night shift and
there need to be at least 21 days after a group of
consecutive night shifts. In general, weekend rules
are considered soft constraints that favor scheduling
physicians for an entire weekend (defined as the first
shift on Friday until the last shift starting on Sunday)
and avoiding scheduling physicians to work on two
consecutive weekends. However, in our study ED,
there is a hard constraint on the maximum number
of weekends that a physician is scheduled (again
proportional to FTE).

The hospital produces the shift schedule several
months in advance. Hence, physicians are not encour-
aged to express preferences (e.g., applying for time off
during their scheduled shift days). Instead, they can
exchange shifts with other physicians, as observed in
our study ED.

Our data analysis shows that the productivity of a
physician, measured by the number of new patients
seen per hour (i.e., the PPH rate) changes significantly
during the course of her shift and the pattern depends
on individual physicians. See Figure 2 for the average
hourly productivity of the five physicians who worked
the most shifts in the main ED area over the 2-year
study period. In particular, we observe that the PPH
rate (i) decreases with the hour of the shift and
(ii) depends on the physician. Next, we examine the
factors that impact a physician’s PPH rate and develop
a model to predict a physician’s PPH rate, with the

Figure 2 The Average Productivity of Five Physicians During Each Hour
of their Shifts

o Physician 1

\ -e-Physician 2
\ =2-Physician 3

\ =e=Physician 4

4 \\ +&-Physician 5

w

Average PPH rate

Hour of shift
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ultimate goal of incorporating the prediction into the
PRP so as to alleviate the mismatch between the sup-
ply and demand of emergency care.

3.3. Empirical Investigation of the PPH Rate

In this section, we empirically examine factors that
impact physician productivity. Our data include
6-hour, 7-hour, and 8-hour shifts. The 6-hour shifts
are considered flexible shifts in the study ED and the
data for this particular type of shift are less reliable.
Hence, the 6-hour shifts are not included in our study.
A total of 7911 shifts remain in the data, 5031 of which
are 7-hour shifts (63.6%) and 2880 of which are 8-hour
shifts (36.4%). More than 100 physicians worked at
least one shift during the study period. However, a
significant number worked there on exchange from
other hospitals in the same healthcare region and do
not normally work in our study ED. To simplify the
problem, we select the 52 physicians who have
worked the most 7-hour shifts during the study per-
iod in the main area. We present the corresponding
results for 7-hour shifts in the study. We also select
the 52 physicians who worked the most 8-hour shifts
and perform the same analysis for 8-hour shifts. The
results are qualitatively similar to that of the 7-hour
shifts and thus are deferred to Appendix A.

3.3.1. Choice of Variables. Our objective is to
investigate the factors that drive a physician’s produc-
tivity. Hence, the outcome variable is the number of
new patients seen by a physician during a specific
hour of her shift (i.e., the PPH). We denote the pro-
ductivity of physician i during the m-th hour of her
shift j by PPHjj;,. Our data include timestamps of the
patient flow and treatment process for each patient
and the start and end times of each physician’s shift,
which allows us to calculate PPH, ijm-

As for the independent variables, a physician’s
characteristics, such as age, experiences, level of train-
ing, and risk attitude, might affect her productivity.
However, such information is difficult to collect for
each physician and is not available in our data. Hence,
we define Physician as a unique identifier of an indi-
vidual physician. As shown in Figure 2, the shift hour
also affects a physician’s productivity. Hence, we
define a categorical variable ShiftHour to indicate the
hour of a shift and include it in the model. We define
a dichotomous variable NightShift to indicate whether
a shift starts between 5 PM and midnight. We include
NightShift in the model to verify whether it has an
impact on a physician’s productivity.

The workload and congestion level of the ED dur-
ing the hour when PPH is measured have been
reported to affect physician productivity; for example,
see KC and Terwiesch (2009), Kuntz and Siilz (2013),
Armony et al. (2015), Berry Jaeker and Tucker (2017),

and Batt and Terwiesch (2017) for extensive evidence
that the load of healthcare systems and the workload
of emergency physicians have a statistically signifi-
cant impact on their service times and thus their PPH
rates. Hence, we define three variables, EDCensus,
WaitRoomCensus, and BoarderCensus, which measure
the time-averaged number of patients in the ED, in
the waiting room, and waiting for inpatient beds,
respectively, during the hour when the PPH rate is
measured. We control for ED congestion levels by
including them in our model. In a recent study, Duan
et al. (2020) show that task switching has a significant
impact on physicians’ productivity and patient out-
comes. However, because task switching is a decision
at the operational level and is difficult to consider in
the PRP, which is a tactical-level decision, we do not
consider physician task switching in our model.

The study ED is in a teaching hospital, and physi-
cians oftentimes perform teaching (or supervising)
duties during their shifts. There are two types of
learners: emergency medicine residents and medical
students. It is known that the type of learners has an
impact on physician productivity (Bhat et al. 2014).
Hence, we define a categorical variable Learner with
three levels, indicating respectively whether there is a
resident learner, a student learner, or no learner in the
shift. Physicians often need to take patients whose
treatments at the ED are not yet complete from
another physician whose shift is ending. These
patients are called handover patients. Similarly, a
physician who will be off duty soon needs to hand
over her patients to other physicians on duty. This
patient care handover takes time and effort from the
physicians on both sides, and thus may have an
impact on physician productivity. We use Han-
doverTaken to denote the number of handover patients
a physician takes over from other physicians, and let
Handover denote the number of handover patients
given by this physician to others. We control for both
variables in our model and check whether they
improve the model fit. The summary statistics of all
variables are provided in Table 1.

3.3.2. Model Development and Results. The
dependent variable is a count variable. Hence, a gen-
eralized linear model from the Poisson family (or neg-
ative binomial family) is likely to be a better choice
than a linear regression model. Let E(PPH|X) denote
the mean of the predicted Poisson distribution that
fits a physician’s productivity level. Then, the model
is specified as follows:

log E(PPH|X) = By + #'X, M

where X represents the independent variables (or a
subset of them) as discussed in section 3.3.1. We
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Table 1 Summary Statistics for Variables of Interest

7-hour shifts

8-hour shifts

Variables All shifts DayShift NightShift All shifts DayShift NightShift
PPH

Mean (SD) 1.87 (1.51) 1.70 (1.50) 1.99 (1.51) 1,63 (1.40) 1.61 (1.40) 1,68 (1.41)

Range [0, 14] [0, 10] [0, 14] [0, 1] [0, 1] [0, 11]
EDCensus

Mean (SD) 46.94 (11.06) 45.39 (11.84) 48.04 (10.33) 5117 (10.73) 49.95 (10.90) 54.74 (9.35)

Range [1.81, 91.75] [6.75, 87.83] [1.81, 91.75] [6.75, 87.83] [6.75, 87.83] [12.45, 87.10]
WaitRoomCensus

Mean (SD) 12.55 (6.39) 10.32 (5.86) 14.14 (6.28) 12.63 (6.13) 11.63 (5.80) 15.58 (6.14)

Range [0, 37.32] [0, 37.32] [0, 36.87] [0.06, 37.14] [0.06, 37.14] [0.76, 37.14]
HandoverTaken

Mean (SD) 0.73 (1.74) 0.71 (1.88) 0.74 (1.63) 0.39 (1.25) 0.35 (1.19) 0.51 (1.41)

Range [0, 18] [0, 14] [0, 18] [0, 12] [0,12] [0, 11]
Handover

Mean (SD) 0.06 (0.41) 0.08 (0.48) 0.05 (0.36) 0.07 (0.46) 0.07 (0.47) 0.06 (0.43)

Range [0, 10] [0, 9] [0, 10] [0, 9] [0, 9] [0, 7]
BoarderCensus

Mean (SD) 9.26 (4.62) 10.08 (5.09) 8.67 (4.15) 9.54 (4.80) 10.02 (4.99) 8.11 (3.83)

Range [0, 33.37] [0, 33.37] [0, 29.30] [0, 33.37] [0, 33.37] [0, 29.53]
Learner

Resident n (%) 602 (2.5%) 469 (4.6%) 133 (0.9%) 392 (2.4%) 320 (2.7%) 72 (1.8%)

Student 1 (%) 14 (<0.1%) 14 (0.1%) 0 (0%) 40 (0.2%) 24 (0.2%) 16 (0.4%)

No learner 1 (%) 23,933 (97%) 9,730 (95%) 14,203 (99%) 15,584 (97%) 11,608 (97%) 3,976 (98%)
Observations 24,549 10,213 14,336 16,016 11,952 4,064
Shift count 3507 1459 2048 2002 1494 508
estimate the model specification in Equation (1) productivity among physicians. However, some

using Poisson regression and negative binomial
regression, which is a generalization of Poisson
regression that relaxes the highly restrictive assump-
tion that the variance is equal to the mean. We start
by including all of the variables and gradually
remove variables to check the goodness of fit with
and without the variables of interest. We estimate six
models and find no significant improvement from
using the negative binomial model over the Poisson
model by comparing the corresponding values of the
log likelihood (or AIC, BIC). Moreover, a Chi-square
goodness-of-fit test fails to reject the assumption of a
Poisson model (with a p > 0.999). Hence, we only
present the results from the Poisson model in Table 2.

From Table 2, we observe that across all six models,
a physician’s productivity decreases with the hour of
the shift (ShiftHour) and is higher during night shifts
(NightShift = 1). Fatigue (both physical and mental)
may explain why the PPH rate decreases with the hour
of the shift. Another possible explanation is that a
physician needs to spend time and effort on existing
patients under her care. The number of existing
patients accumulates through the course of the shift
until the end of the shift approaches (Chan 2018). As
for the effect of an individual physician, some levels of
the variable Physician are significant (e.g., MD004 and
MD349 in Table 2) and some are not (e.g., MD005 and
MDO006), which shows that there is heterogeneity in

physicians are more homogeneous than others. This in
fact motivates the clustering of physicians based on
their productivity, which we discuss in detail in
section 6.

We plot the AIC/BIC of the six models presented
in Table 2 in Figure 3. While Table 2 shows that all
the variables included in the model are statistically
significant, we want to identify a subset of the vari-
ables that are more important in explaining the
variations in a physician’s productivity and that are
easier to incorporate into our physician rostering
model. To make this comparison more explicit, we
further estimate two other models, namely, Model 7
which removes NightShift from Model 6, and Model 8
which removes both Physician and NightShift from
Model 6. Through Figure 3, we observe that remov-
ing Learner, BoarderCensus, Handover, HandoverTaken,
WaitRoomCensus and/or EDCensus only marginally
increases AIC/BIC; on the other hand, removing
either (or both) Physician and NightShift significantly
increases AIC or BIC, indicating a much worse
model fit. If we further remove the variable ShiftH-
our from Model 8, the AIC (BIC) increases dramati-
cally from 73,653 (73,710) to 85,434 (85,426). We
conclude that the three variables Physician, ShiftHour,
and NightShift are the most important driving factors
of the PPH rate. Hence, we do not include the other
variables in our model due to their negligible impact
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Table 2 Estimation Results for the Effect of Various Factors on PPH Rates for 7-hour Shifts. Model 1 Includes All Variables Discussed in
Section 3.3.1 Models 2-6 Gradually Remove Variables from Model 1

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 1.662*** 1.663*** 1.668*** 1.63*** 1.546*** 1.393***
(0.036) (0.036) (0.036) (0.035) (0.035) (0.03)
Physician (base = MD003)
MD004 —0.22%** —0.22*** —0.226*** —0.218*** —0.212*** —0.203***
(0.041) (0.041) (0.041) (0.041) (0.041) (0.041)
MDO005 0.01 0.017 0.015 0.017 0.018 0.025
(0.04) (0.04) (0.04) (0.04) (0.04) (0.04)
MD006 0.072 0.081+ 0.078 0.079* 0.08* 0.082+
(0.036) (0.036) (0.036) (0.036) (0.036) (0.036)
MD349 —0.427*** —0.424** —0.423*** —0.414**> —0.398*** —0.395***
(0.047) (0.047) (0.047) (0.047) (0.047) (0.047)
ShiftHour (base = Hour1)
Hour2 —0.491*** —0.491**> —0.491*** —0.497*** —0.502*** —0.499***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)
Hour3 —0.753*** —0.753*** —0.752%** —0.754*** —0.763*** —0.758***
(0.012) (0.012) (0.012) (0.012) (0.012) (0.012)
Hour4 —0.881*** —0.881*** —0.878*** —0.874**> —0.885*** —0.877***
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Hour5 —0.954*** —0.954*** —0.949*** —0.938*** —0.947*** —0.937***
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Hour6 =111 =111 —1.105*** —1.092*** —1.103*** —1.092***
(0.015) (0.015) (0.015) (0.015) (0.015) (0.015)
Hour7 —1.952*** —1.952%** —1.945*** —1.945%** —1.956*** —1.944***
(0.026) (0.026) (0.026) (0.025) (0.025) (0.026)
NightShift (base = DayShift) 0.165*** 0.16*** 0.15*** 0.153*** 0.182*** 0.163***
(0.009) (0.009) (0.009) (0.009) (0.009) (0.008)
EDCensus —0.011*** —0.01*** —0.008*** —0.008*** —0.003***
(0.001) (0.001) (0.001) (0.001) (0.000)
WaitRoomCensus 0.015*** 0.015*** 0.012*** 0.012***
(0.001) (0.001) (0.001) (0.001)
HandoverTaken —0.017*** —0.017**> -0.016***
(0.002) (0.002) (0.002)
Handover —0.114*** —0.113**> —0.113***
(0.02) (0.02) (0.02)
BoarderCensus 0.008*** 0.007***
(0.001) (0.001)
Learner (base = No Learner)
Resident 0.15***
(0.026)
Student 0.021
(0.106)
Log Likelihood -35,985 -35,997 -36,014 —-36,053 -36,116 -36,157
AIC 72,102 72,122 72,154 72,227 72,353 72,432
BIC 72,637 72,641 72,665 72,722 72,839 72,910
Observations 24,549 24,549 24,549 24,549 24,549 24,549

Notes: This table reports the estimation results from the Poisson regression. Robust standard errors are shown in the parentheses. ***p < 0.001;

*p<0.1; **p < 0.01; *p < 0.05.

and the difficulty of including them in our opti-
mization model. In other words, we will use Model
6 in Table 2 to predict the average PPH rate of a
physician during a particular hour of her shift in
the stochastic optimization model. Note that in the
interest of space, we include the coefficients for part
of the physician variable in Table 2, and the
complete estimation results are provided in
Table A2 of Appendix A.

4. An Optimization Model of the
Physician Rostering Problem

In this section, we formulate the PRP. The objective
function is to minimize the total hourly mismatch
between the patient demand for emergency care
(measured by newly arriving patients per hour) and
the service provided by the ED (measured by the total
PPH rate over all physicians working in the ED

Please Cite this article in press as: Zaerpour, F., et al. Scheduling of Physicians with Time-Varying Productivity Levels in Emergency
Departments. Production and Operations Management (2021), https:/ /doi.org/10.1111/poms.13571



https://doi.org/10.1111/poms.13571

Zaerpour, Bijvank, Ouyang, and Sun: ED Scheduling with Time-Varying Productivity
Production and Operations Management 0(0), pp. 1-23, © 2021 Production and Operations Management Society 9

Figure 3 The AIC and BIC of the Poisson Models. A Lower Values of AIC/BIC Indicates a Better Model Fit [Color figure can be viewed at

wileyonlinelibrary.com]
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during a particular hour). We introduce a two-stage
stochastic programming formulation of the rostering
problem, where the uncertainty associated with time-
varying ED arrivals and hourly physician productivity
is included.

Most measures of ED productivity in the OM litera-
ture focus on throughput, such as length of stay
(LOS) and service (or processing) times (Batt and Ter-
wiesch 2017, Song et al. 2015, Song et al. 2018). In the
healthcare literature, physician productivity is usually
measured as the number of patients treated by a
physician (or PPH rate). The previous section shows
that the number of patients newly treated by a physi-
cian in an hour can be modeled with a Poisson distri-
bution, where the average PPH rate for individual
physicians can be estimated with a regression model.
Aside from using the PPH rate as a productivity mea-
sure, we have also explored the relationships between
PPH rates and the more established productivity mea-
sures from the OM literature (see Appendix B). We
conclude that physicians with a higher PPH rate have
a shorter average patient LOS and service times.
Hence, it is plausible that matching physician produc-
tivity in terms of PPH rates with uncertain demands
in the PRP will result in similar conclusions to a study
focusing on ED throughput in our optimization for-
mulation. However, including heterogeneity in PPH
rates is less complex and more acceptable from a
practical perspective, as it is widely accepted by ED
physicians that they see different numbers of patients
during their shifts.

4.1. Formulation of the Physician Rostering
Problem

Let I be the set of physicians, | be the set of days of the
planning period (where |Jl = n), and K be the set of
shifts per day. Without loss of generality, day 1 is
assumed to be a Monday and day n is a Sunday.
Each day is divided into hourly intervals t € T =
{0, 1, ..., 23}. Furthermore, we define the subset Kp as
the set of daytime shifts and Ky as the set of night
shifts. Hence, Kp and Ky are subsets of K.

Let Aj denote the number of patient arrivals in hour
teTondayj €] and ‘PJII:" denote the productivity of
physician i € I'in the m-th hour of the shift if the physi-
cian is scheduled to work shift k € K on day j € J. To
relate the ¢-th hour of a day to the m-th hour of shift k,
let f,, = m if the m-th hour of shift k equals hour ¢,
and f,, =0 otherwise. Consequently, we define
‘I‘],g = 0foralli €1, j €], k € K. Note that for any can-
didate schedule, the productivity of a physician, that
is, ‘I’]l],;, can be estimated by Model 6 in Table 2, where
Physician = i, ShiftHour = m, and NightShift can be
determined by the hour of day .

Note that we divide the planning horizon into n
days since the patient arrival pattern and the staffing
levels are recurring on a daily basis in our case
study. If this was not the case, and the arrival rates
and number of shifts (or their timing) would also
depend on the day of the week, then the planning
horizon could be divided into specific days of the
week instead of (generic) days. This would have no
impact on the number of decision variables for the
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PRP since K and T become seven times larger
whereas | becomes one seventh of its original value.
In our model, we choose to present the results with
days as the recurring time interval, but one can gen-
eralize it into models with weeks (even months) as
the recurring time interval.

We formulate the PRP as a two-stage stochastic bin-
ary problem. The stochastic program formulation is
denoted by PRP, thereafter. In the first stage, before
observing the uncertain arrival volumes Aj; and

physician productivity ‘Pé’;k[, we decide on the assign-
ment of physicians to each shift of each day during
the planning horizon. The decision variables x;i rep-

resent whether or not physician i € I is assigned to
shift k € Kon day j € J. More specifically,

1,
Xijk = 0,

After the patient arrivals and physician productivity
during each hour are observed, the second-stage prob-
lem calculates any mismatch between the demand for
emergency care and the supply provided in terms of
physician productivity for a given assignment. The
PRP, problem can be formulated as follows:

if physician i is assigned to shift k on day j,
otherwise.

min  Eyw[Q(A, ¥, ¥)] @

The objective (2) minimizes the mismatch between
the demand for emergency care and the supply
measured by physician productivity, denoted by
Q(A, ¥, x). See the detailed definition of Q(A, ¥, x)
in Equation (16).

Xk =1,

iel

j€], kek 3)

Constraints (3) ensure that exactly one physician is
assigned to each shift of the day.

> Xk <1, iel, jej 4)
keK

Constraints (4) enforce that a physician is not
assigned to more than one shift per day.

Y ¥ xx > L(J, K),

jejkek

Y X xp < U(, K),

jeJkekK

iel, JeJ,, KeK (5
iel, JeJ, KeK' (6)

Constraints (5) and (6) specify the minimum and
maximum number of shifts of certain types that can
be performed by a physician over the planning hori-
zon, where J'C P(]) is a set of subsets of | taken
from the power set P()) (ie., J<]) and similarly
K'cP(K) (such that KCK). These subsets capture

combinations of days and types of shifts (e.g., week-
end and night shifts). Furthermore, L(J,K) and
U(],K) are the minimum and maximum number of
shifts for the combination of subsets | and K.

Constraints (3) through (6) correspond to the balance
rules in our problem formulation. The next eight con-
straints correspond to the pattern rules.

S gt Toas<l i€l je]\{1} @

keKy keKp

Constraints (7) guarantee that a physician who is
assigned to a night shift must not be assigned to a
day shift on the next day.

2
2 Xkt X X X-pk <1,
keKy j'=0 k&Ky

iel, jeJ\{1, 2,3} ®)

Constraints (8) specify that a physician who is
assigned to a night shift cannot be assigned to a
shift of another type on the next 3 days.

17
3 Y X2kt XX Xi-pr <3,
kEKN j,: 0 kEKN

iel, jeJ\{1, 2,..., 20} ©)

Constraints (9) specify that a physician who is assigned
to a group of (at most three) consecutive night shifts
cannot be assigned to a night shift for 20 days.

Y Xk =Y Xitk, iel (10
kekK kekK

iel, jeJ\{1, 2}

(11)

> Xijk 2 > XiG—1)k — > Xi(j—2)ks
kekK kekK kekK

4
> xSt
20 kek iG=7)

iel, jeJ\{1, 2, 3, 4}

(12)

Constraints (10), (11), and (12) correspond to at least
2 and at most 4 consecutive working days for a
physician, respectively.

<1 - xijk) > Y Xij—2k — X Xi(ji—1)ks
kekK kekK kekK
iel, jeJ\{1, 2} (13)

4
) 0<1 - X xi(ff’)k) <4
] =

kekK
iel, jeJ\{1, 2, 3, 4} (14)
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Constraints (13) and (14) express the minimum and
maximum number of days off after a consecutive
number of days that a physician is scheduled.

xik €{0, 1} iel, je], keK (15)
Constraints (15) require the decision variables of the
first stage to take on binary values.

Note that we do not include the weekend rules in our
problem formulation since they are soft constraints.
However, they can easily be formulated. The follow-
ing constraints assign the same physician to all three
consecutive weekend days:

2
Y 2 Xk =3

j=0 kek

iel, je{512,...,n—-2}.

A physician should not work the next weekend after
working a weekend:

Z Z%(m Kt Z sz(j+] k <3
i—o
iel, ]6{5, 12,..., n—9}.

Similarly, we can easily include physician prefer-
ences to the problem formulation. For instance,
the constraints Zkerijk > Zj,i€l, j€], require that
physician i works on day j if she has a preference to
work on that day (i.e., if Z; = 1). If physician i has a
preference not to work on day j (i.e., if Z;]» =1), we

can add the following constraints to our model to
ensure that no shift is assigned to that physician on
that day: Ycxxiu <1-Zj, i€l, j€]. These con-
straints can also be added as soft constraints such
that any deviations from either the weekend rules or
physician preferences are penalized as a weighted
sum in objective function (2).

The function Q(A, P, x) is then used to evaluate the
mismatch in the assignment x between the arrivals A
and the productivity P, where A and P represent a
matrix of realizations from arrivals A and productivities
W, respectively. Specifically, the mismatch Q(A, P, x)
over the planning horizon is defined as
= min (16)

Q(Ar P, x) Z ZM]t

jeJteT

s.t. Ajt+Mj(t 1) Z Zx,]kPIf <M/t,

iel keK

Vie], teT\ {0},

(17)

Ap— Y X2 xnkp,f < My, (18)

iel keK

Ap+Mjns— 2 X x,]kPlf < Mjo, JEJNA{1},
ielkekK
(19)
M; >0, je], teT. (20)

In the second-stage model, the variable M; repre-
sents the mismatch between the patient demand and
the ED productivity in hour t € T on day j € J. The
objective function (16) sets these variables to the low-
est possible values. Constraints (17) to (19) specify
the hourly mismatch between patient demand and
the total physician productivity. The left-hand side
of the constraints (17) to (19) represents the effective
patient demand minus the number of new patients
treated during hour t on day j, where the effective
patient demand consists of new patients arriving to
the ED and patients still waiting in the ED from the
previous hour.

The PRPy is a two-stage stochastic integer program
(SIP) with binary variables in the first stage, and con-
tinuous variables in the second stage. The second-
stage problem is always feasible and it is a bounded
linear programming (LP). As a result, the function Q(-)
is piece-wise linear and convex (Birge 1997). We refer
to the decision variables in the first-stage model as as-
signment variables and the decision variables in the
second-stage model as mismatch variables.

4.2. Solving the Physician Rostering Problem

The objective function of the PRPy includes expected
values over the random matrices A and ¥. We use sam-
ple average approximation (SAA) to overcome the diffi-
culty in evaluating this expected value. Using Monte
Carlo sampling, we first obtain a set of independent
and identically distributed samples from the random
variables in the matrices. These realizations are called
scenarios. Let Aj(s) be the realization of Aj in scenario
s € 5, that is, this represents the number of new
patient arrivals in hour j € ] on day t € T under sce-
nario s € S. The expected value is then replaced by the
sample average over these scenarios, where we assign
equal weight 1/IS| to each scenario:

Erw[Q(A, Y, x)] ~ |S| ZQ P(s), x). 21)

With the scenarios fixed, we can obtain the determin-
istic equivalent of the SAA problem, which is
included in Appendix C. In this formulation, the
first-stage decision variables x are the same as
defined before, whereas the second-stage decision
variables are specified for each scenario. So, Mj(s)
denotes the surplus demand for emergency care in
hour j on day t under scenario s.
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To solve the SAA problem, we use a decomposition
strategy where we iteratively add constraints since most
of the constraints are not active in an optimal solution.
In particular, we use an iterative algorithm known as
the L-shaped method, first introduced by Van Slyke and
Wets (1969) for two-stage SIP models. (See Laporte and
Louveaux (1993) and Angulo et al. (2016) for more
developments when binary variables are included.) We
decompose our problem into a master problem (MP),
where shift assignment decisions are made, and a set of
SPs where the mismatch variables are set for each sce-
nario s € S. Observe that for fixed values of x, the deter-
ministic equivalent of the SAA problem (as presented
in Appendix C) decomposes into ISl independent SPs.
Each SP is the same as the LP formulation in (16)—(20)
(ie., SP s corresponds to solving Q(A(s), P(s), x),
whereas the MP for iteration v is as follows:

(MP) min 6
st. Ax=b, 22)
Ex+0>¢, =1, ..., v—1, (23)
xe {0, MUK geR, (24)

where (x%, 6) is the optimal solution in iteration v.
The constraints (22) correspond to the constraints
(3)—(14) from the PRPy and the constraints (23) are
the optimality cuts included from the previous itera-
tions. Note that if optimality constraint (23) is not
present, we set 6 to be —oco and do not consider it in
the computation of x°. To derive these cuts, we con-
sider the dual of Q(A(s), P(s), x°), where z(s), p(s)
and y‘(s) are the dual variables associated with con-
straints (17), (18), and (19), respectively, for each sce-
nario s € S in iteration ¢. We then define E‘x and ¢/,

Vl=1,... v, as follows:
1

E'x=—= Z Z Z it ( Z le]kp s)
|S|seS j€J teT\{0} keK iel

+/’€(S) > inlkpzlfi + Z 4 (S > qukplf (S))

keK iel T\{1} keK iel
(25)
and
1
= =YX X i(s)A(s) +p'(s)A10(s)

IS5\ jeT re o}

+ Zy%MmU> (26)

jen{1}

Let @’ = e’ — E‘A%. If ¢ > w°, then we stop the algo-
rithm with the optimal solution given by x°.

Otherwise, we add the optimality cut and perform
the next iteration.

4.3. Upper and Lower Bounds on the Optimal
Solution

Since the solution from the L-shaped method is only
an approximation of the true optimal solution, it is
important to evaluate the deviation in optimality.
Next, we apply a Monte Carlo bounding technique
(Mak et al. 1999) to obtain the upper bound and lower
bound on the optimal objective value, which can be
used to evaluate the quality of any solutions. Let z*
denote the optimal value of the objective of the PRPy
problem, which can be approximated by a sample
average when solving the extensive form (PRPy,,) for
a given set of scenarios S,, (see Appendix C). Hence,
we have

where z;, and x}, are, respectively, the optimal objec-
tive function value and optimal solution for the set
of scenarios S,. By Mak et al. (1999), we have

E[z;] =E rnm > Q(A(s), P(s), xm) ¢ | < z*
|S |seSm

Hence, the lower bound on z* can be obtained by
solving the extensive form of the PRP, problem (see
Appendix C) for multiple sets of scenarios, where
each set of scenarios is independently generated.
More specifically, a lower bound, denoted by L(1n;), is

():—Zz<z 27)

1’1[]1

where 1, is the number of sets of scenarios. Note that
the value of the objective function for an individual
set of scenarios (among all n; sets) can exceed the
optimal value z*. However, L(n;) provides a lower
bound when there are sufficiently many sets of sce-
narios.

To obtain an upper bound, consider a feasible solu-
tion X. It can be the solution obtained by the L-shaped
method after a few iterations for a given set of scenar-
ios S. The corresponding value of the objective func-
tion can be estimated as follows:

z(x, S

2 Q(A(s), P(s), x),

|S l ses

where S’ is the set of scenarios that are used to eval-
uate the objective value of x. Note that by the
L-shaped method, S’ should be independent of S
which is used to construct x. Due to the
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suboptimality of x, a straightforward estimate of the
upper bound on z*, denoted by U(#n,), is the average
objective function value over n, sets of scenarios.
Hence, we have
_ 12
u

() = 21 2(3,5)) > =" (28)
P

n

Since both the lower and upper bounds are esti-
mated from samples of scenarios, the sample vari-
ances of the lower and upper bounds can be
estimated by s7(n;) and s2(n,), respectively, where

1 n _
st (ny) = 1 21 (z, — L(nl))2 and
=
) 1 Ty R B 2
s (ny) p— (z(x, Sp) — U ()"
u m=1

As a result, the confidence interval (with significance
level @) for the optimality gap at x is given by

o @O —Lon)" +eu+al, @)
where [A]" = max{A, 0}, &,=s,(m)ty,14/2/Mu, & =
s1(m)ty,—1,4/2/m, and t, , equals the 1 — a percentile of
a t-distribution with n degrees of freedom. If the con-

fidence interval is tight, then the optimality gap at X
is small.

5. Comparison of Different Physician
Schedules

In the previous section, we propose a stochastic opti-
mization model to solve for the optimal physician
schedule. To evaluate the impact of a physician’s
schedule, taking stochastic arrivals and heterogeneous
physician productivity into consideration, we compare
the performance of such a schedule with alternative
schedules through a simulation study.

5.1. Study Setting

We use the simulation software Simio (version 12) to
simulate the ED process in our study hospital. The sys-
tem parameters are estimated from our 2-year dataset.
In our setting, a physician schedule is the assignment
of the 52 physicians into the 13 shifts (see Figure 1) per
day over a 4-week planning horizon. In practice, the
schedule is planned every 6 months. However, the
schedules largely repeat themselves. Hence, we focus
on 4 weeks to demonstrate the benefits of our pro-
posed schedule. We also assume that all 13 shifts are
7-hour shifts. The shift start times are shown in Fig-
ure 1. We modify the shift end times to make the shift
duration 7 hours.

The ED operations is modeled as a single station
queue with a time-dependent number of servers
(physicians). The patient arrival process follows a non-
homogeneous Poisson process with hourly rates esti-
mated from the average number of patient arrivals in
each hour of the day over the 2-year study period (see,
e.g., Kim and Whitt 2014). Upon arrival, patients enter
a single queue and wait for treatment if all physicians
are busy. For any time of day under a given physician
schedule, we know exactly how many physicians are
working, who they are, and which shift a physician is
working on. When a physician completes the treat-
ment of a patient, the physician signs up the next
patient waiting in the queue. Note that we do not con-
sider any patient prioritization in the simulation, since
it is complex and does not impact our performance
measure, that is, the average time that patients have to
wait before being seen by a physician. As we estab-
lished in section 3.3, the number of new patients a
physician could treat per hour, that is, the PPH, fol-
lows a Poisson distribution with rate p;j, for physician
i in the hth hour of shift j. Hence, in our simulation
model, the service time of a patient being treated by
physician i in the hth hour of shift j follows an
exponential distribution with rate p;;, where p, is
predicted from the Poisson model specified in
Equation (1) in section 3.3.

5.2. Alternatives of Physician Schedules

In this section, we describe the physician schedules
that we compare with our simulation model. Each
schedule assigns the 52 physicians to the 13 shifts per
day over a 28-day planning horizon. To make it fair,
each physician has to be assigned to exactly seven
shifts. No weekend rules or physician preferences are
included to allow more flexibility in the assignment
decisions. We will relax this assumption in section 5.4
by allowing physician preferences (both for weekend
vs. weekday shifts and vs. night shifts) and in section
6 through physician clustering.

Optimal Schedule: We solve the PRP; problem
using the solution method discussed in section 4.2.
The quality of the solution improves as the number of
scenarios increases, and the confidence interval on the
optimality gap becomes tighter. However, the compu-
tational effort increases exponentially at the same
time. We solve the PRPy problem based on 20, 40, and
60 scenarios, and the corresponding solutions are
denoted by 0 3% and %, respectively. We also cal-
culate the lower and upper bounds for each solution
with n; = 10 and n,, = 500. Table 3 presents the results
of the three candidate solutions.

The deviation in objective values of the solution

with 60 scenarios (i.e.,, *°) from that of the optimal
solution has a tight confidence interval. More
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Table 3 The Computational Results of Three Candidate Solutions to
the Physician Rostering Problem Based on 20, 40 and 60

Scenarios
Candidate solution P %" P
Number of scenarios 20 40 60
Lower bound: L(10) 19,085 20,771 21,851
Upper bound: U(500) 22,539 22,539 22,539
95% confidence interval [0, 3701] [0, 1905] [0, 811]
CPU time (in minutes) 17 43 118

specifically, the length of the confidence interval is
3.7% of the lower bound and 3.6% of the upper
bound. In other words, the L-shaped method with 60
scenarios provides a reasonably accurate solution for

the PRPy within 2 hours of computation time. Hence,

s a good approximation of the optimal schedule,

and it can serve as a benchmark for other alternative
policies in the simulation study.

Deterministic Schedule: The deterministic sched-
ule is obtained by solving the deterministic version of
the PRPy problem (see the formulation in section 4.1)
with all random variables replaced by their corre-
sponding average values. Hence, the deterministic
schedule takes the heterogeneity in physician produc-
tivity into consideration but not the randomness in
patient arrivals and physician productivity. The com-
putational complexity of the deterministic schedule is
significantly lower than its stochastic counterpart.

Traditional Schedule: We also consider a schedule
generated by the scheduler in the hospital using a tra-
ditional approach, where neither the heterogeneity in
physician productivity nor the stochastic nature of
patient arrivals and physician productivity are con-
sidered. Hence, the traditional schedule is based on
the status quo practice of our study ED where all
physicians are regarded as homogeneous.

In addition to the schedules discussed above, we
also consider a schedule derived from Camiat et al.
(2021) in our simulation experiments. As discussed in
section 2.3, Camiat et al. (2021) is the only other study
in which heterogeneity in physician productivity is
considered when solving the PRP. In their approach,
the stochastic nature of the PRP is not included (simi-
lar to the deterministic schedule) and the PPH rate for
each physician is assumed to be constant during a
physician’s shift. In contrast, we use time-varying
PPH rates when solving the PRP.

5.3. Simulation Results

We simulate the ED operations over 28 days and
evaluate the average time that a patient waits before
seen by a physician over 200 replications. The
average wait times under the traditional schedule,
the schedule based on Camiat etal. (2021), the

deterministic schedule, and the optimal schedule are
4.28 hours, 4.23 hours, 4.05 hours, and 3.71 hours,
respectively. In our discussion, we use the traditional
schedule as our baseline for comparison. Next, we
compare it against the scheduling approach pro-
posed by Camiat et al. (2021). When the heterogene-
ity in physician productivity is considered when
assigning physicians to shifts, the average wait times
can be reduced by 54% (from 4.28 hours to 4.05
hours). When the stochastic nature of the ED envi-
ronment is included, the average ED wait times can
be further reduced by 8.4% (from 4.05 hours to 3.71
hours). In other words, our formulation of the PRP
can potentially reduce the overall average ED wait
times by 13.3%. Figure 4 shows the average time-of-
day patient wait times over 200 simulation replica-
tions under each of these three schedules. Note that
the performance of the schedule based on Camiat
et al. (2021) is excluded, as it is similar to the tradi-
tional schedule. We observe that the optimal sched-
ule performs significantly better than the other two
schedules for each of the 24 hours.

When considering the schedule based on Camiat
et al. (2021), we conclude that including the non-
stationarity of individual physicians’ PPH rates
reduces the average wait time by 4.3% (from 4.23
hours to 4.05 hours). Overall, the optimal schedule
reduces the average wait time by 12.3% compared to
the schedule based on the approach proposed by
Camiat et al. (2021) (from 4.23 hours to 3.71 hours).

5.4. Physician Preferences

To generate the physician rosters for our numerical
results in the previous section, we included con-
straints such that all physicians have to perform an
equal number of shifts by type (i.e., day vs. night
shifts). To create more flexibility such that physician
preferences can be included and to better understand
the impact of physician preferences on average wait
times, we study the following four additional
settings:

e Setting 1: Each physician must work seven shifts.

e Setting 2: Each physician must work a mini-
mum of four shifts and a maximum of eight
shifts.

e Setting 3: Setting 2 plus 25% of the physicians
(randomly chosen) are not willing to work
night shifts and 50% of the physicians (ran-
domly chosen) are not willing to work week-
end shifts.

e Setting 4: Setting 2 plus 25% of the physicians
(randomly chosen) are not willing to work day
shifts and 50% of the physicians (randomly
chosen) are not willing to work weekend shifts.
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Figure 4 Comparison of the Average ED Wait Times Under Three Different Schedules Using Simulation [Color figure can be viewed at

wileyonlinelibrary.com]
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Recall that we have 52 physicians that need to be
assigned to 13 shifts per day and we use a planning
horizon of 28 days. This means that on average each
physician has to be assigned to seven shifts during the
planning horizon. In that regard, Setting 1 is compara-
ble to the setting of the results obtained in section 5.3,
except that Setting 1 has more flexibility in assigning
particular types of shifts to physicians. Setting 2 is
needed to create more flexibility when physician pref-
erences are included in Settings 3 and 4. When this
flexibility is not provided in Settings 3 and 4 (i.e.,
imposing physician preferences on Setting 1), there
can be instances where it is not possible to find any
feasible solution to the PRP. However, imposing the
constraint that physicians can be assigned at most
eight shifts instead of exactly seven shifts, can result in
physician rosters where a physician is assigned only
one extra shift at most. In other words, we provide
minimal additional flexibility to allow for physician
preferences.

The simulation results suggest that the average
patient wait times for the optimal physician schedules
under Settings 1, 2, 3, and 4 are 3.64 hours, 3.01 hours,
3.54 hours, and 3.72 hours, respectively. When we
compare the results of the new settings to the results
obtained in section 5.3, when there are constraints on
the number of certain types of shifts for each physician
instead of physician preferences (i.e., an average wait
time of 3.71 hours for the optimal schedule), we draw
the following conclusions: First, not specifying the
type of shifts reduces the average wait time by only
1.9% (from 3.71 hours to 3.64 hours). Conversely,
imposing constraints how many shifts of each type to

assign to physicians is not very restrictive. Second,
providing some flexibility in the number of shifts to
perform by a physician reduces the average wait time
by 17.3% (from 3.64 hours to 3.01 hours). Conse-
quently, physicians with a higher PPH rate will be
assigned an additional shift, whereas physicians with
a lower PPH rate will be assigned fewer shifts. We
understand that this creates unfairness, but it allows
us to study the impact of physician preferences. Third,
the additional constraints imposed in Settings 3 and 4
increase the average wait times by 17.6% and 23.6%,
respectively. This means that when most physicians
have specific preferences regarding which type of
shifts they want to be assigned to, the average wait
time will increase by roughly 20% (depending on the
type of preferences).

Note that the wait time reductions obtained by
including the stochastic nature of patient arrivals and
heterogeneity in physician productivity levels (or PPH
rates) in the PRP (i.e., the results in section 5.3) remain
intact when physician preferences are included,
because the deterministic and traditional schedules
also require the inclusion of constraints regarding
physician preferences to make that comparison. One
can argue that the wait time reductions will be offset
or less significant because there will be less flexibility
in assigning physicians to shifts. Instead of including
physician preferences, we propose a different
approach that is observed at our study hospital. In
particular, the traditional schedule allows more flexi-
bility in practice since physicians can exchange shifts
among themselves based on their preferences. This
could undermine the superior performance of the
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optimal schedule over the traditional schedule if it is
taken into consideration in our problem formulation.
To alleviate this issue, we group physicians with simi-
lar productivity levels into clusters and allow shift
exchanges among physicians within the same cluster.
This new setting is explored in more detail in the next
section.

6. Optimal Schedules with Physician
Clustering

Our simulation results show that the optimal sched-
ule considering the heterogeneity in physician pro-
ductivity performs significantly better than the
traditional schedule in terms of lower average patient
wait times. However, as mentioned in section 5.4,
physicians may exchange shifts in practice due to
their preferences, which may diminish the benefit of
the optimal schedule.

6.1. Physician Clustering
It is plausible that some physicians share similarities
in terms of their productivity levels, and hence, shift
exchanges among them have little impact on system
performance. We apply the k-means clustering
method to group physicians into different clusters,
using the mean and standard deviation of the PPH
rates as the clustering factors. We apply the Elbow
method and find that it is best to group physicians
into four clusters. We also obtain the clustering
results with two and three clusters. Figure 5 shows
the clustering results for the 52 physicians. We solve
the PRPy to get the optimal schedules when physi-
cians are grouped into two, three, and four clusters,
respectively, and evaluate their performances
through simulation.

We assume that physicians within the same cluster
have the same PPH rates. Hence, in the prediction

model for PPH, instead of using the variable Physi-
cian, we define a categorical variable Cluster to indi-
cate whether a physician belongs to a particular
cluster. The Poisson regression model with clustering
is specified as follows:

log E(PPH|Cluster, Hour, NightShift)
= Py + pcCluster + pyHour + pyNightShift. (30)

We estimate the model in Equation (30) for four
clustering models that group the physicians into one
cluster, two clusters, three clusters, and four clus-
ters, respectively. The results of the four clustering
models are summarized in Table 4. We observe that
the cluster variables are significant in explaining the
variation of physician productivity, and the model
with a larger number of clusters fits the data better
(bigger log likelihood and smaller AIC/BIC). How-
ever, the values of the AIC (and the log likelihood
and BIC) for models with four clusters are close to
those of the model with no clustering (see Model 6
in Table 2).

6.2. Simulation Results with Physician Clustering
In this section, we solve the PRPy problems with
physicians grouped into one, two, three, and four
clusters and obtain their corresponding optimal
schedules. The PPH rates used in the optimization
model are estimated by Equation (30) with coeffi-
cients given in Table 4. Note that in the model where
physicians are grouped into one cluster, the
productivity of all physicians is considered to be
homogeneous. Hence, the optimal schedule under
this model corresponds to the traditional schedule
(see section 5.2). We compare their corresponding
average wait times with that under the optimal sched-
ule, which was fitted when each individual physician
is considered as a cluster (see section 5.2), through
our simulation model in section 5. In the simulation

Figure 5 Cluster 52 Physicians by their PPH Rate Mean and Standard Deviation [Color figure can be viewed at wileyonlinelibrary.com]
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Table 4 Regression Results from the Poisson Model for Various Ways
of Clustering Physicians

One Two Three Four
cluster clusters clusters clusters
(Intercept) 1.266%** 1.476%** 1.339*** 1.197***
(0.008) (0.011) (0.009) (0.009)
ShiftHour
(base = Hour1)
Hour2 —0.499***  —-0.499*** -0.499*** —-0.499***
(0.011) (0.01) (0.01) (0.01)
Hour3 —0.758*** —-0.758*** -0.758*** —-0.758***
(0.012) (0.012) (0.012) (0.012)
Hour4 -0.877*** -0.877*** -0.877*** -0.877***
(0.013) (0.013) (0.013) (0.013)
Hour5 —0.937***  -0.937*** -0.937*** -0.937***
(0.014) (0.013) (0.013) (0.013)
Hour6 —1.092***  —1.092*** —1.092*** —1.092***
(0.016) (0.016) (0.015) (0.015)
Hour7 —1.944***  —1.944***  —1.944*** —1.944***
(0.026) (0.026) (0.026) (0.026)
NightShift 0.157*** 0.148*** 0.15*** 0.155***
(base = DayShiff)  (0.008) (0.008) (0.008) (0.008)
Cluster
(base = Cluster1)
Cluster2 0.27*** 0.181*** 0.162***
(0.009) (0.008) (0.013)
Cluster3 0.363*** 0.25***
(0.012) (0.013)
Cluster4 0.436***
(0.014)
LogLikelihood -36,684 -36,365 -36,311 -36,241
AIC 73,385 72,748 72,641 72,504
BIC 73,450 72,821 72,722 72,593
Observations 24,549 24,549 24,549 24,549
Notes: Robust standard errors are shown in the parentheses.

*x%p < 0.001; **p < 0.01; *p < 0.05.

model, a physician’s PPH rate under any schedule is
estimated by Equation (1) with coefficients given in
Table 2.

Our simulation results show that the average wait
time under the optimal schedule is 3.71 hours, and that
under the schedules with one, two, three, and four clus-
ters are 4.28 hours, 4.21 hours, 3.88 hours and 3.92 hours,
respectively. Hence, schedules with one or two clusters
are not recommended due to their poor performances.
Nonetheless, the optimal schedule with three clusters
performs significantly better than the schedule that does
not consider heterogeneity in physician productivity
(the schedule with one cluster) in that the average wait
time decreases by close to 10% (from 4.28 hours to 3.88
hours). Moreover, the performance of the optimal sched-
ule with three clusters does not deviate greatly from the
optimal schedule with an optimality gap of 4.6% (from
3.71 hours to 3.88 hours), which is the price of allowing
shift exchanges among physicians. The performance of
the schedule with four clusters is statistically indifferent
compared to that of three clusters.

If we take a closer look at the average hourly wait
times (shown in Figure 6), the optimal schedule and
the schedule with three clusters are very close during
periods when the wait times are high (from 5 AM to
11 AM). Hence, the schedule with three clusters can
achieve similar performance to the optimal schedule
when the ED congestion level is high. The schedule
with four clusters performs slightly worse than that
with three clusters. This suggests that hospital man-
agements do not have to consider the productivity
levels of each individual physician when assigning

Figure 6 Average ED Wait Times When Physicians are Grouped in Clusters with Similar Productivity Levels [Color figure can be viewed at

wileyonlinelibrary.com]
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physicians to shifts. The benefit of considering hetero-
geneity in physician productivity is achieved by three
clusters of productivity levels, where physicians
within each cluster are considered homogeneous.
Physician clustering can help address physician pref-
erences in shift scheduling by allowing shift
exchanges among physicians of the same group.

7. Conclusions and Future Research

In this study, we study the PRP in EDs. Our formula-
tion captures the stochastic nature of ED operations
and physician-specific shift-hour-dependent produc-
tivity, which is measured by the number of new
patients seen by the physician during each hour of her
shift (the PPH rate). This is in contrast to the literature
where random components are not modeled in most
rostering problems and the productivity of physicians
is mostly treated as a constant. Our analysis using data
from an ED in Calgary, Alberta, Canada, indicates that
the individual physician, hour of the shift, and shift
type are the dominant factors in explaining the varia-
tions in ED productivity. We incorporate these find-
ings into our stochastic programming formulation of
the PRP and propose a solution method to solve it. A
simulation study shows that the new rostering solution
can reduce average ED wait times as much as 13% over
the current scheduling method implemented in our
study ED. Furthermore, ED physicians are allowed to
exchange shifts among themselves in practice even
after the schedule is created. To mitigate the negative
impact of exchanging shifts on the near-optimal
assignment, we group physicians into different clus-
ters based on their productivity so that physicians
within the same cluster have similar PPH rates. Our
results show that EDs can receive significant benefit in
terms of reduced patient wait times when the number
of clusters is fairly small.

Our study opens a number of directions for
future research in scheduling processes. First,
including the stochastic environment in scheduling
problems makes these problems more realistic, and
they can improve operational performance

measures and service levels. This is an underex-
plored area in healthcare settings although they suf-
fer seriously from uncertainties. Second, taking
physician heterogeneity (or employee heterogeneity
in more general settings) into consideration can sig-
nificantly improve employee scheduling and thus
system performance. Beyond the PRP explored in
this study, both aspects can be included in staffing
problems as well. It would also be interesting to
study dynamic schedule adjustment based on
physician workload and ED occupancy levels, for
instance through surge calls for additional staff
members in case of high patient demand for emer-
gency care. Another direction for future research is
an empirical study of whether physician-specific
characteristics (e.g., age, experience, training, and
education) can be used to estimate their productiv-
ity. A better understanding of the factors that deter-
mine a physician’s productivity in the individual
level can help derive best practices so as to improve
operational performance in the system level.
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Appendix A. Supplements of

Regression Results

The estimation results from Poisson regression for
8-hour shifts are provided in Table Al. In the interest
of space, the coefficients of individual physicians for
7-hour shifts and 8-hour shifts are shown in
Tables A2 and A3, respectively. The estimation results
when physicians are grouped in two, three, and four
clusters are provided in Table 4.

Table A1 Estimation Results for the Effect of Various Factors on PPH Rates for 8-hour Shifts

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
(Intercept) 1.654*** 1.656*** 1.661*** 1.675*** 1.551*** 1.438***
(0.036) (0.036) (0.036) (0.036) (0.034) (0.027)
Physician (base = MD003)
MD004 —0.201** —0.198** —0.197** —0.194** —0.194** —0.195**
(0.042) (0.042) (0.042) (0.042) (0.042) (0.043)
MD005 -0.013 -0.015 -0.014 -0.016 -0.01 -0.014
(0.038) (0.038) (0.038) (0.038) (0.038) (0.038)
(continued)

Please Cite this article in press as: Zaerpour, F., et al. Scheduling of Physicians with Time-Varying Productivity Levels in Emergency
Departments. Production and Operations Management (2021), https:/ /doi.org/10.1111/poms.13571



https://doi.org/10.1111/poms.13571

Zaerpour, Bijvank, Ouyang, and Sun: ED Scheduling with Time-Varying Productivity
Production and Operations Management 0(0), pp. 1-23, © 2021 Production and Operations Management Society 19

Table A1 (Continued)

Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
MD006 0.025 0.029 0.03 0.029 0.035 0.026
(0.038) (0.038) (0.038) (0.038) (0.038) (0.038)
MD349 —0.465*** —0.453*** —0.452%** —0.449*** —0.455*** —0.461***
(0.058) (0.058) (0.058) (0.058) (0.059) (0.059)
ShiftHour (base = Hour1)
Hour2 —0.356*** —0.356*** —0.354*** —0.358*** —0.367*** —0.374***
(0.013) (0.013) (0.013) (0.013) (0.013) (0.013)
Hour3 —0.688*** —0.688*** —0.686*** —0.711*** —0.716*** —0.728***
(0.016) (0.016) (0.016) (0.015) (0.015) (0.015)
Hour4 —0.905%** —-0.905*** —0.901*** —0.929*** —0.935%** —0.953***
(0.018) (0.018) (0.018) (0.017) (0.018) (0.017)
Hour5 —1.039*** —1.039*** —1.034*** —1.043*** —1.039*** —1.061***
(0.02) (0.02) (0.019) (0.019) (0.02) (0.019)
Hour6 —1.009*** —-1.009*** —1.003*** -1.002*** —0.994*** -1.018***
(0.02) (0.02) (0.019) (0.019) (0.019) (0.019)
Hour7 —1.342%** —1.342*** —1.336%** —1.335*** —1.317*** —1.342%**
(0.023) (0.023) (0.023) (0.023) (0.023) (0.023)
Hour8 —2.428*** —2.428*** —2.421*** —2.436*** —2.408*** —2.433***
(0.046) (0.046) (0.045) (0.045) (0.045) (0.045)
NightShift (base = DayShift) 0.034* 0.033* 0.038* 0.034* 0.066*** 0.044**
(0.013) (0.013) (0.012) (0.012) (0.012) (0.011)
EDCensus —0.008*** —-0.008*** —0.008*** —-0.009*** —0.003***
(0.001) (0.001) (0.001) (0.001) (0.001)
WaitRoomCensus 0.016*** 0.016*** 0.017*** 0.017***
(0.001) (0.001) (0.001) (0.001)
HandoverTaken —0.03*** -0.03*** —0.03***
(0.005) (0.005) (0.005)
Handover —0.08*** -0.079*** —0.08***
(0.021) (0.021) (0.021)
BoarderCensus -0.002 -0.002
(0.001) (0.001)
Learner (base = No Learner)
Resident 0.137***
(0.032)
Student 0.025
(0.089)
Observations 16,016 16,016 16,016 16,016 16,016 16,016
Log Likelihood -21,755 -21,762 -21,762 -21,784 —21,845 -21,854
AIC 43,645 43,653 43,652 43,693 43,812 43,828
BIC 44,159 44,152 44144 44,169 44,281 44,289

Notes: This table reports the estimation results from the Poisson regression. Robust standard errors areshown in the parentheses. ***p < 0.001;
**p < 0.01; *p < 0.05.

Table A2 Regression Coefficients for All Physicians in Model 7 for 7-hour Shifts (Base = MD003)

Physician Coefficient Physician Coefficient Physician Coefficient
MD004 —-0.203*** (0.041) MD028 —0.188*** (0.042) MD065 —0.351*** (0.037)
MD005 0.025 (0.04) MD030 -0.011 (0.042) MD066 —0.187*** (0.044)
MD006 0.082" (0.036) MD032 —0.183*** (0.04) MD096 —0.254*** (0.037)
MD007 -0.101* (0.037) MD033 —0.183** (0.047) MD099 —0.324*** (0.04)
MD008 —0.099" (0.039) MD034 —0.065 (0.039) MD100 —-0.135* (0.042)
MD009 —0.1471*** (0.042) MD037 —-0.068 (0.041) MD111 —-0.089 (0.043)
mMDo11 -0.171** (0.044) MD040 —0.359*** (0.044) MD128 —0.249*** (0.041)
MDo12 —0.458*** (0.051) MD041 —0.209*** (0.042) MD136 -0.136* (0.041)
MDO15 0.036 (0.038) MD048 —0.272*** (0.042) MD177 —-0.042 (0.04)
MDO016 —0.153** (0.039) MD049 -0.123* (0.039) MD183 —0.15** (0.042)
MD018 -0.131** (0.038) MD050 —0.351*** (0.044) MD234 —0.355*** (0.044)
(continued)
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Table A2 (Continued)

Physician Coefficient Physician Coefficient Physician Coefficient

MD019 —0.148** (0.039) MD054 —0.158** (0.04) MD238 0.131* (0.039)
MDo21 —0.239*** (0.044) MD056 —0.135** (0.04) MD247 —0.147** (0.042)
MD022 —-0.034 (0.041) MD058 -0.01 (0.041) MD251 -0.108* (0.039)
MD023 —-0.293*** (0.045) MD059 —0.242*** (0.04) MD256 0.005 (0.043)
MD025 0.244*** (0.037) MD062 0.054 (0.04) MD272 —0.253*** (0.043)
MD027 —0.194*** (0.039) MD063 0.096* (0.039) MD349 —0.395*** (0.047)

Notes: Standard error in parenthesis; *p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.

Table A3 Regression Coefficients for All Physicians in Model 7 for 8-hour Shifts (Base = MD003)

Physician Coefficient Physician Coefficient Physician Coefficient

MD004 —0.195** (0.043) MD033 —0.233*** (0.041) MD100 —-0.147* (0.046)
MD005 -0.014 (0.038) MD034 -0.029 (0.037) MD111 —-0.086 (0.041)
MD006 0.026 (0.038) MD036 —0.107" (0.047) MD128 —0.219*** (0.041)
MD007 -0.067 (0.043) MD037 —0.101" (0.047) MD173 —0.28*** (0.048)
MD008 ~0.092" (0.041) MD040 —0.386*** (0.048) MD177 —-0.034 (0.04)
MD009 -0.173** (0.041) MD041 —0.245*** (0.047) MD181 —0.299*** (0.047)
MDo10 ~0.097" (0.039) MD048 —0.376*** (0.045) MD183 —0.153** (0.047)
MD013 —0.389*** (0.038) MD049 —0.138** (0.044) MD206 —0.258*** (0.041)
MDO15 -0.027 (0.045) MD050 —-0.376*** (0.043) MD215 —0.245*** (0.042)
MDO16 —0.165** (0.042) MD056 —0.148** (0.039) MD223 —-0.303*** (0.046)
MD018 —-0.146* (0.047) MD058 -0.026 (0.049) MD238 0.056 (0.04)
MD022 0.063 (0.047) MD059 -0.187** (0.048) MD247 —0.18** (0.045)
MD023 —0.281*** (0.044) MD062 -0.01 (0.044) MD251 —0.168** (0.041)
MD025 0.219*** (0.044) MD065 —0.399*** (0.042) MD252 —0.532*** (0.055)
MD027 —0.143* (0.042) MD066 —0.254*** (0.044) MD254 —0.248*** (0.049)
MD030 -0.077 (0.044) MD095 ~0.113" (0.042) mD271 —0.416*** (0.054)
MD032 —-0.328*** (0.046) MD099 —0.38*** (0.045) MD349 —0.461*** (0.059)

Notes: Standard error in parenthesis; *p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.

Appendix B. Relationship PPH Rate (age, gender, CTAS, ambulance arrival) and the vec-

and ED Productivity Measures tor Z consists of all shift-characteristic variables of
. . .y . . the physician (daytime, weekend). The age of a
To investigate the relationship between physician . . ived in f .
productivity measured as PPH rate and other ED pro- pl? Uer; ' Cate%onze 1r21 oua de groups ) young:r
ductivity performance measures, such as length of than 25 years, between 25 and 15 years, between 45

stay (LOS) and service (or processing) times of and 65 years, and at least 65 years of age. We
4 . . . denote them by Agel, Age2, Age3 and Age4, respec-

patients in the ED, we use the following log-linear . . .

regression model tively. The CTAS level of a patient in captured by

categorical variables. Besides LOS, we use the same
log LOS;jx = a + BClusterj +yY + 6Z, (B1) log-linear regression model for patient service times.

The results of the regression models with two clus-

where LOSj; is the LOS of patient i who is treated  ters and three clusters are presented in Table BI.

by physician j in shift type k and Cluster; indicates ~ Based on these results, we conclude that patients who

the cluster assigned to physician j. The vector Y con- are treated by a physician with a high PPH rate have
sists of all control variables related to the patient  alower average LOS and lower average service time.
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Table B1 Results of the Log-Linear Regression Models for the Effect of Physician PPH Clusterings on Length of Stay and Service (or processing)

Times
Length of stay (LOS) Service time
Two clusters Three clusters Four clusters Three clusters

Cluster (base = Low PPH)

Medium PPH 0.000 (0.006) 0.007 (0.008)

High PPH —0.078*** (0.006) —0.084*** (0.008) —0.063*** (0.008) —0.073*** (0.010)
CTAS (base = CTAS1)

CTAS2 0.312*** (0.014) 0.312*** (0.014) 0.208*** (0.018) 0.208*** (0.018)

CTAS3 0.229*** (0.014) 0.228*** (0.014) -0.018 (0.019) -0.018 (0.019)

CTAS4 —-0.009 (0.015) -0.010 (0.015) —0.383*** (0.02) —0.384*** (0.020)

CTASS —0.175*** (0.018) —0.177*** (0.018) —0.636*** (0.024) —0.638*** (0.024)
Age (base = Agel)

Age2 0.055*** (0.009) 0.055*** (0.009) 0.107*** (0.012) 0.107*** (0.012)

Age3 0.202*** (0.009) 0.201*** (0.009) 0.273*** (0.012) 0.273*** (0.012)

Aged 0.396*** (0.010) 0.396*** (0.010) 0.458*** (0.013) 0.458*** (0.013)
Gender (base = Female) —0.006 (0.005) —0.006 (0.005) —0.024*** (0.007) —0.024*** (0.007)
Arrival Mode (base = No Ambulance) 0.219*** (0.006) 0.218*** (0.006) 0.335*** (0.008) 0.334*** (0.008)
NightShift (base = DayShift) 0.122*** (0.006) 0.120*** (0.006) —0.140*** (0.007) —0.142*** (0.007)
WeekendShift (base = WeekdayShift) —0.107*** (0.006) —0.107*** (0.0086) —0.042*** (0.008) —0.042*** (0.008)
(Intercept) 1.165*** (0.016) 1.158*** (0.016) 0.645*** (0.021) 0.637*** (0.022)
Observations 76,044 76,044 75,367 75,367
Adjusted R? 0.1149 0.1143 0.1327 0.1326

Notes: Standard error in parenthesis; *p < 0.1, *p < 0.05, **p < 0.01, ***p < 0.001.

Appendix C. The Extensive Form of the problem (PRP,,) is given as follows. Note that the con-
Rosterin g Problem straints have similar explanations as those in the origi-

. . . 1 PRP bl tion 4.1). H , d t
For a given set of scenarios S,;, the extensive form of na problem (see section 4.1). Hence, we do no

" . ) hem here.
the original problem formulation of the rostering repeat them here

. 1
(PRPyy) min —— Y M (s)

* |Sm| &3, jeyier

st Ai(s) + Mjg_1(s) — zlszxijkpﬁ’;h(s) < Mi(s), Vje€], teT\{0}, s€S,,
1€ €
Ap(s) — X X xilkP3;f0 (s) < My, SES,,
ielkekK
Ajo(s) + M123(5) = X X0 xiPl (5) < Mjo(s),  je€J\{1}, s€Sy,
ielkeK

zxiijL jE], keKk,
iel

2 Xk <1, iel, jej,
kekK

Y ¥ x> L(J,K), iel, JeJ, KeK,
jeJkek

Y Yxp < U(K), iel, JeJ, KeK,
jeJkek

Y Xkt X xig <1, iel, jeJ\ {1},
kEKN kEKD

2

X Xkt XX Xk <1, iel, jeJ\{1, 2,3},

keKy /=0 kgKy
17

3 Y Xijookt+ X X Xi-j <3 iel, jeJ\{1,2, ..., 20},
keKn jIZOkEKN
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> Xiok = Xitk,s

keK keK
2 X = X XiGk — 2 Xi(j-2)ks
keK kekK keK

4
T Tk <d
j=0 kekK ek

1— Y x> X Xk — 2 Xii—1)ks
kekK kek kekK

4

X\ 1= Zxigjp | <4
j'=0 kekK

xi]-k (S {0, 1},
th(S) > O/
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