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We consider a queueing system with multitype customers and flexible (multiskilled) servers that work in parallel. If Qi is
the queue length of type i customers, this queue incurs cost at the rate of Ci�Qi�, where Ci�·� is increasing and convex.
We analyze the system in heavy traffic (Harrison and Lopez 1999) and show that a very simple generalized c�-rule
(Van Mieghem 1995) minimizes both instantaneous and cumulative queueing costs, asymptotically, over essentially all
scheduling disciplines, preemptive or non-preemptive. This rule aims at myopically maximizing the rate of decrease of the
instantaneous cost at all times, which translates into the following: when becoming free, server j chooses for service a
type i customer such that i ∈ argmaxi C ′

i �Qi��ij 	 where �ij is the average service rate of type i customers by server j .
An analogous version of the generalized c�-rule asymptotically minimizes delay costs. To this end, let the cost incurred

by a type i customer be an increasing convex function Ci�D� of its sojourn time D. Then, server j always chooses for
service a customer for which the value of C ′

i �D��ij is maximal, where D and i are the customer’s sojourn time and type,
respectively.
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1. Introduction
In this paper, we analyze the scheduling problem for flex-
ible servers with overlapping capabilities. Our setup is a
queueing system with multitype customers, multiskilled
servers, and delay costs that are convex increasing in queue
lengths or sojourn times. For such a system in heavy traffic,
we show that a simple generalized c�-rule (Gc�) is in fact
asymptotically optimal. This is a far-reaching generaliza-
tion of Van Mieghem’s (1995) striking result for homoge-
neous servers. It constitutes a natural progression of Stolyar
(2004), which is here adapted to the (parallel server) model
of Harrison and Lopez (1999). (Williams 1998c is recom-
mended as an introduction to the subject.)
To describe our Gc�-rule, let �ij denote the service rate

of type i customers by server j . (�ij is the reciprocal of an
average service time; �ij = 0 indicates that server j cannot
serve type i.) Assume first that the queue of type i incurs a
queueing cost at rate Ci�Qi�, which is an increasing convex
function Ci�·� of the queue length Qi. (Further properties
of the Ci’s are listed in §4, of which one should mention
here only that Ci�0� = C ′

i �0+� = 0.) Then, applying the
Gc�-rule when becoming free at time t, server j takes for

service a type i customer such that

i ∈ argmax
i

C ′
i �Qi�t���ij 


As discussed later in this section, roughly speaking, the
Gc�-rule is a scheduling discipline that myopically tries to
maximize the rate of decrease of the instantaneous holding
cost

∑
i Ci�Qi�t��.

An alternative cost structure is when each type i cus-
tomer incurs, up to a time t, a delay cost Ci�D� which is a
function of its sojourn time D (up to its service completion
or up to time t, whichever comes first). Then, server j takes
for service the longest-waiting (head of the line) type i cus-
tomer, where

i ∈ argmax
i

C ′
i �Di�t���ij 	

in which Di�t� is the longest sojourn time of a customer
waiting in queue i at time t. (Heavy traffic renders irrel-
evant the decisions about customers who encounter idle
servers upon arrival.) Our main result is Theorem 1 of §7.
We show there that the above Q-version of Gc� is opti-
mal in heavy traffic, in that it asymptotically minimizes
queueing costs at all times. An analogous result for the
D-version holds with respect to sojourn time costs (Theo-
rem 2 in §7.1).
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The Gc� scheduling rule is adaptive and robust. Indeed,
its form depends on no system parameters other than
service rates and cost functions; its scheduling decisions
depend only on the current system state (queue lengths
or sojourn times). Thus, the rule adapts automatically to
environmental changes; for example, there is no need to
modify it with changes in arrival rates. Additional proper-
ties of Gc� are described in our concluding §10, notably
its accommodation of linear costs (which are formally
excluded in view of the assumption C ′

i �0+�= 0).
The optimality of Gc� is relative to essentially all

scheduling disciplines, preemptive or non-preemptive, as
long as each server cannot have two or more customers
of the same type in service, and servers do not know the
realizations of service times before customers are taken for
service. Our asymptotics is for a sequence of systems that
approach heavy traffic, in a way that is precisely defined in
§6 and which we now describe.
A given set of service rates ��ij� determines the stability

set M for our queueing system: this is the closure of the
set of arrival rates � ∈ RI+, with which our system is sta-
ble for at least one scheduling strategy (§5). The northeast
boundary of the stability set (its maximal elements) consti-
tute those arrival rates � for which our system is critically
loaded. The system is in heavy traffic when its vector of
arrival rates is “close” to a maximal � ∈M (§6). We fur-
ther say that our system exhibits complete resource pooling
(CRP) if the outer normal �∗ to the setM at that � is unique
up to scaling (plus some additional nondegeneracy condi-
tions) and, in addition, all the coordinates of �∗ are strictly
positive. (See §5, at the end of which we also comment on
how CRP can be relaxed to merely resource pooling, which
allows zero coordinates of �∗.)
The quantity X�t� = ∑

i �
∗
i Qi�t� is called the workload

at time t � 0. Our main result is that, under CRP and in the
heavy traffic limit, the Gc�-rule minimizes the workload
X�t� at any time t and, moreover, given the value of X�t�,
the queue length vector Q�t� is the one that minimizes the
cost rate

∑
i Ci�Qi�t��. These two properties imply mini-

mization of the cumulative queueing costs over any finite
interval. We discuss the intuition behind this unexpected
result momentarily, after a brief literature survey that places
the present research in historical perspective.
For single server queues, our scheduling problem has

had a long history. It started at least as early as Cox
and Smith (1961), who proved optimality of the c�-rule
for the M/G/1 queue with linear waiting costs (optimal-
ity among priority rules, to be precise); and it culminated
in Van Mieghem’s (1995) analysis of the G/G/1 queue
with convex costs, where asymptotic optimality of the
above generalized c�-rule was established in heavy traf-
fic. (Van Mieghem 1995 is also recommended for further
motivation and references.)
The history is far leaner for multiservers, yet several

streams of research had to mature into our present paper.
Rather than repeat what has already been published, we

mention here only the origins of these streams (to the best
of our knowledge), and then refer the reader to survey
papers for later developments.
Starting with stability, Tassiulas and Ephremides (1992)

seem to be the first who characterized the stability set M ,
proving also that MaxWeight-type rules ensure stability (if
such is at all feasible). A MaxWeight-rule is essentially
Gc� with quadratic costs: Ci�Qi� = �iQ

2
i , for arbitrary

constants �i > 0. Thus, for the model in this paper, the
MaxWeight-rule is in fact a weighted “Q�”-rule: server j
chooses for service the longest-waiting type i customer
such that i ∈ argmaxi �iQi�t��ij . For more recent results
on stability, readers are referred to McKeown et al. (1996),
Dai and Prabhakar (2000), Armony and Bambos (1999),
Andrews et al. (2004), and references therein.
As far as heavy traffic optimization is concerned,

Harrison (1998) was first to go beyond single servers, with a
two-type two-server model in which one server is dedicated
and the other flexible. With linear costs, Harrison (1998)
proved asymptotic optimality in heavy traffic of a discrete-
review policy. Bell and Williams (2001) established, for
that same model, asymptotic optimality of an alternative
continuous-review threshold strategy. Harrison and Lopez
(1999) extended Harrison (1998) to a general system, such
as ours above, about which they heuristically derived con-
ditions for heavy traffic, for complete resource pooling and
for discrete-review optimality. Similarly, Williams (1998c)
generalized Bell and Williams (2001), conjecturing optimal-
ity in heavy traffic for a carefully devised threshold strategy;
she also provides an overview of and additional insights for
Harrison (1998), Bell and Williams (2001), and Harrison
and Lopez (1999), especially the conditions for complete
resource pooling. The general notion of complete resource
pooling in heavy traffic is closely related to the equiva-
lent workload formulations of Brownian control problems,
which were formalized by Harrison and Van Mieghem
(1997). In the recent work Stolyar (2004), a (discrete-
time) generalized switch model (which is more general than
ours) was analyzed, and the MaxWeight rule (Gc� with
quadratic costs) was shown to cause a one-dimensional
state space collapse and minimize the workload, in the
heavy traffic limit. The proof of state space collapse in
Stolyar (2004) follows the general approach pioneered by
Bramson (1998) and Williams (1998b).
Our analysis (and intuition behind the main result) is

analogous to that in Stolyar (2004). First we prove that,
under the CRP condition and Gc�-rule, sample paths of
the fluid process corresponding to a critically loaded system
(input rates equal to �) are such that the queue length vec-
tor Q�t� is attracted to a fixed point �Q, namely a point such
that the vector �C ′

1�
�Q1�	 
 
 
 	C

′
I �

�QI�� is proportional to the
vector �∗. (A fixed point �Q is exactly the point that min-
imizes

∑
Ci�Qi�, given the workload value

∑
�∗
i
�Qi.) The

attraction implies that, in the heavy traffic (diffusion) limit,
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the queue length process exhibits state space collapse—
Q�t� is a process “living” on the one-dimensional mani-
fold of fixed points. (Again, the proof of such an “implica-
tion” follows the approach developed in Bramson 1998 and
Williams 1998b.) By virtue of the Gc�-rule, it maximizes
(roughly speaking) the value of

∑
i

C ′
i �Qi�t���i�t�	

where �i�t� is the aggregate “instantaneous” service rate of
flow i by all servers. But, as long as total queue length is
nonzero, the vector �C ′

1�Q1�t��	 
 
 
 	C
′
I �QI�t��� is approx-

imately proportional to �∗, and therefore the Gc�-rule
“reduces to” the rule that maximizes the value of

∑
i

�∗
i �i�t�


In other words, the server pool operates as a single
“superserver,” which serves the workload at the maximum
possible rate. This implies the property of workload min-
imization. Consequently, cost rates are minimized at all
times t � 0, because, as noted above, a fixed point min-
imizes the cost rate for the corresponding value of the
workload.
The distinguishing feature of our analysis, compared to

Stolyar (2004), is that here we deal with continuous time.
In the discrete time generalized switch model of Stolyar
(2004), the number of customers of each type that can be
served in a “time slot” is a function of only the “scheduling
decision” chosen in this slot. Therefore, the maximum pos-
sible amount of workload service is a well-defined quan-
tity for each time slot. This makes the definition of the
“superserver idleness” process (which is the cumulative
amount of workload service, “wasted” by the superserver)
very direct and natural. In our continuous-time case, on the
other hand, we must resort to a less direct definition of
the idleness process—this process becomes a “true” super-
server idleness only in the limit. Another difference is our
more general convex cost structure—the MaxWeight dis-
cipline in Stolyar (2004) can be viewed as a special case
of Gc� (with quadratic cost functions). With general con-
vex costs, the one-dimensional manifold of fixed points (on
which the limit process “lives”) can be nonconical (just as
in Van Mieghem 1995). One should note, however, that the
model of Stolyar (2004) is more general in that it allows for
arbitrary dependence between servers, and for the random
variations of server “states” (i.e., their service rates �ij ).
We extend the scope of Gc� optimality from Van

Mieghem’s (1995) single server model to multiple nonho-
mogeneous servers. The above discussion brings out the
reasons such a generalization is nontrivial, perhaps even
nonintuitive. Indeed, in a system with a single server
j = 1, the CRP condition holds trivially, and the com-
ponents of the vector �∗ are simply the mean service
times: �∗

i = 1/�i1. Thus, the workload is simply X�t� =

∑
�1/�i1�Qi�t�, and, consequently, any work-conserving

non-preemptive discipline trivially minimizes it in heavy
traffic. Therefore, a scheduling rule that seeks to minimize
costs need only be “concerned” with distributing workload
among the queues in such a way that the instantaneous cost
rate is minimized; and the Gc�-rule is a natural way to do
that. In our multiserver case, on the other hand, at a first
glance it may appear unlikely that a rule as parsimonious
as Gc�, which does not utilize the notion of workload in
any way, would be able to simultaneously and “automati-
cally” minimize both the workload and the cost rate (given
the workload). And yet, Gc� causes our system to “self-
organize” (via state space collapse) so that those properties
indeed hold.
The outline of this paper is as follows. In §2, we set

basic notations and conventions. Our model of a queue-
ing system with multitype customers and flexible servers is
formally introduced in §3. The generalized c�-rule �Gc��
is described in §4. In §5, we formulate the conditions for
complete resource pooling (CRP), followed by the defini-
tion of heavy traffic in §6. Theorem 1, in §7, establishes
the asymptotic optimality of Gc�, with respect to queueing
costs; Theorem 2 is the analogous result for sojourn time
costs. The rest of the paper contains steps of proving the
main result, Theorem 1. Section 8 deals with state space
collapse: first, fluid sample paths of a critically loaded sys-
tem are introduced, and then their uniform convergence to
a fixed point is proved in Theorem 3. Finally, Theorem 1 is
proved in §9. (Adaptation of this proof to the proof of The-
orem 2, for sojourn time costs, is outlined in the appendix.)
We conclude in §10 with commentary on the robustness
and useful features of Gc� in applications, and on some
possible extensions.

2. Notation and Conventions
We use the standard notations R and R+ for the sets of
real and real nonnegative numbers, respectively; and the not
quite standard R++ for the set of strictly positive real num-
bers. Corresponding N -times product spaces are denoted
RN , RN+ , and R

N
++. The space R

N is viewed as a standard
vector space, with elements x ∈RN being row vectors x=
�x1	 
 
 
 	 xN �. We write just 0 for the zero vector in R

N .
The scalar product (dot product) of x	 y ∈RN , is

x · y 
=
N∑
i=1
xiyi	

and the norm of x is

	x	 
=√
x · x


Vector inequalities are to be understood componentwise.
As an example, for �	x ∈ RN , � < x means �i < xi,
i= 1	 
 
 
 	N . Also,

�× x 
= ��1x1	 
 
 
 	 �NxN �	
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and if � ∈RN++, we slightly abuse notation by writing

1/�

= �1/�1	 
 
 
 	1/�N �


We denote the minimum and maximum of two real num-
bers �1 and �2 by �1 ∧ �2 and �1 ∨ �2, respectively.
Let D��0	��	R� be the standard Skorohod space of

right-continuous left-limit (RCLL) functions, defined on
�0	�� and taking real values. (See, for example, Ethier and
Kurtz 1986 for the definition of this space and its associated
topology and �-algebra.)
The symbol w→ denotes convergence in distribution of

random processes (or other random elements), i.e., weak
convergence of their distributions. Typically, we consider
convergence of processes in D��0	��	R�, or its N -times
product space DN��0	��	R�, equipped with product topol-
ogy and �-algebra.
The symbol u
o
c
−→ (or the abbreviation u.o.c. after a con-

vergence statement) stands for convergence that is uni-
form on compact sets, for elements of D��0	��	R� or
its N -times product DN��0	��	R�. For functions with a
bounded domain A⊂R, the u.o.c. convergence means uni-
form convergence.
We reserve the symbol ⇒ for weak convergence of ele-

ments in the space D��0	��	 �R�; the latter is the space
of RCLL functions taking values in the set �R of real
numbers, extended to include the two “infinite numbers”
+� and −� (with the natural topology on �R). If h	g ∈
D��0	��	 �R�, then h ⇒ g means h�t� → g�t� for every
t > 0 where g is continuous. (Convergence at t = 0 is not
required.) We shall not need any characterization of the
topology on D��0	��	 �R�, beyond the definition of conver-
gence given above.

3. The Model
We consider a queueing system with a finite number I of
customer types, and a finite number J of flexible servers.
For notational convenience we use the symbol I also for
the set of types �1	 
 
 
 	 I�. Similarly, J also denotes the set
of servers �1	 
 
 
 	 J �.
The arrival process for each type i ∈ I is a renewal

process with the time (from the initial time 0) until the
first arrival being ui�0�, and the rest of the interarrival
times being an i.i.d. sequence ui�n�	n = 1	2	 
 
 
 
 Let
�i = 1/E�ui�1�' > 0 denote the arrival rate for type i and
(2i =Var�ui�1�'.
The service times of type i customers by server j ∈ J

form an i.i.d. sequence vij�n�	n = 1	2	 
 
 
 ; vij�0� is the
residual service time, at time 0, of type i customer at
server j (if there is any). Let �ij = 1/E�vij �1�' <� and
*2ij = Var�vij �1�'. The convention �ij = 0 is used when
server j cannot serve type i. All arrival and service pro-
cesses are assumed mutually independent.
We allow a wide class of scheduling disciplines, which

adhere to the following conditions:

Condition (d1). Once a customer is taken for service by a
server, this customer cannot be served by any other server.
Also, a server cannot take for service a new customer of
type i if it already has another type i customer “in service”
(with nonzero residual service time). Consequently, at any
given time, a server cannot have in service more than one
customer of any given type.

Condition (d2). Servers do not “know” the realizations
of customer service times before customers are taken for
service.

Note that Conditions (d1) and (d2) do allow a server
idling (even if it has customers in service) or preemption
of service of one customer by another customer but of a
different type. They also allow server sharing by several
customers but, again, each of a different type.
Customers of type i that await service are waiting in

queue i of infinite capacity. Denote by Qi�t� the queue
length of type i customers at time t; by convention, this
number includes those customers whose service already
started but not yet completed. Let Di�t� be the sojourn
time (“age”) of the longest-in-system (“oldest”) customer
of type i, among those who have not been taken yet for
service by time t.
Let Fi�t� be the number of type i customers arrived to

the system by time t (excluding initial customers). Denote
by �Fij�t� the number of type i customers that were served
by server j , and whose service was completed by time t.
Let Ui�t� be the residual interarrival time for type i at
time t, and Vij�t� the residual service time, at time t, of
the type i customer being served by server j , if there is
such customer; otherwise let Vij�t�= 0 by convention. Note
that Fi and Ui are given primitives while �Fij and Vij�t� are
scheduling dependent.

4. The Gc�-Rule
Suppose that for each type i, a cost function Ci�.�	 . � 0,
is given. Assume that the cost functions have the follow-
ing properties: Ci�·� is continuous strictly increasing con-
vex, with Ci�0�= 0; moreover, the first derivative C ′

i �·� is
continuous strictly increasing, with C ′

i �0� = 0; finally, the
second derivative C ′′

i �·� is strictly positive continuous in
the open interval �0	��, with C ′′

i �0� = lim.↓0C ′′
i �.� � 0,

where C ′′
i �0� is either finite or is +�.

The Gc�-rule schedules customers for service as fol-
lows. When server j becomes free, it chooses for service a
customer from a queue i such that

i ∈ argmax
i∈I

C ′
i �Qi�t���ij 	

and serves this customer to completion, without preemp-
tions. Ties are broken arbitrarily, for example, in favor of
the largest index i. Similarly, assignments of customers to
idle servers, if such exist upon arrivals, is arbitrary: for
example, in favor of the smallest index j .
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Remark 1. Due to Condition (d2), it does not matter
which customer is taken for service from a queue, when
the queue to serve is chosen. (The queue length process
is unaffected.) So, to be concrete, we can assume that the
head-of-the-line (longest waiting) customer is always taken,
i.e., customers of each type are taken from the queue in
FCFS order.

Remark 2. The above version of the Gc�-rule accommo-
dates queueing costs. An alternative, for costs of sojourn
times, will be introduced in §7.1. For the sojourn time ver-
sion, it is important that customers within each type are
taken from the queue in FCFS order.

5. Complete Resource Pooling
Consider a “column-substochastic” matrix /= �/ij 	 i ∈ I	
j ∈ J �, namely all /ij � 0 and

∑
i

/ij � 1 ∀ j ∈ J 


With a given / we associate the vector ��/� = ��1�/�	

 
 
 	�I �/��, whose coordinates are

�i�/�

=∑

j

/ij�ij 	 i ∈ I0

this is the vector of mean service rates of the queues i ∈ I , if
each server j allocates a fraction /ij of its time to queue i,
in the long run.

Definition. We define M to be the set of ��/� corre-
sponding to all possible / as above. Further, let M∗ denote
the set of all maximal elements � ∈M such that � ∈RI++.
(� ∈M is maximal if �� . ∈M implies . =�.)
Note that M is a polyhedron in RI+. We assume that M is

nondegenerate (i.e., has dimension I), which is equivalent
to assuming that each queue i can be served at nonzero
rate �ij by at least one server j . The set M is in fact the
closure of our system’s stability region M0, which is the set
of arrival rate vectors �= ��1	 
 
 
 	 �I � such that �<��/�
for some / (cf. Tassiulas and Ephremides 1992, McKeown
et al. 1996, Dai and Prabhakar 2000, Armony and Bambos
1999, Andrews et al. 2004, Stolyar 2004).

Definition. We say that the condition of Complete
Resource Pooling CRP holds for a vector � if � lies within
the interior of one of the (�I−1�-dimensional) outer faces of
M , � ∈M∗, and the matrix / such that �=��/� is unique.
If CRP holds for �, then the corresponding matrix / is

such that
∑

i /ij = 1 for each j (/ must be column stochas-
tic), because otherwise � would not be maximal.
Our CRP condition is equivalent to that introduced for

parallel server systems in Harrison and Lopez (1999) and
Williams (1998c). (See Assumption 3.4, Theorem 5.3, and
Corollary 5.4 in Williams 1998c for a summary.) In those

papers, pairs �i	 j� such that /ij > 0 are called basic activi-
ties, and it is shown that the CRP condition implies the fol-
lowing: The graph with nodes being queues i and servers j ,
and arcs being basic activities, is a connected tree (with
exactly I + J − 1 arcs).
We wish to emphasize here that the notion of a basic

activity is not utilized in any way (neither explicit nor
implicit) by the Gc� scheduling algorithm. (The algorithm
need not know which activities are basic.) It is only used
as a tool for the analysis of the algorithm.
When the CRP condition holds, let us denote by � =

��1	 
 
 
 	 �I � the (unique up to a scaling) “outer” normal
vector to the polyhedron M at the point �. Note that � ∈
RI++. (Otherwise, if some �i � 0, a small increase of the
component �i would produce a vector �

′ � �, �′ �= �, and
such that �′ ∈M—a contradiction to the maximality of �.)
For concreteness we use the normal vector �∗, which is the
vector defined uniquely by the additional requirement that
	�∗	 = 1. The components of �∗ are sometimes called the
workload contributions of customers of the different flows
(see Harrison and Lopez 1999, Williams 1998c).
As is the case with basic activities, the Gc�-rule does

not require any knowledge of the values of workload con-
tributions. It is interesting to note, however, that �∗ can be
computed by solving a certain linear program and its dual.
(See Harrison and Lopez 1999, Williams 1998c, Stolyar
2004; the latter is compatible with the notations of the
present paper.)
The CRP condition for � implies, in particular, that

�∗ ·�=max
�∈M

�∗ ·�
 (1)

For each j ∈ J , let us denote by

Ij = �i ∈ I �/ij > 0�

the set of i such that �i	 j� is a basic activity for server j . It is
easy to verify that i ∈ Ij implies i ∈ argmaxi �∗

i �ij . (Other-
wise, � = ��/� would not maximize the right-hand side
of (1).) The converse, under the CRP condition for �, holds
as well. (Otherwise, using the fact that basic activities form
a connected tree, we could “reallocate” the fractions /ij to
produce a matrix /′ �=/, but such that ��/′�=��/�= �, a
contradiction to the uniqueness of /.) We thus obtain

Lemma 1. Under the CRP condition, for any server j ,
Ij = argmaxi �

∗
i �ij .

Remark 1. Without the maximality requirement � ∈ M∗,
CRP is relaxed to a resource pooling (RP) condition. When
the RP (but not necessarily CRP) condition holds, workload
contributions �∗

i of some flows i could be 0. Then, in anal-
ogy to Chen and Mandelbaum (1991a) and Stolyar (2004),
the types i with strictly positive workload contributions
(and the servers which can serve those types at a nonzero
rate) form a bottleneck subsystem. The results of this paper
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can be generalized to the case of the RP condition as fol-
lows. Suppose that for the bottleneck subsystem, in isola-
tion, the condition of uniqueness of the matrix / does hold,
which implies that CRP holds for this subsystem. Then,
in the heavy traffic limit, as defined in the next section,
the nonbottleneck queues vanish (stay at 0), and the behav-
ior of the bottleneck queues is the same as it would be
for the bottleneck subsystem in isolation (as described by
the results of this paper). The generalization can be car-
ried out along the lines of Stolyar (2004), where the RP
condition is employed (for a different, but closely related
model).

Remark 2. Suppose that the set of servers J can be par-
titioned into server groups of statistically identical servers:
service time distributions (which may be different across
types) are the same within each group. For such a system,
the assumption of the uniqueness of �/� in the CRP condi-
tion can be relaxed: It is sufficient to require that, for any
/ such that �=��/�, the sum
∑
j∈Ĵ
/ij

is unique only for every server group Ĵ ⊆ J . Under this
relaxed assumption, all our results carry over as is. The
generalization of our proofs for this case (which is impor-
tant for applications) is straightforward; we do not pursue
it here to simplify the exposition.

Remark 3. In general, however, the requirement in CRP
that matrix / is unique could turn out essential in that,
without it, even with �∗ unique, the Gc�-rule need not
be asymptotically optimal. Roughly speaking, in the latter
case, the diffusion coefficient � (defined later in the paper)
of the limiting diffusion process is not well defined.

6. The Heavy Traffic Regime
In this section, we introduce the notion of a sequence of
queueing systems in heavy traffic. First, fix a vector � sat-
isfying the CRP condition. With � there is an associated
(unique) matrix / such that �=��/�, and for which
∑
i

/ij = 1 ∀ j ∈ J 	

must hold. There is also a corresponding (unique) normal
vector �∗, in terms of which we define

X�t�

=

N∑
i=1
�∗
i Qi�t�= �∗ ·Q�t�	 t � 0


The process X�·� will be referred to as the workload of the
system.
We now consider a sequence of queueing systems,

indexed by r ∈�= �r1	 r2	 
 
 
�, where rn > 0 for all n and
rn ↑� as n→�. (Hereafter in this paper, r →� means

that r goes to infinity along values from the sequence �,
or some subsequence of �; the choice of the subsequence
will be either explicit or clear from the context.) Each sys-
tem r ∈� has, as before, I customer types and J servers.
The primitives and the processes corresponding to a system
r ∈� will be appended with a superscript r .
Assume that, for each type i, the mean arrival rate �ri =

1/E�uri �1�' is such that

r��ri −�i�→ bi	 r →�	 (2)

where bi ∈R is a fixed constant. Assume also convergence
of the variance, that is,

�(ri '
2 → (2i 	 r →�
 (3)

In addition, we make the following Lindeberg type
assumption, which is needed to apply the functional central
limit theorem (FCLT), and also to apply Bramson’s weak
law estimates (Bramson 1998) (and establish (30) later on):

uniformly over i and r ,

E��uri �1��
21�uri �1� > x�'� 3�x�	 x� 0	 (4)

where 3�·� is a fixed function, 3�x�→ 0 as x→�.
For the initial interarrival times we assume that, for

each i,

uri �0�/r → 0	 r →�

Assumptions (2)–(4) imply the FCLT for the arrival pro-

cesses

�r−1�F ri �r
2t�−�ri r2t�	 t � 0� w→ ��iB�t�	 t � 0�	 (5)

where F ri �t� is the number of type i customers arrived
by time t, excluding customers present at time 0; �2

i =
�3i (

2
i , B�·� is a standard (zero drift, unit variance) Brownian

motion, and w→ denotes convergence in distribution (for
processes in the standard Skorohod space of RCLL
functions).
The service time distributions do not change with param-

eter r . (This, in particular, means that the condition anal-
ogous to (4) trivially holds for the service times vri	j �1�,
uniformly on �i	 j� and r .) For the initial residual service
times (if any) we assume for all i and j , that

vri	j �0�/r → 0	 r →�

Let us denote by Srij �t�	 t � 0, the number of type i cus-
tomers that would be served by server j if it processes
type i customers continuously up to time t. Then, an FCLT
applies for the processes Srij �·�:
�r−1�Srij �r

2t�−�ijr2t�	 t � 0� w→ ��ijB�t�	 t � 0�	 (6)

where �2
ij =�3ij*2ij .

Remark. Despite the fact that the service time distribution
(for each �i	 j�) does not vary with r , we use a superscript r
in the notation Srij �·� for two reasons. First, it will be impor-
tant for our proofs to view the processes Srij �·� with dif-
ferent r as different processes, not necessarily constructed
on a (common) probability space of i.i.d. sequences of ser-
vice times. Furthermore, because the residual service times
vri	j �0� may depend on r , the processes S

r
ij �·� (with differ-

ent r) do have, strictly speaking, different distributions.
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7. Main Results
For each value of the (scaling) parameter r ∈�, let Qr�·�
and Xr�·�= �∗ ·Qr�·� be the corresponding (vector) queue
length and workload processes.
Assume that each queue i, at any time t, incurs a holding

cost at the (instantaneous) rate of

Cr
i �Q

r
i �t��=Ci�Qr

i �t�/r�0

here Ci�·� are convex increasing functions, with the addi-
tional properties described in §4. (An alternative cost struc-
ture, where cost is a function of customers’ sojourn time,
will be discussed in the next subsection.)
We note that our asymptotic regime, in which the cost

function is “rescaled” as the parameter r changes, is quite
standard in heavy traffic analysis (cf. Van Mieghem 1995,
where the same scaling is used, for motivation and further
elaboration). Also, note that if the cost functions have the
form Ci�.i� = �i.

(
i , with some fixed ( > 1 and �i > 0,

the cost functions then need not be rescaled with r (see
Remark 2 in this section below).
For our main results, we need the notion of a fixed point.

A vector �q ∈RI+ will be called a fixed point if
�C ′

1�
�q1�	 
 
 
 	C

′
I �

�qI�'= c�∗ (7)

for some constant c � 0. If we recall that each derivative
C ′
i �·� is continuous strictly increasing with C ′

i �0�= 0, one
deduces the following: A fixed point �q corresponding to
each c� 0 exists and is unique. Moreover, �q = 0 for c= 0,
and �q ∈RI++ (i.e. has all components strictly positive) for
any c > 0.
Thus, the set of fixed points forms a one-dimensional

manifold, which can be parameterized, for example, by the
corresponding workload values �∗ · �q. In addition, it is easy
to verify the following property: A fixed point �q is the
unique vector that minimizes

∑
i Ci�qi� among all vectors

q ∈ RI+ with the same workload, i.e., satisfying the condi-
tion �∗ · q = �∗ · �q.
Indeed, if �q = 0, the property is trivial. If �q ∈ RI++,

condition (7) implies that the (Lagrangian) function∑
i

Ci�qi�− c��∗ · q− �∗ · �q'

has zero gradient (with respect to q) at point �q. Because
this Lagrangian is strictly convex in RI+, it is mini-
mized by �q. Then, the desired property follows from the
Kuhn-Tucker theorem.
Applying diffusion scaling to Qr�·� and Xr�·� gives rise

to the following scaled processes:

q̃r �t�

= r−1Qr�r2t�	 t � 0	

x̃r �t�

= r−1Xr�r2t�	 t � 0


We assume that the initial queue lengths of the scaled pro-
cesses are deterministic and converging:

q̃r �0�→ q̃�0�	 (8)

where q̃�0� is a fixed point, as defined above. (We comment
on this assumption after Theorem 1.) As a consequence,
x̃r �0�= �∗ · q̃r �0�→ �∗ · q̃�0� 
= �w�0�.
Finally, introduce the following one-dimensional re-

flected Brownian motion x̃= �x̃�t�	 t � 0�:

x̃�t�= �w�0�+ at+�B�t�+ ỹ�t�	 (9)

where B�·� is a standard Brownian motion,

ỹ�t�

=−

[
0∧ inf

0�u�t
��w�0�+ au+�B�u��

]
	 (10)

and the drift a and diffusion coefficient � are given by

a

= �∗ · b	 �2 
=∑

i

��∗
i �
2

[
�2
i +

∑
j

/ij�
2
ij

]

 (11)

Theorem 1. Consider the sequence of queueing systems in
heavy traffic, as introduced in §6.
(1) Suppose that the scheduling rule is Gc� with cost

functions Cr
i �·�, for each value of the parameter r . Then,

as r →�,

x̃r w→ x̃

and

q̃r w→ q̃	

where, for each t � 0, the vector q̃�t� is the fixed point that
is (uniquely) determined by �∗ · q̃�t�= x̃�t�.

(2) The Gc�-rule is asymptotically optimal in that it
minimizes the workload and the holding cost rate at all
times. More precisely, let q̃rG and x̃rG be the scaled queue
length and workload processes corresponding to an arbi-
trary scheduling discipline G (and appropriately con-
structed on a common probability space with our sequence
in heavy traffic). Then, with probability 1, for any time t � 0,

lim inf
r→� x̃rG�t�� x̃�t� (12)

and

lim inf
r→�

∑
i

Ci�q̃
r
i	G�t���

∑
i

Ci�q̃i�t��
 (13)

As a corollary, with probability 1, for any T > 0,

lim inf
r→�

∫ T

0

∑
i

Ci�q̃
r
i	G�t��dt � lim

r→�

∫ T

0

∑
i

Ci�q̃
r
i �t��dt

=
∫ T

0

∑
i

Ci�q̃i�t��dt
 (14)

Remark 1. Suppose that assumption (8), requiring that
q�0� is a fixed point, does not hold. Then, the limit-
ing one-dimensional diffusion process x̃ is the same as
in the statement of Theorem 1, except that it starts from
some fixed point �q̃�0� such that its workload �∗ · �q̃�0� ∈
��∗ · q̃�0�	K�∗ · q̃�0�', where K � 1 is a fixed constant spec-
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ified later in Theorem 3. In addition, the weak convergence
on the interval �0	�� in Theorem 1 would be replaced by
weak convergence over the open interval �0	��. This exact
phenomenon arose in Chen and Mandelbaum (1991a) for
closed queueing networks and in a context close to ours
in Bramson (1998), in his Theorem 3. The basic intuition
is that on a fluid scale, the process trajectory reaches a
fixed point within a positive finite time K�∗ · q̃�0�, which
is negligible on a diffusion scale.

This means that if q̃�0� is not a fixed point, the Gc�-
rule allows the initial workload to “jump up” at time 0,
i.e., �∗ · �q̃�0� > �∗ · q̃�0�= �w�0� can hold. It is possible, of
course, that a different scheduling rule, which uses a pri-
ori knowledge of system parameters, could avoid such a
jump of the initial workload (and hence give rise to lower
cumulative costs). However, if the drift a < 0, the diffu-
sion process x̃ under Gc� reaches 0 within a finite time,
with probability 1, and, after that time, the Gc�-rule does
minimize both the workload and cumulative costs.

Remark 2. Consider the special case of quadratic costs:
Ci�.� = �i.

2/2, where �i > 0	 i ∈ I , are given constants.
Then, the Gc�-rule becomes a “Q�-rule,” namely each
server j chooses for service a queue i such that

i ∈ argmax
i∈I

�iQ
r
i �ij (15)

(which can be considered as a special case of the
MaxWeight rule in Stolyar 2004). An important feature of
this rule is that its form does not depend on the scaling
parameter r . The above theorem then says that, in heavy
traffic and under CRP, the Q�-rule minimizes workload and
it thrives to keep the vector ��1Q1	 
 
 
 	 �NQN ' proportional
to �∗ at all times: a result analogous to Stolyar (2004).

Theorem 1 deals with transient behavior in heavy traf-
fic. It naturally gives rise to a corresponding, very plausible
steady-state result, which we present as Conjecture 1 below,
and which basically claims that “the limit of stationary dis-
tributions is equal to the stationary distribution of the limit.”
To formulate this conjecture, consider our sequence of
queueing systems in heavy traffic. Suppose that the drift a
in (11) is negative and Ci�.�= �i.2/2, where �i > 0	 i ∈ I ,
are given constants. Then, under the Gc�-rule (or, Q� in
this case) and for all r sufficiently large, the systems are
stable. Indeed, the condition a < 0 and the CRP condition
for � guarantee that, for large r , the input rate vector �r is
within the system stability region M0. Then, stability under
the Q�-rule is established analogously to the way it is
done in Tassiulas and Ephremides (1992), McKeown et al.
(1996), Dai and Prabhakar (2000), Armony and Bambos
(1999), and Andrews et al. (2004) for other MaxWeight-
type rules.

Conjecture 1. Suppose that a < 0 and Ci�.� = �i.
2/2,

where �i > 0	 i ∈ I . Let q̃r ��� and x̃��� denote random
vector and random variable with distributions equal to the

stationary distributions of the processes q̃r and x̃, respec-
tively. Then, as r →�,

q̃r ��� w→ x̃�����	

where x̃��� is exponentially distributed with mean
�−2a/�2�, and

�� 
=
[∑

i

��∗
i �
2
/
�i

]−1( 1
�

× �∗
)



Remark 3. Conjecture 1 directly implies that, in the sta-
tionary regime, the Q�-rule stochastically minimizes the
quadratic holding cost rate among all disciplines (within
the class specified in §3).

7.1. Sojourn Time Costs

Suppose that, as in Van Mieghem (1995), each customer
incurs a “one-time” cost that depends on its type and
sojourn time in the system. More precisely, as before, con-
sider the sequence of systems indexed by r ∈ �. Sup-
pose that at time 0 the system is “empty” for each r , i.e.,
Qr
i �0�= 0 for all i and r . (This condition can be relaxed;

we employ it to simplify the exposition.) Let Dr
i �t	 k�

denote the sojourn time (up to time t) of the kth type-i
customer to have arrived to the system by time t. Suppose
that, for a fixed T > 0, the objective is to (asymptotically)
minimize the cumulative waiting cost

�r �T �

= 1
r2

∑
i

F ri �r
2T �∑

k=1
Ci�D

r
i �r

2T 	k�/r�	

where Ci�·� is a cost function with the properties described
in §4, and F ri �r

2T � is the number of type i arrivals into the
system by the time r2T (as previously defined).
We define the following form of the Gc�-rule, which

we call D-Gc�: Customers are served without preemption.
When becoming free, each server j takes for service the
longest-waiting customer from a queue i such that

i ∈ argmax
i∈I

C ′
i �D

r
i �t�/r��ij 	

where Dr
i �t� is the sojourn time at time t (“age”) of the

longest-waiting (“oldest”) type i customer (who, necessar-
ily, has not yet been taken for service by any other server).
Then, the following result, analogously to Theorem 1,

holds.

Theorem 2. Consider the sequence of queueing systems in
heavy traffic, as introduced in §6.
(1) Suppose that the scheduling rule is D-Gc�, as

defined above, for each value of the parameter r . Then, as
r →�,

x̃r w→ x̃
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and

q̃r w→ q̃	

where the processes x̃r , x̃, and q̃r are defined as in previ-
ous sections, and the process q̃ is defined as follows. For
each t � 0, the vector q̃�t� is the (unique) fixed point corre-
sponding to cost functions �Ci�·� 
= �iCi�·/�i�, with �∗ · q̃�t�
= x̃�t�.
(2) The D-Gc�-rule is asymptotically optimal in the

following sense. Let q̃rG, x̃
r
G, and �r

G be the processes cor-
responding to an arbitrary scheduling discipline G. Then,
these random processes and the corresponding processes
q̃r , x̃r , �r , under the D-Gc� discipline, for all different
values of r , can be constructed on a common probability
space, so that the following properties hold.
With probability 1, for any time t � 0,

lim inf
r→� x̃rG�t�� x̃�t� (16)

and

lim inf
r→�

∑
i

�Ci�q̃ri	G�t���
∑
i

�Ci�q̃i�t��
 (17)

Finally, with probability 1, for any T > 0,

lim inf
r→� �r

G�T �� lim
r→��r �T �=

∫ T

0

∑
i

�Ci�q̃i�t��dt
 (18)

The proof of Theorem 2 is essentially an (extended) ver-
sion of that of Theorem 1. It is outlined in the appendix.

8. Fluid Paths and State Space
Collapse under Gc�

8.1. Fluid Sample Paths for the Gc�-Rule

In this section, we study the sequence of processes intro-
duced in the previous section under the fluid (or “law of
large numbers”) scaling and under the Gc�-rule. More pre-
cisely, we need to consider only sample paths of the pro-
cesses under this scaling, and then their limits, which we
formally define below and call fluid sample paths (FSPs).
The key property of FSPs that must be established (in The-
orem 3 below) is that, as time increases to infinity, the
queue length vector converges to a fixed point. Using this
attraction property and the general approach developed by
Bramson (1998) and Williams (1998b), we then prove (in
the next section) the state space collapse property, i.e., the
property that the limit of the sequence of diffusion scaled
processes is a process “living” on the manifold of fixed
points.
First, we introduce some additional (random) functions,

associated with the process for each value of the scaling

parameter r . (The functions F ri �t�, �F rij �t�, Srij �t�, Qr
i �t�, and

Xr�t�, were defined earlier.)
Denote by Gr

ij�t� the amount of time within �0	 t' that
server j was serving type i customers. Clearly, for all t � 0,

�F rij �t�= Srij �Gr
ij �t��

and

Qr
i �t�≡Qr

i �0�+ F ri �t�−
∑
j

�F rij �t�	 t � 0	 i ∈ I 
 (19)

For each pair �i	 j� we define

Hr
ij�t�=/ij t−Gr

ij�t�


As we will clarify later, the function Hr
ij�t� has the interpre-

tation of server j cumulative “idleness” (up to time t) rel-
ative to the “nominal amount of service” /ij t that it could
have provided to queue i had it spent exactly a fraction /ij
of its time serving that queue. (We remind the reader that
/ is the unique matrix such that ��/�= �.) Note, however,
that unlike “physical” idleness, this function need not be
nondecreasing and may even take negative values.
We define the total cumulative idleness (or regulation)

process as follows:

Y r�t�=∑
i	 j

�∗
i H

r
ij �t��ij 	 t � 0


It is easy to verify that, under the CRP condition, the
regulation Y r�t� is a nonnegative, nondecreasing function,
with Y r�0� = 0. (So, it does have some properties of a
“conventional” regulation process.) Indeed, for any 0� t1 <
t2 <�,
Y r�t2�− Y r�t1�

t2− t1
=∑

i

�∗
i

∑
j

�/ij − �ij '�ij

= �∗ ·�− �∗ ·����� 0	

where �ij = �Gr
ij �t2� − Gr

ij�t1�'/�t2 − t1' � 0,
∑

i �ij � 1,
� = ��ij�, and the inequality in the last display follows
from (1).
The above calculation also implies the following fact

which we record for future reference. It means, roughly,
that the regulation process does not increase over some
time interval if and only if each server performs only basic
activities during that interval.

Lemma 2. For each value of the scaling parameter r , con-
sider a pair of time points 0� tr1 < t

r
2 <�, and denote

Br0

= Y r�tr2�− Y r�tr1�

tr2 − tr1
	

Br1	j

=∑
i∈Ij

Gr
ij �t

r
2�−Gr

ij�t
r
1�

tr2 − tr1



Then, Br0 = 0 if and only if Br1	 j = 1 for all j . Also,
limr→�Br0 = 0 if and only if limr→�Br1	 j = 1 for all j .
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Let us consider the process Zr = �Qr	Xr	 F r 	 �F r	 Sr 	Gr	
Hr	 Y r�, where

Qr = �Qr
i �t�	 t � 0	 i ∈ I�	

Xr = �Xr�t�	 t � 0�	

F r = �F ri �t�	 t � 0	 i ∈ I�	
�F r = � �F rij �t�	 t � 0	 i ∈ I	 j ∈ J �	
Sr = �Srij �t�	 t � 0	 i ∈ I	 j ∈ J �	
Gr = �Gr

ij �t�	 t � 0	 i ∈ I	 j ∈ J �	
Hr = �Hr

ij �t�	 t � 0	 i ∈ I	 j ∈ J �	
Y r = �Y r�t�	 t � 0�


For each r , consider the fluid scaled process

@rZr

= zr = �qr 	 xr 	 f r 	 f̂ r 	 sr 	 gr 	 hr 	 yr �	

where the fluid scaling operator @r is applied componen-
twise, and acts on a scalar function D = �D�t�	 t � 0� as
follows:

�@ rD��t�

= 1
r
D�rt�


From (19), we get

qri �t�≡ qri �0�+ f ri �t�−
∑
j

f̂ rij �t�	 t � 0	 i ∈ I 
 (20)

Definition. A fixed set of functions z= �q	 x	 f 	 f̂ 	 s	 g	
h	 y� will be called a fluid sample path (FSP) if there exists
a sequence �f of values of r , and a sequence of sample
paths (of the corresponding processes) �zr� such that, as
r →� along the sequence �f ,

zr → z u.o.c.	

and, in addition,

	q�0�	<�	
�f ri �t�	 t � 0�→ ��it	 t � 0� u.o.c.	 i ∈ I	 (21)

�srij �t�	 t � 0�→ ��ij t	 t � 0� u.o.c.	 i ∈ I	 j ∈ J 
 (22)

The following lemma establishes some basic properties
of FSPs. We omit the simple proof, which is a direct con-
sequence of the definitions involved.

Lemma 3. For any FSP z, all its component functions are
Lipschitz continuous and, in addition,

fi�t�= �it	 t � 0	 i ∈ I	
sij �t�=�ij t	 t � 0	 i ∈ I	 j ∈ J 	
qi�t�= qi�0�+ fi�t�−

∑
j

f̂ij �t�	 t � 0	 i ∈ I	

f̂ij �t�=�ijgij �t�	 t � 0	 i ∈ I	 j ∈ J 	
x�t�= �∗ · q�t�= x�0�+ y�t�	 t � 0


Furthermore, both y�·� and x�·� are nondecreasing (with
y�0�= 0).

Because all component functions of an FSP are Lip-
schitz, they are absolutely continuous, and therefore at
almost all points t ∈R+ (with respect to the Lebesgue mea-
sure) the following property holds: Each component func-
tion of z has a ( finite) first derivative. We refer to such
time points t as regular. We adopt a convention that t = 0 is
not a regular point (i.e., in the definition of regular points,
we require that proper derivatives exist).
The vector q�t� corresponding to an FSP will sometimes

be called its state at time t. The dynamics of the state q is
governed by the differential (vector) equation

d

dt
q�t�= �− v�t�	 (23)

which holds at every regular point t, and where v�t� =
�v1�t�	 
 
 
 	 vI �t�', vi�t�


=∑
j f̂

′
ij �t�.

Remark. Our notion of an FSP (as well as that in Stolyar
2004) is such that we first formally define an FSP as a limit
of a sequence of (scaled) sample paths of the original pro-
cess, and then derive a certain set of its properties, some of
which are straightforward and “easy to guess” (as those of
Lemma 3), and some may be “harder to guess” (as those in
the next subsection). For our proofs of state space collapse,
which use Skorohod representation (and therefore involve
limits of sample-path sequences), the notion of an FSP is
more natural to use than the notion of a fluid model solu-
tion (FMS) employed in the proofs of state space collapse
in Bramson (1998) and Williams (1998b). Using the FMS
notion requires that a certain set of equations (defining an
FMS) is “postulated,” including in our case some “less
obvious” properties like those described in Lemma 4(ii) and
(iii) below; then one must verify that sample-path limits
of the original process in fact satisfy this set of equations;
and then the rest of the required properties of the limits is
derived from the set of equations. In our case, we would
need (in essence) to define FSPs anyway, and then derive
all their properties proved in this and the next subsection.
That is why it is natural to use the notion of FSP directly
from the outset.

8.2. Uniform Attraction of Fluid Sample Paths

For q ∈RI+, denote
∗A�q�


=max
i
C ′
i �qi�/�

∗
i 	 ∗A�q�


=min
i
C ′
i �qi�/�

∗
i 	

E�q�

= 1− ∗A�q�/∗A�q� if q �= 0, and E�0�


= 0 by con-
vention.
Consider the following functions associated with a fixed

FSP. First, define

I∗�t�= �i ∈ I �C ′
i �qi�t��/�

∗
i = ∗A�q�t���

and, similarly, I∗�t� (with ∗A replaced by ∗A). Next,
introduce

∗qi�t�

= �. � 0 �C ′

i �.�/�
∗
i = ∗A�q�t���	
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and note that ∗qi�t� is well defined because each function
C ′
i �·� is strictly increasing continuous. Let ∗x�t�


= �∗ · ∗q�t�,
where ∗q�t� = �∗q1�t�	 
 
 
 	 ∗qI�t��, and note that x�t� �
∗x�t� for all t � 0.
Finally, note that, at any time t, the following five

conditions for q�t� are all equivalent: q�t� is a fixed
point, ∗A�q�t��= ∗A�q�t��, E�q�t��= 0, ∗x�t�= x�t�, and
∗q�t�= q�t�.
The following sequence of lemmas establishes further

properties of FSPs, which are less obvious than the basic
properties of Lemma 3. The form of the Gc�-rule is used
in the proofs in an essential way.

Lemma 4. Consider a fixed FSP q�·�. Suppose that t > 0 is
a regular point and q�t� �= 0. Then, the following properties
hold at this t:
(i) qi�t� > 0 for all i ∈ I .
(ii) We have

∑
i∈I∗�t�

�∗
i q

′
i �t�� 0	

∑
i∈I∗�t�

�∗
i q

′
i �t�� 0
 (24)

(iii) Moreover, there exists a constant F1 > 0, which
depends on system parameters only, such that if, in addi-
tion, q�t� is not a fixed point (i.e., ∗A�q�t�� > ∗A�q�t��),
then

∑
i∈I∗�t�

�∗
i q

′
i �t��−F1	

∑
i∈I∗�t�

�∗
i q

′
i �t�� F1
 (25)

Proof. We start by proving (iii). To this end, consider the
case ∗A�q�t�� > ∗A�q�t��.
It follows from the CRP condition (including Lemma 1)

and the Gc�-rule that

∑
i∈I∗�t�

�∗
i q

′
i �t��−F	 (26)

where F > 0 depends only on the subset I∗�t�. Indeed, let
us denote by J ∗�t� the (nonempty) subset of servers j such
that Ij ∩ I∗�t� is nonempty, and for each j ∈ J ∗�t�, pick a
representative element i∗ = i∗�j� ∈ Ij ∩ I∗�t�. (Below in this
proof, i∗ always means i∗�j�, i.e., it depends on j ∈ J ∗�t�.)
Note that for any j ∈ J ∗�t� and any i ∈ Ij ∩ I∗�t�, we have
�∗
i �ij = �∗

i∗�i∗	j . Then, we can write

∑
i∈I∗�t�

�∗
i q

′
i �t�=

∑
i∈I∗�t�

�∗
i �i −

∑
i∈I∗�t�

�∗
i

∑
j∈J
�ijg

′
ij �t�

and

∑
i∈I∗�t�

�∗
i

∑
j∈J
�ijg

′
ij �t��

∑
j∈J ∗�t�

∑
i∈I∗�t�

�∗
i �ijg

′
ij �t�

= ∑
j∈J ∗�t�

�∗
i∗�i∗	j

[ ∑
i∈I∗�t�

g′ij �t�
]

>
∑

j∈J ∗�t�
�i∗�i∗	j

[ ∑
i∈I∗�t�

/ij

]

= ∑
j∈J ∗�t�

∑
i∈I∗�t�

�∗
i �i	j/ij

=∑
j∈J

∑
i∈I∗�t�

�∗
i �i	j/ij

= ∑
i∈I∗�t�

�∗
i

∑
j∈J
�i	j/ij =

∑
i∈I∗�t�

�∗
i �i


The second (strict) inequality above is crucial. It follows
from the fact that, according to the Gc�-rule and Lemma 1,
for all sufficiently large r , in a small interval �t	 t+ F', the
prelimit path zr is such that any server j ∈ J ∗�t� will only
serve customers from the subset I∗�t�∩ Ij , and, therefore,∑
i∈I∗�t�

g′ij �t�= 1�
∑
i∈I∗�t�

/ij 


Moreover, for at least one server j ∈ J ∗�t�, a strict inequal-
ity must hold. Indeed, according to the CRP condition
(namely, the fact that basic activities form a tree), at least
one j ∈ J ∗�t� is such that Ij\I∗�t� is nonempty, and,
therefore,∑
i∈I∗�t�

/ij <
∑
i∈Ij
/ij = 1


We have proved (26), with F > 0 depending only on the
subset I∗�t�⊂ I . Because there is only a finite number of
subsets of I , we have proved the first inequality in (25),
with F1 > 0 being the minimum of all possible F. The sec-
ond inequality in (25) is proved analogously.
The proof of the nonstrict inequalities in property (ii)

is completely analogous to the proof of (iii), except the
strict inequality in the long display above is replaced by
the nonstrict one.
Finally, (i) is proved by contradiction. Suppose that

qi�t� = 0 for some i ∈ I . Obviously, the set of such i is
exactly I∗�t�. Because q�t� �= 0, q�t� is not a fixed point.
Therefore, the second inequality in (25) should hold. How-
ever, this is impossible, because we must have q′

i �t�= 0 for
all i ∈ I∗. Indeed, the condition qi�t�= 0 and the existence
of q′

i �t� imply that q
′
i �t� = 0. (Otherwise qi�·� would be

negative just before or right after time t.) �

Lemma 5. Consider a fixed FSP q�·�. Suppose that a time
interval �t1	 t2', with 0� t1 < t2, is such that

min
t1�t�t2

min
i∈I

qi�t� > 0


Then, over �t1	 t2', the functions ∗A�q�t��, ∗A�q�t��, ∗x�t�,
and ∗qi�t� for all i ∈ I are Lipschitz continuous. Moreover,
for almost all t ∈ �t1	 t2',
d

dt
�∗A�q�t��'� 0	

d

dt
�∗A�q�t��'� 0	

d

dt
�∗x�t�'� 0	 (27)

and if, in addition, ∗A�q�t�� > ∗A�q�t�� (i.e., q�t� is not a
fixed point), then
d

dt
�∗x�t�'�−F1	 (28)

where F1 > 0 is defined in Lemma 4.
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Proof. First, the Lipschitz continuity of each function
C ′
i �qi�t�� in �t1	 t2' follows from Lipschitz continuity of
qi�·� and the fact that C ′′

i �·� is continuous bounded away
from both infinity and 0, for the range of possible values
of qi�t� in �t1	 t2'. (This is the only place where we use the
assumption that the functions Ci�·� are twice continuously
differentiable.)
This implies that for an arbitrary fixed subset Î ⊆ I , the

following functions are also Lipschitz continuous in �t1	 t2':

max
i∈Î

C ′
i �qi�t��/�

∗
i 	 min

i∈Î
C ′
i �qi�t��/�

∗
i 


In particular, ∗A�q�t�� and ∗A�q�t�� are Lipschitz, which
(along with the fact that the second derivatives C ′′

i �·� are
bounded away from 0) implies that all ∗qi�t� and ∗x�t� are
Lipschitz.
We see that almost all points t ∈ �t1	 t2' are regular (as

defined earlier) and, in addition, are such that all the max
and min functions in the last display, for all (nonempty)
subsets Î ⊆ I , have derivatives. Within the present proof, let
us call such points t strictly regular. Consider an arbitrary
strictly regular point t ∈ �t1	 t2'. The proof will be com-
plete once we prove (27) and (28) for this point t. Because
t is strictly regular, the derivatives �d/dt��∗A�q�t��' and
�d/dt��C ′

i �qi�t��/�
∗
i ' for i ∈ I∗�t� are all equal. (In particu-

lar, this implies that ∗q′
i�t�= q′

i �t� for all i ∈ I∗�t�.) We can-
not have �d/dt��∗A�q�t��' > 0 because this would imply
that q′

i �t� > 0 for all i ∈ I∗�t�, which would contradict (24).
This proves the first (and with it the last) inequality in (27).
The second inequality in (27) is proved analogously.
We can now write

d

dt
�∗x�t�'=∑

i∈I
�∗
i
∗q′
i�t��

∑
i∈I∗�t�

�∗
i
∗q′
i�t�=

∑
i∈I∗�t�

�∗
i q

′
i �t�	

where the inequality follows from the fact that ∗q′
i�t� � 0

for all i ∈ I (which is implied by (27)), and the equality is
because ∗q′

i�t�= q′
i �t� for i ∈ I∗�t�. In the case ∗A�q�t�� >

∗A�q�t��, by (25), the right-hand side of the above display
is bounded above by −F1, which proves (28). �

Lemma 6. Consider a fixed FSP q�·�. Suppose that
q�t1� �= 0 for some t1 � 0. Then, q�t� has all strictly posi-
tive components (i.e., q�t� ∈RI++) for all t > t1. Moreover,
in �t1	��, ∗A�q�t�� is nondecreasing, and both ∗A�q�t��
and ∗x�t� are nonincreasing.

Proof. Indeed, we can always find a regular point � > t1
arbitrarily close to t1 so that q��� �= 0. By Lemma 4, q��� ∈
RI++. Then, using Lemma 5, it follows that ∗A�q�t�� is
nondecreasing (and ∗A�q�t�� and ∗x�t� are nonincreasing)
starting from time �, and therefore q�t� ∈RI++ for all t � �.
Because � can be chosen arbitrarily close to t1, the proof
is complete. �

Lemma 7. Consider a fixed FSP q�·�. If q�0� = 0, then
q�t�= 0 for all t � 0.

Proof. Suppose not. By continuity of ∗x�·�, for an arbitrar-
ily F > 0, there exists time t1 > 0 at which ∗x�t� reaches
level F for the first time. Of course, q�t1� �= 0. By Lemma 6,
∗x�t� cannot increase starting at time t1, and therefore
∗x�t� � F for all t � 0. Because F > 0 can be chosen
arbitrarily small, ∗x�t� = 0, and therefore q�t� = 0 for all
t � 0. �

The following theorem easily follows from the lemmas
presented above in this subsection.

Theorem 3. For any FSP, E�q�t�� is a nonincreasing
function, and the workload x�t� is a nondecreasing func-
tion. Moreover, there exist fixed constants T1 > 0 and K � 1
such that, for any FSP, q�t� reaches a fixed point �q within
finite time x�0�T1 and then stays there, and �∗ · �q � x�0�K.
Proof. The fact that x�t� is nondecreasing has already
been established.
Suppose that q�0� �= 0. By Lemma 6, ∗A�q�t�� is non-

decreasing and ∗A�q�t�� is nonincreasing in �0	��, and
therefore E�q�t�� is nonincreasing. Further, by Lemma 6,
q�t� ∈RI++ for all t > 0. Then, by Lemma 5, for almost all
t > 0, ∗x�t� > x�t� implies

∗x′�t��−F1


Because ∗x�0� � x�0��
∑

i �
∗
i '/�minn �

∗
n', x�t� �

∗x�t�, and
x�t� is nondecreasing, we immediately see that q�t� must
reach a fixed point within a time proportional to x�0�.
Therefore, the statement of the theorem, with some fixed

T1 > 0 and K � 1, holds for the FSPs with q�0� �= 0. By
Lemma 7, it trivially holds for q�0�= 0 as well. �

For future reference, we record the following property of
prelimit paths.

Lemma 8. There exists a constant F2 > 0, such that the
following holds. For any prelimit (scaled) path qr =
�qr�t�	 t � 0� and 0� tr1 < t

r
2 <�, the property

qr�t� �= 0 and E�qr�t��� F2 ∀ t ∈ �tr1	 tr2'

implies that in the (scaled) interval �tr1	 t
r
2', each server j

can take for new service only customers of types i ∈ Ij .
Proof. The small value of E�q� implies that the vec-
tor �C ′

1�q1�	 
 
 
 	C
′
I �qI �� is “almost proportional” to �∗.

So, if E�q� is small, it follows directly from the form
of the Gc�-rule and Lemma 1, that each server j can
only start service of customers i ∈ Ij . We omit the F-G
formalities. �

9. Proof of Theorem 1
For each r ∈ �, consider the following process, obtained
by diffusion scaling:

 @r�Qr	Xr	 F r 	 Sr 	Gr	Hr	 Y r�

= �q̃r 	 x̃r 	 f̃ r 	 s̃r 	 g̃r 	 h̃r 	 ỹr �	
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where the diffusion scaling opertator  @r is applied compo-
nentwise, and acts on a scalar function D = �D�t�	 t � 0�
as follows:

�  @rD��t� 
= 1
r
D�r2t�


To prove the properties stated in Theorem 1, it will suf-
fice to show that for any subsequence �1 ⊆�, there exists
another subsequence �2 ⊆ �1, such that these properties
hold when r → � along �2. As in Stolyar (2004), to do
this, we will choose subsequence �2 and construct all pro-
cesses (for all r ∈�2) on the same probability space in a
way such that the desired properties hold with probability 1
(or are implied by certain probability 1 properties).
Let us fix an arbitrary subsequence �1 ⊆ � of indices

�r�. According to Skorohod’s representation theorem (see,
for example, Ethier and Kurtz 1986), for each i the
sequence of the input processes �F ri � can be constructed on
a probability space such that the convergence in (5) holds
u.o.c. with probability 1 (w.p.1). Similarly, the sequence of
service processes �Sr� can be constructed on a probability
space such that w.p.1., u.o.c. the FCLT in (6) holds for each
pair �i	 j�:

�s̃rij �t�−�ijrt	 t � 0� u
o
c
−→ ��2
ijB�t�	 t � 0�
 (29)

We can and do assume that our underlying probability
space H= �I� is a direct product of the above probability
spaces.
Now, from condition (4) and Bramson’s weak law esti-

mates (Bramson 1998, Proposition 4.3), we know that for
any T3 > 0, any F > 0, and any �i	 j�, for all large r , we
have (see the proof of property (5.19) in Proposition 5.1 of
Bramson 1998)

P
{
max
0�l�T3r

sup
0���1

�f ri �l+ ��− f ri �l�−�i��� F
}
< F (30)

and

P
{
max
0�l�T3r

sup
0���1

�srij �l+ ��− srij �l�−�ij��� F
}
< F
 (31)

(The max in (30) and (31), as well as below in (32) and
(33), is over integers l ∈ �0	 T3r'.)
These estimates enable one to choose a subsequence

�2 ⊆�1, such that as r →� along �2, with probability 1,
for any T3 > 0 we have

max
0�l�T3r

sup
0���1

�f ri �l+ ��− f ri �l�−�i��→ 0 ∀ i (32)

and

max
0�l�T3r

sup
0���1

�srij �l+ ��− srij �l�−�ij��→ 0 ∀ �i	 j�
 (33)

Property (33) in turn implies the following property. With
probability 1, for any fixed T4 > 0 and d > 0, uniformly on

any sequence of pairs �tr1	 t
r
2�	 r ∈ �2, such that 0 � tr1 <

tr2 � r
2T4, t

r
2 − tr1 � rd,

lim
r→�	 r∈�2

Srij �t
r
2�− Srij �tr1�

�ij�t
r
2 − tr1�

= 1
 (34)

For each i, we have

Qr
i �r

2t�=Qr
i �0�+ F ri �r2t�−

∑
j

Srij �G
r
ij �r

2t��	

and, therefore, the expression for the scaled workload can
be written as follows:

x̃r �t�= x̃r �0�+r−1∑
i

�∗
i �F

r
i �r

2t�−�ri r2t� (35)

+r−1∑
i

�∗
i

(
�ri r

2t−∑
j

/ij�ijr
2t

)
(36)

+r−1∑
i

�∗
i

∑
j

�/ij�ijr
2t−Srij �/ijr2t�� (37)

+r−1∑
i

�∗
i

∑
j

(
Srij �/ijr

2t�

−Srij �/ijr2t−Hr
ij�r

2t��
)

(38)

= �wr�t�+ y̆r �t�	 (39)

where �wr�t� denotes the sum of the first four terms, and
y̆r �t� denotes the last term (38). We know that

��wr�t�	 t � 0� u
o
c
−→ ��w�t�	 t � 0�	

where

�w�t� 
= �w�0�+ at+�B�t�	

B�·� is the realization of a standard Brownian motion, and
the parameters a and � are those defined in (11). (The
realization �w�·� is, of course, continuous.) As seen from
(39), the key step in proving Theorem 1 will be the proof
of the following convergence:

�y̆r �t�	 t � 0� u
o
c
−→ �ỹ�t�	 t � 0�
 (40)

In the rest of this section, we restrict ourselves to a (measur-
able, probability 1) subset H2 ⊆H of elementary outcomes
I, such that all the specified above probability 1 properties
hold, when r →� along �2.

Lemma 9. Consider a fixed I ∈H2. As r →� along �2,
the functions y̆r and ỹr are “asymptotically close” in the
following sense. For any fixed T4 > 0, and any fixed G1 > 0
and G2 > 0, for all sufficiently large r , uniformly on
t ∈ �0	 T4',

�1− G1�ỹr �t�− G2 � y̆r �t�� �1+ G1�ỹr �t�+ G2
 (41)
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As can be seen from its proof, Lemma 9 applies to any
scheduling discipline satisfying Conditions (d1) and (d2).
Also, we note that in the proof of Lemma 9, the uniqueness
of / (in the CRP condition) is used in an essential way.

Proof. Let us fix T4 > 0. Suppose that we have a subse-
quence of r such that the following conditions hold: time
t ∈ �0	 T4' for all r (with t generally speaking depending
on r); for each �ij�, Hr

ij�r
2t� converges to either a finite

number or +� or −�; maxij �Hr
ij�r

2t�� converges to either
a finite (nonnegative) number or +�; if maxij �Hr

ij�r
2t��→

+�, then, for each �ij�,
Hr
ij�r

2t�

maxij �Hr
ij�r

2t�� → 3ij 	 (42)

where maxij �3ij � = 1. The proof will be complete if we
can prove that (41) holds for all large r along such a
subsequence.
Consider a fixed pair �i	 j� in (38). If lim �Hr

ij�r
2t��/r > 0,

then, by (34),

Srij �/ijr
2t�− Srij �/ijr2t−Hr

ij�r
2t��

�ijH
r
ij �r

2t�
→ 1
 (43)

If lim �Hr
ij�r

2t��/r = 0, then, again by (34),

�Srij �/ijr
2t�− Srij �/ijr2t−Hr

ij�r
2t��'/r → 0 and

�ijH
r
ij �r

2t�/r → 00 (44)

in this case, the contribution of the pair �i	 j� to both y̆r �t�
and ỹr �t� vanishes. These two observations easily imply
(41) for all large r , in the case when maxij �Hr

ij�r
2t��/r

converges to a finite number.
Now, consider the case maxij �Hr

ij�r
2t��/r →+�. Let us

define Lr (which depends on r) as follows:

Lr =
[
max
ij

�Hr
ij�r

2t��
]
/M	 (45)

where M=minij Mij and Mij =/ij ∧ �1−/ij� if 0</ij < 1,
and Mij = 1 otherwise. (Note that M> 0.) Obviously,

Lr/r →+�
 (46)

For each �ij�, let us define �rij by the following equation:

/ij − �rij =Hr
ij�r

2t�/Lr 
 (47)

We see from (42) and the definitions of Lr and �rij , that

�rij → �ij =/ij −3ijM ∀ �ij�


From the definition of M and the fact that maxij �3ij � = 1
(and also the facts that /ij = 0 implies Hr

ij�r
2t� � 0, and

/ij = 1 implies Hr
ij�r

2t�� 0), we see that �ij ∈ �0	1' for all
�ij�. For any j , we have

∑
i �ij � 1 because

∑
i H

r
ij �r

2t�� 0.

Thus, matrix � is “column-substochastic,” like matrix /,
and � �=/.
We can write

�r/Lr�ỹr �t� = �1/Lr�
∑
i

∑
j

�∗
i H

r
ij �r

2t��ij (48)

= ∑
i

∑
j

/ij�
∗
i �ij

−∑
i

∑
j

�/ij −Hr
ij�r

2t�/Lr��∗
i �ij

→∑
i

�∗
i ��i�/�−�i����

= �∗ · ���/�−������ 0
 (49)

The inequality in (49) follows from the CRP condition,
which also implies that ��/� �=���� (because � �=/).
Let us show that the case �∗ · ���/� − ����� = 0 is

impossible. Suppose that this equality does hold. Then,
�i�/� <�i��� for at least one i. For such i, we then have

�1/Lr�
∑
j

Hr
ij �r

2t��ij →�i�/�−�i��� < 0	 (50)

which, using (43) and (44), implies

�1/Lr�
∑
j

�Srij �/ijr
2t�− Srij �/ijr2t−Hr

ij�r
2t���

→�i�/�−�i��� < 0
 (51)

This in turn, easily implies that q̃ri �t� → −�, which is,
of course, impossible. Thus, we must have �∗ · ���/� −
����� > 0, that is, the expression in (48) converges to a
strictly positive finite constant. This, again using (43) and
(44), implies (41) for all large r . �

It follows from Lemma 9 that, to prove (40), it suffices
to prove

�ỹr �t�	 t � 0� u
o
c
−→ �ỹ�t�	 t � 0� (52)

because ỹ�·� is bounded on finite intervals.
Because regulation ỹr is a nondecreasing function (for

any r), for any fixed I ∈ H2, from any subsequence
�3�I�⊆�2 (which may depend on I!) it is always pos-
sible to find a further subsequence �4�I� ⊆ �3�I� such
that

ỹr ⇒ ỹ	 (53)

where ỹ is some nondecreasing RCLL function. (We will
prove that this limit ỹ is indeed the regulation of the one-
dimensional Brownian motion defined earlier.) In princi-
ple, ỹ may take the values +�. (In other words, ỹ ∈
D��0	��	 �R�. The notation “⇒” stands for convergence at
every point of continuity of the limit function except maybe
the point 0.) We note that (53) implies that

x̃r ⇒ x̃

= �w+ ỹ	 (54)

and, therefore, x̃�t� <� if and only if ỹ�t� <�.
The following lemma and its proof are analogous to

Lemma 7 in Stolyar (2004); it contains key observations
that are used in the proof of Theorem 1.
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Lemma 10. Suppose that the scheduling rule in the system
is Gc�. Suppose that I ∈H2 and a subsequence �4�I�⊆
�2 are fixed such that, along this subsequence, (53) holds.
Suppose that a sequence �t̃r 	 r ∈ �4�I�� is fixed such
that

t̃r → t′ � 0

and

x̃�t̃r �→C > 0


Let G> 0 be fixed, and

F

= sup
�1	 �2∈�t′−3G	 t′+3G'∩R+

� �w��1�− �w��2��<C


Then,
(a) ỹ (and x̃) is finite in �0	 t′ + G'. This in particular,

means that for any �i	 j�, the functions h̃rij �·� remain uni-
formly bounded in the interval �0	 t′ + G' as r →�.
(b) ỹ does not increase in �t′	 t′ + G', i.e., ỹ�t′ + G�−

ỹ�t′�= 0.
(c) The following bound holds:

C − F� x̃�t��CK+ F ∀ t ∈ �t′	 t′ + G'	

with K defined in Theorem 3.
(d) For any G′ > 0,

�q̃r �t�	 t ∈ �t′ + G′	 t′ + G'� u
o
c
−→ �q̃�t�	 t ∈ �t′ + G′	 t′ + G'�	

where q̃�t� is the (unique) fixed point such that �∗ · q̃�t�=
x̃�t�.
If, in addition, t̃r = t′ for all r and q̃r �t′�→ �q, where

�q is a fixed point (necessarily, with �∗ · �q =C), then
(c′) x̃�t′�=C and, consequently, q̃�t′�= �q.
(d′) The following holds:

�q̃r �t�	 t ∈ �t′	 t′ + G'� u
o
c
−→ �q̃�t�	 t ∈ �t′	 t′ + G'�


Proof. As in Stolyar (2004), the key construction in this
proof, namely the construction of a set of processes x̄r	 l�·�
(see below) on a slower, fluid time scale, essentially follows
Bramson’s construction in §5 of Bramson (1998).
Let us consider the functions of interest on the fluid time

scale. Namely, consider the earlier defined function xr�t�≡
x̃r �t/r�	 t � 0, and similarly defined functions yr , wr , and
other related ones. Let us choose a fixed T > 0 as follows.
Let us fix F3 ∈ �0	C − F�, denote

C3 = �C + F3�K+ F+ F3	

and fix an arbitrary

T �C3T1	

where K and T1 are the constants defined in Theorem 3. As
seen below in the proof, C3 will be the upper bound of x̃

r �·�
in the interval �t̃r 	 t̃r +G' or, equivalently, the upper bound
of xr�·� in the interval �r t̃r 	 r t̃r + rG'. Thus, the choice of
the constant T is such that an FSP with its initial work-
load not exceeding C3 will converge to a fixed point within
time T .
For each integer l ∈ �0	2Gr/T ', consider

x̄r	 l�u�

= xr�r t̃r + T l+ u�	 u� 0	

and similarly defined w̄r	 l, ȳr	 l, and other related functions.
Let us fix arbitrary F4 ∈ �0	 F2/2�, where F2 is defined in

Lemma 8. Then, the following property holds.

Property 1. For all sufficiently large r , for all integer l ∈
�1	2Gr/T ', we have

E�q̄r	 l�0��� F4 (55)

and

E�q̄r	 l�u��� 2F4 ∀u ∈ �0	 T '
 (56)

Indeed, suppose that Property 1 does not hold. For
each r , define l′ = l′�r� as follows: l′ = 0 if condition (55)
is violated for l= 1; otherwise, l′ is the smallest l� 1 such
that condition (55) holds, but (56) does not hold for at least
one u ∈ �0	 T '.
Note that if l′ � 2, then, by our construction, (56) holds

for each l = 1	 
 
 
 	 l′ − 1. This, by Lemma 8, implies that
for each l = 1	 
 
 
 	 l′ − 1, in the (fluid scaled) interval
�r t̃r+T l	 r t̃r+T �l+1�' (corresponds to the interval �r2 t̃r+
rT l	 r t̃r + rT �l+ 1�' in the unscaled time), each new ser-
vice started by a server j must be given to a customer of a
flow i ∈ Ij . This does not immediately imply that

ȳr	 l�T �− ȳr	 l�0�= 0 (57)

for l = 1	 
 
 
 	 l′ − 1, because if some “anomalous” cus-
tomers (with types i �∈ Ij ) were in service at time r t̃r + T l,
then their service must continue until completion. How-
ever, using property (33) of the service processes, it is
easy to see that for all large r , the service of all “anoma-
lous” customers will be completed in the first such interval
�r t̃r +T 	 r t̃r +2T '; moreover �ḡr	1ij �T �− ḡr	1ij �0�'/T → 0 as
r →� for any �i	 j� such that i �∈ Ij . Thus, for all large r ,
(57) holds for each l= 2	 
 
 
 	 l′ − 1, and (for l= 1)

�ȳr	1�T �− ȳr	1�0�'/T → 0
 (58)

Our choice of the constant T and Theorem 3 imply that
for all sufficiently large r (and l′ being a function of r as
defined above),

C − F− F3 � x̄r	 l′�0��C3
 (59)
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To prove (59), we first observe that for l= 1, we have

C − F3 � x̄r	 l�0�� �C + F3�K
 (60)

Indeed, if the upper bound in (60) does not hold, we
would be able to find a subsequence �r� along which the
sequence of paths z̄r	0 converges to an FSP z with x�0�=C
and x�T � > CK, which contradicts Theorem 3. The lower
bound in (60) holds for a similar reason—otherwise we
could construct an FSP with x�0� = C and x�T � < C.
Then, (59) follows from combining the following four
facts:

� �w��1�− �w��2��� F as long as �1	 �2 ∈ �t′ − 3G	 t′ + 3G'
∩R+;

�wr → �w uniformly in �t′ − 3G	 t′ + 3G'∩R+;
condition (57) for each l = 2	 
 
 
 	 l′ − 1, and condi-

tion (58);
the functions ỹr and y̆r are asymptotically close (in the

sense of (41)).
Given the bound (59) on x̄r	 l

′
�0�, we immediately obtain

a contradiction to Theorem 3: we can find a subsequence
�r� along which the sequence of paths z̄r	 l

′
converges to an

FSP z with E�0�� F4 and E���� 2F4 for some � ∈ �0	 T '.
We have thus proved Property 1.
Property 1, and an argument completely analogous to the

one we have used in its proof (in particular, in the proof of
(59)), imply that, for all large r ,

C − F− F3 � x̄r	 l�u��C3	 u ∈ �0	 T '	 0� l� 2Gr/T 


Statements (a)–(c) of the lemma follow from the last
estimate.
To prove (d), we first note that (a), (b), and (41) im-

ply the following uniform convergence for the workload
process:

�x̃r �t�	t∈ �t′ +G′	t′ +G'� u
o
c
−→�x̃�t�	t∈ �t′ +G′	t′ +G'�

(61)

Statement (d) then follows from Property 1, the fact that F4
can be chosen arbitrarily small, and convergence (61).
To prove properties (c′) and (d′), we use the same

construction. It is easy to see that, under the additional
assumptions, Property 1 holds for all integer l ∈ �0	2Gr/T '
(including 0). Given this, properties (c′) and (d′) are proved
analogously to (and easier than) properties (c) and (d). We
omit the details. �

9.1. Proof of Theorem 1: Part 1

This proof repeats that of Theorem 1(i) in Stolyar (2004)
virtually verbatim. We reproduce it here for completeness.
To prove this part, it suffices to prove the following.

Property 2. As r →� (along �2), for any I ∈H2 (i.e.,
with probability 1), we have the following convergence:

�ỹr �t�	 t � 0� u
o
c
−→ �ỹ�t�	 t � 0�	 (62)

where ỹ is defined by (10), and

�q̃r �t�	 t � 0� u
o
c
−→ �q̃�t�	 t � 0�	 (63)

where for each t, q̃�t� is the fixed point such that �∗ · q̃�t�=
x̃�t�.

Proof of Property 2. Let us fix I ∈ H2. As explained
earlier, for an arbitrary subsequence �3�I� ⊆ �2, there
exists another subsequence �4�I� ⊆�3�I� such that the
convergence (53) holds along this subsequence. Then,
the proof of Property 2 will be complete if we can prove the
following statements (for the chosen I, with r →� along
�4�I�). We recall that, at this point, the function ỹ is just
some limit function—the fact that it is equal to the func-
tion defined by (10) is what needs to be proved to establish
(63).
Step 1. The limit function ỹ is finite everywhere in

�0	��.
Step 2. The function ỹ is continuous, and ỹ�0�= 0.
Step 3. If x̃�t� > 0, then t is not a point of increase of ỹ.
Step 4. The function ỹ, defined above as a limit, satisfies

Equation (10).
Step 5. Convergence (63) holds.
In this proof, we will use the convention that ỹ�0−�= 0

and �w�0−�= x̃�0−�= �w�0�. So, the case ỹ�0� > 0 will be
viewed as a discontinuity of ỹ (and x̃) at 0. Also, we will
use the notation

F�G	 t�

= sup
�1	 �2∈�t−G	 t+G'∩R+

� �w��1�− �w��2��


Proof of Step 1. Suppose that the statement does not
hold. Denote t∗ = inf�t � 0 � ỹ�t�=��. The inf is attained
because ỹ is RCLL. We choose a small G such that G ∈
�0	 t∗� if t∗ > 0, and arbitrary G > 0 if t∗ = 0. Let us fix
F = F�4G	 t∗�. Then, we choose a small Nt ∈ �0	 G� and
a large C such that C > x̃�t∗ − Nt� + F if t∗ > 0, and
C > x̃�0−�+ F if t∗ = 0. We define

t̃r =min�t � �t∗ −Nt�∨ 0 � x̃r �t��C�	

and choose a further subsequence of �r� such that

t̃r → t′ ∈ �t∗ −Nt	 t∗'


(We must have t′ � t∗, because the limit function ỹ�t�, and
therefore x̃�t�, is infinite for all t � t∗.) It is also easy to
see (from (32)) that

x̃r �t�→C


The conditions of Lemma 10 are satisfied, and so ỹ is
bounded in �t′	 t′ +G'—a contradiction, because t′ +G> t∗.
Step 1 has been proved. �

Proof of Step 2. Suppose that the statement does not
hold. The contradiction is obtained similarly to the way it
is done in the proof of Step 1. Let t∗ be a discontinuity
point (the case t∗ = 0 is included), i.e., ỹ�t∗−� < ỹ�t∗�.
Because x̃= �w+ ỹ and �w is continuous, x̃�t∗�− x̃�t∗−�=
ỹ�t∗�− ỹ�t∗−�. There are two possible cases:
(a) x̃�t∗−� > 0, and
(b) x̃�t∗−�= 0.
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Case (a). In this case, we must have t∗ > 0. (Indeed, by
the definition of �w and our conventions, x̃�0−�= �w�0�=
limr x̃

r �0�. If �w�0� > 0, then, by Lemma 10(c′), x̃�0� =
limr x̃

r �0�, which means that x̃, and therefore ỹ, has no
jump at 0. If �w�0�= 0 then x̃�0−�= 0.) We can always fix
a small G > 0 and small Nt ∈ �0	 G�, such that t′ = t∗ −Nt
is a point of continuity of ỹ (and x̃) and F = F�4G	 t∗� <
x̃�t′�= C. We have convergence x̃r �t′�→ C (because x̃ is
continuous at t′), and by Lemma 10 ỹ cannot increase in
the interval �t′	 t′ +G', which contains t∗. So, x̃ cannot have
a jump at t∗.
Case (b). In this case, let us fix a small C > 0 and then

a sufficiently small G> 0 so that

C1 =KC + F < x̃�t∗�	
where F = F�4G	 t∗� and K � 1 is defined in Theorem 3
(and used in Lemma 10). Then, if t∗ > 0, we fix a small
Nt such that

lim sup
r→�

sup
�t∗−Nt	 t∗'

x̃r ��� < C


If t∗ = 0, we fix an arbitrary Nt > 0. We define

t̃r =min�t � �t∗ −Nt�∨ 0 � x̃r �t��C�	
and choose a further subsequence of �r� such that

t̃r → t′ ∈ ��t∗ −Nt�∨ 0	 t∗'

The conditions of Lemma 10 are satisfied, and so x̃�t� < C1
for all t ∈ �t′	 t′ + G', which contradicts the assumption of
case (b), because t∗ belongs to the latter interval. Step 2
has been proved. �

Proof of Step 3. Let t∗ � 0 be such that x̃�t∗� > 0. If
t∗ = 0, then the fact that ỹ does not increase in a small
interval �0	 G' follows from Lemma 10(b). If t∗ > 0, then
precisely the same construction as in the proof of Step 2(a)
shows that ỹ does not increase in a small interval �t′	 t′ +G'
containing t∗ in its interior. Step 3 has been proved. �

Proof of Step 4. The proof follows from the statements
of Steps 2 and 3 and Proposition 1 (in the appendix). �

Proof of Step 5. It suffices to show that for any t∗ � 0
and any F > 0, there exists G> 0 such that

lim sup
r→�

sup
�∈�t∗−G	 t∗+G'∩R+

	q̃r ���− q̃���	< F
 (64)

(The u.o.c. convergence will then follow from the Heine-
Borel lemma.)
If x̃�t∗� = 0, then (64) must hold because both func-

tions q̃ and q̃r (for large r) are bounded by an arbitrarily
small constant in a sufficiently small neighborhood of t∗. If
x̃�t∗� > 0 and t∗ = 0, then (64) follows from Lemma 10(d′).
If x̃�t∗� > 0 and t∗ > 0, then to obtain (64) we can repeat
the construction of the proof of Step 2(a) and then apply
Lemma 10(d). Step 5 has been proved. �

Thus, the proof of Property 2, and with it the proof of
Part 1 of the theorem, is complete. �

9.2. Proof of Theorem 1: Part 2

We use the same construction of the probability space H,
the subsequence �2, and the probability 1 subset H2, as
specified above. Consider an arbitrary discipline G. Sample
paths for both the Gc� and G disciplines are constructed
on this common probability space. For I ∈ H2, consider
paths of x̃rG, ỹ

r
G, and �wrG, corresponding to the discipline

G. Because �wrG is invariant with respect to the discipline,
�wrG = �wr , and therefore �wrG → �wG = �w u.o.c.
We claim that, along the subsequence �2,

lim inf
r→� x̃rG�t�� x̃�t�	 t � 0	 (65)

and therefore (12) holds. To prove this we first observe that
property (41) holds for any discipline G. For any subse-
quence �3�I� ⊆ �2�I�, we can choose a further subse-
quence �4�I� ⊆ �3�I� such that ỹ

r
G ⇒ ỹG, where ỹG is

some nondecreasing nonnegative RCLL function. (The case
that ỹG�t� takes value +� starting from some finite time
t∗ is possible.) Property (41) implies that we have y̆rG ⇒ ỹG
as well. Therefore, for any t � 0 where ỹG�·� is continuous,
as r →� along �4�I�,

lim x̃rG�t�= �w�t�+ ỹG�t�


Because x̃rG�t� is nonnegative, we see that �w+ ỹG is non-
negative at every point of continuity of ỹG, and therefore
it is nonnegative for all t � 0 (by right continuity). Then,
by Proposition 1(ii) (in the appendix), ỹG�t�� ỹ�t� for all
t � 0. This (and property (41)) implies that lim inf y̆rG�t��
ỹ�t� for any t � 0. Thus, (65) holds along the subsequence
�4�I�, and therefore along �2 (because the subsequence
�3�I� can be arbitrary). The proof of (65) (and therefore
(12)) is complete.
Because the function

∑
i Ci�qi� is continuous in the vec-

tor q, and the fixed point q̃�t� in (13) minimizes the value
of

∑
i Ci�qi� over vectors q with workload x̃�t�, property

(13) also holds. Finally, the equality in (14) follows from
the fact that q̃r → q̃ u.o.c., and the inequality follows from
(13) and Fatou’s lemma.
The proof of Theorem 1 is now complete. �

10. Further Research and Applications
There are many directions in which the present work can be
applied or extended. In this concluding section, we outline
some of them.
Extending the modeling scope—feedback. Many features

can be added to our model and still hopefully, leave it
tractable. For example, adding Markovian feedback (as in
Klimov 1974, 1978; Glazebrook and Nino-Mora 2001):
upon service completion, a type i customer could imme-
diately return for service, turning into type k with prob-
ability Pik. (To simplify the discussion, suppose that Pik’s
do not depend on the server that performs the service.)
Here, the substochastic matrix P = �Pik' is assumed to
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have spectral radius less than unity, which guarantees
that all customers eventually leave. Just as the applica-
bility of MaxWeight-type scheduling rules extends to net-
works (see the maximum throughput policy in Tassiulas
and Ephremides 1992), the Gc�-rule should extend to our
network with feedback along the same lines. Specifically,
when becoming free at time t, server j takes for service a
type i customer such that

i ∈ argmax
i

[
C ′
i �Qi�t��−

∑
k

PikC
′
k�Qk�t��

]
�ij	

unless the maximum (in the argmax above) in nonpositive,
in which case the server remains idle as long as this non-
positivity condition holds. (Note that such a Gc�-rule does
need to know the matrix P .) We believe that this version
of a Gc�-rule retains asymptotic optimality in the (appro-
priately defined) heavy traffic regime, and that the basic
approach developed in Stolyar (2004) and the present paper
can be applied to demonstrate it. We leave this as a subject
for future research.
Extending the modeling scope—large number of servers.

Under what conditions do our results still apply as the num-
ber of servers grows indefinitely? Consider, as before, a
sequence of queueing systems indexed by r , r → �. All
systems still have I customer types and J server skills, but
now the number of servers grows linearly with r . For sim-
plicity, let r itself be the total number of servers in the r th
system, which are divided so that there are (jr servers of
skill j; (j > 0	

∑
j (j = 1. Suppose that the service time of

a type i customer by a skill j server is exponential with
parameter �ij for all r . Assume also renewal arrivals, with

Or
i


= r�ri = r�i + bi
being the arrival rate of type i to the r th system. Then, if
we “slow down” time by a factor r , we essentially obtain
a system with input rates �ri = �i + bi/r	 and service rates
by server group j being (j�ij . With a minimal additional
argument, it can be shown that our results apply as is to this
modified system under the diffusion scaling �1/r�Zr�r2t�.
But, this means that our results apply to the sequence of
original systems with the scaling �1/r�Zr�rt�. In the case
of general service times, the reduction to our setting is not
straightforward and requires further thought.
Linear waiting costs. In practice, waiting costs

are acknowledged as being typically nonlinear (see
Van Mieghem 1995, Zohar et al. 2002 and references
there). Yet, the traditional scheduling literature (c� etc.), as
well as that which is approximation based (e.g., Harrison
1998, Harrison and Lopez 1999, Williams 1998c, Bell and
Williams 2001), have both focused on linear delay costs.
(A conceivable reason is that nonlinear costs have been
viewed as not being amenable to analysis.) While linear
costs violate our base assumption that C ′

i �0+� = 0, they
can still be accommodated within our framework, as will
now be described.

(a) Theory. Let Ci�.� = ci.	 	 . � 0, where ci > 0 are
given constant cost rates. Assume that �∗ is known (either
precomputed or estimated). Then, we conjecture that the
following adjustment of the Q�-rule in (15) is asymptoti-
cally optimal. First, determine the “cheapest” queue i, via
i ∈ argmini�ci/�∗

i �; then set all �k, k �= i to positive con-
stants that do not depend on r (say, all are set to 1); finally,
�i = �i�r� is a “sufficiently slowly” decreasing function of r
(for example, �i�r�= �log r�−c with any c > 1, or any other
reciprocal of the threshold that applies in Bell and Williams
2001).
(b) Application. Because we do not know �∗ in advance

and, moreover, it changes with circumstances (for exam-
ple, as arrival rates change), we can approximate linear
costs by the costs Ci�.� = ci.

1+F for some small F > 0.
Another option is the following adaptive procedure: use the
Q�-rule in (15), periodically estimate �∗ via measurements
(as described below), and shift more workload into the cur-
rently “cheapest” queue i ∈ argmini�ci/�∗

i �, by resetting its
�i to a smaller value.
Estimating waiting time in real time. Suppose that it is

desired to estimate the waiting time of a type i customer
upon arrival in real time. This has obvious practical signifi-
cance (e.g., Whitt 1999). Our results suggest the following
very simple procedure, applicable under Gc�, that is based
on the snapshot principle (Reiman 1984, 1988): use, as an
estimate, the waiting time (age) of the longest-waiting type i
customer.
On-line estimation of �∗. The Gc�-rule does not require

any knowledge of the workload contributions �∗. Neverthe-
less, their (relative) values can be estimated by observing the
ratios of C ′

i �Qi�/C
′
k�Qk�, as the system approaches heavy

traffic. Under Gc�, these ratios approximate those of �∗
i ’s.

Appendix
Sketch of the Proof of Theorem 2

As in the formulation of the theorem (and the formulation
and proof of Theorem 1), the variables pertaining to a spe-
cific discipline G are appended with the additional subscript
G. When such a subscript is omitted, the corresponding vari-
able pertains specifically to our D-Gc� discipline.
Recall that we consider the class of disciplines satisfying

Conditions (d1) and (d2). Therefore, without loss of gen-
erality, we can adopt the convention that, for each queue-
server pair �i	 j�, the i.i.d. sequence vij�n�	n = 1	2	 
 
 
 	
defines service times of type i customers by server j , in the
order in which they are taken from the queue for service
(and not in the order of their arrival to the system).
Consider any discipline G satisfying Conditions (d1)

and (d2). Let us modify it so that the following Condition
(d3) holds as well,

Condition (d3). When queue i is chosen for service (by
any server j), the longest-waiting customer from that queue
is taken for service.
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More specifically, the modification of discipline G is
such that whenever server j picks queue i for service
(according to whatever condition the discipline G uses), it
always takes the longest-waiting customer from the queue.
(As we noted before, such a modification does not affect
the queue length process.) Then, with probability 1 (in
fact, for every realization of the process), this modifica-
tion can only decrease the value of �r

G�T � for any T � 0
(and any r). This easily follows from convexity of the cost
functions Ci�·�, using an argument completely analogous
to the one used in Van Mieghem (1995) for the single
server system. By definition, the D-Gc� discipline satisfies
Conditions (d1)–(d3). Therefore, we conclude that to prove
the theorem, we only need to consider disciplines satisfying
all three Conditions (d1)–(d3).
We use the same construction of the common probability

space for all the processes with different r , as in the proof of
Theorem 1. The additional process we consider (and include
as a component of Zr ) is

Dr = ��Dr
i �t�	 t � 0�	 i ∈ I�	

denoting its fluid- and diffusion-scaled versions by dr and
d̃r , respectively.
Property (32) implies the following key property, which

can be called the “instantaneous Little’s law,” and which
establishes the connection between D-Gc� and Gc� rules:
For any discipline G (satisfying Conditions (d1)–(d3)), as
r → � along �2, with probability 1, for any T3 > 0 and
any F > 0, we have

max
i∈I

sup
0�t�T3

�q̃ri	G�t�−�id̃ri	G�t��
max�q̃ri	G�t�	 F�

→ 0
 (66)

We define FSPs (for D-Gc�) the same way as for Gc�,
except that it will have the additional component d (as a
limit of dr ), and the following additional conditions must
hold:

dri �0�→ di�0�= qi�0�/�i ∀ i

and

�kri ���	 � � 0� u
o
c
−→ �min��i�	 qi�0��	 � � 0� ∀ i	

where kri ��� is the (fluid-scaled) number of type i customers
with the (fluid-scaled) sojourn times (at initial time t = 0)
not exceeding �.
With such a definition of an FSP, it is easy to prove the

following additional basic property:

di�t�= qi�t�/�i ∀ t � 0	 ∀ i


Using this property, all the FSP properties established for
the Gc�-rule are proved the same way for the D-Gc�-rule,
as long as the cost functions Ci�·� are replaced by �Ci�·�.

Using the fact that FSPs underD-Gc� satisfy all the proper-
ties of FSPs under the Gc�-rule, and using the key property
(66), Part 1 of the theorem is proved the same way as Part 1
of Theorem 1. Properties (16) and (17) of Part 2 are proved
the same way as the corresponding properties in Part 2 of
Theorem 1. To prove the equality in (18) (for D-Gc�), we
prove that, uniformly on t ∈ �0	 T ',

lim
r→�

∣∣∣r��r �t+ 1/r�−�r �t��−∑
i

�Ci�q̃i�t��
∣∣∣= 0
 (67)

The proof of (67) uses (probability 1) properties (33), (32),
(66), properties of the FSPs, and continuity of the realiza-
tions of both x̃ and q̃. Then, the equality in (18) easily fol-
lows.
Finally, for an arbitrary discipline G, similarly to the

proof of (67), we prove that, uniformly on t ∈ �0	 T ',
lim inf
r→� r��r

G�t+ 1/r�−�r
G�t��−

∑
i

�Ci�q̃i�t��= 0
 (68)

(The proof of (68) uses, in addition, also the continuity
of x̃, and properties (16) and (17).) Then, (68) implies the
inequality in (18).

The One-Dimensional Skorohod Problem

The following proposition describes standard properties of
solutions to the one-dimensional Skorohod problem. (See
for example Chen and Mandelbaum 1991b for the proof.
The proof is also contained in the proof of Theorem 5.1 of
Williams 1998a.)

Proposition 1. Let w = �w�t�	 t � 0� be a continuous
function in D��0	��	R� such that w�0�� 0. Then, the fol-
lowing holds.
(i) There exists a unique pair �x	 y� of functions in

D��0	��	 �R�, such that
(a) x�t�=w�t�+ y�t�� 0	 t � 0,
(b) y is nondecreasing and nonnegative,
(c) y�0�= 0,
(d) for any t � 0, if x�t� > 0, then t is not a point

of increase of y, i.e., there exists G > 0 such that y��� is
constant in �t− G	 t+ G'∩R+.
This unique pair is �x�	 y��, where

y��t�

=−

[
0∧ inf

0�u�t
w�u�

]
	 x��t�=W�t�+y��t�	 t�0


(ii) For any pair �x	 y� of functions in D��0	��	 �R�
satisfying (a) and (b), we have

y�t�� y��t�	 x�t�� x��t�	 t � 0
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