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e model the decision-making process of callers in call centers as an optimal stopping problem. After each

waiting period, a caller decides whether to abandon a call or continue to wait. The utility of a caller is
modeled as a function of her waiting cost and reward for service. We use a random-coefficients model to capture
the heterogeneity of the callers and estimate the cost and reward parameters of the callers using the data from
individual calls made to an Israeli call center. We also conduct a series of counterfactual analyses that explore the
effects of changes in service discipline on resulting waiting times and abandonment rates. Our analysis reveals
that modeling endogenous caller behavior can be important when major changes (such as a change in service
discipline) are implemented and that using a model with an exogenously specified abandonment distribution
may be misleading.
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1. Introduction

Services cannot be stored and frequently cannot be
produced without their customers. Thus, waiting is
an inevitable part of most service encounters. A grow-
ing number of customer contacts take place in call
centers, making them a dominant channel for encoun-
ters with waiting (Gans et al. 2003, Aksin et al. 2007).
Customers dislike waiting, especially when it is in
invisible queues as in call centers. The dislike can be
attributed to feelings such as anxiety, ambiguity, and a
sense of wasting time (Suck and Holling 1997, Leclerc
et al. 1995). A natural consequence of such feelings
is that some customers lose patience and abandon
the queue before receiving service. Caller abandon-
ment reflects dissatisfaction and may lead to profit
loss for the service provider. It further affects perfor-
mance metrics such as average waiting times. Under-
standing caller patience is an essential first step in
designing superior service encounters, which moti-
vates the research in this paper. We model wait or
quit decisions by callers and estimate their patience
by making use of call center data on waiting and
abandonment times.

2727

A traditional approach to modeling reneging
or abandonment in queues is by considering an
exogenous patience time distribution for customers.
Thereby, customers abandon the queue when their
perceived waiting time exceeds their patience (Gans
et al. 2003 and references therein). Frequently, the
choice of the patience time distribution is driven by
tractability concerns. A distribution is chosen that
makes subsequent analysis possible, and its parame-
ters are estimated from historical data. A more recent
stream of research focusing on call centers has empha-
sized the importance of the direct use of data to fit
patience time distributions (Brown et al. 2005).

Although the traditional approach lends itself to
tractable analysis in many cases, it does not enable
explicit modeling of patience. An alternative model-
ing approach has been to consider wait or quit deci-
sions by callers as the outcome of forward-looking
behavior of utility maximizing rational agents. With a
utility function that consists of a reward from service
and a linear delay cost, forward-looking customers
either abandon upon arrival (i.e., balk) or not at
all. In particular, no caller abandons while waiting.
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As reviewed in Hassin and Haviv (2003), different
assumptions are required to induce rational abandon-
ments while waiting. In Hassin and Haviv (1995), a
reward from service that may drop to zero induces
rational abandonments. Mandelbaum and Shimkin
(2000) incorporate a fault state upon arrival, which
means callers arriving in that state will never be
served. In this extended model, callers may abandon
while waiting because they are worried that they may
be trapped in the fault state.

In a similar study, Shimkin and Mandelbaum
(2004) consider nonlinear delay costs with no fault
state. Under suitable conditions on waiting costs,
the authors study the equilibrium in which callers
decide upon arrival when to abandon. The abandon-
ment times of the callers are optima of their utility
functions. In both Mandelbaum and Shimkin (2000)
and Shimkin and Mandelbaum (2004), the authors
model the system as a Markovian queue with a gen-
eral abandonment time distribution (an M/M/m+ G
queue) and find the waiting-time distribution of the
callers resulting from the equilibrium between the
offered waiting-time distribution of the system and
the patience time distribution of the callers.

The work of Mandelbaum and Shimkin is an
important antecedent of this paper. Indeed, our
formulation builds on the following observation
made by Shimkin and Mandelbaum (2004, p. 122):
“It is plausible that abandonment decisions are taken
online based on the customer’s assessment of the cur-
rent situation and the utility of further wait.”

In our model, callers receive a reward from service
and incur a delay cost, which is linear to their waiting
time, along the lines of Naor (1969). Moreover, callers
are heterogeneous in their reward and cost param-
eters, which is captured via a random-coefficients
model. No information about the duration of waiting
is conveyed to the callers as they wait in the queue,
i.e., there is no delay announcement. Callers are for-
ward looking and make wait or abandon decisions
dynamically as they wait. To be more specific, we
assume that the waiting cost is sunk; i.e., waiting costs
incurred in the past are irrelevant to future decisions.
Hence, a caller only considers the expected future
utility associated with her actions. A caller’s utility
depends on her reward, delay cost, and idiosyncratic
random shocks, representing (external) events that
affect the caller’s utility. The idiosyncratic shocks cor-
respond to the unobserved variables in the empirical
industrial organization literature (see, e.g., Rust 1987),
which are observed by the caller but not recorded in
the data. Using standard terminology in the opera-
tions research literature, each caller solves an opti-
mal stopping problem, where stopping corresponds
to abandoning. We estimate callers” cost and reward

parameters using the maximum likelihood estimation
(MLE) approach.

The main contribution of this paper is to develop
a simple model that endogenizes and explains the
abandonment behavior of callers. Using our model,
we estimate callers’ cost and reward parameters and
conduct a counterfactual analysis. More specifically,
in a series of experiments, we change the service dis-
cipline of the call center and compare our model (with
endogenous abandonments due to forward-looking
callers) with a model where an exogenously specified
abandonment distribution (obtained from the data)
is used. For small changes, where we only change
the parameters of the existing priority scheme, for
example, the exogenous modeling appears to be suf-
ficient. However, our comparisons show the impor-
tance of endogenizing customer behavior in settings
where major policy changes are made.

Our model also makes a methodological contribu-
tion to the analysis of queuing systems with abandon-
ments. To the best of our knowledge, this is the first
attempt to apply a structural estimation approach in
the call center operations context. Furthermore, it is
the first empirical demonstration of the effect of mod-
eling endogenous customer abandonment behavior in
queues. Indeed, our framework can be modified suit-
ably to study various other queuing systems (with
abandonments), e.g., those arising in settings such as
in the delivery of healthcare services, made-to-order
manufacturing, etc.

The rest of this paper is structured as follows.
Section 2 reviews the literature. Section 3 charac-
terizes the model of the decision-making process of
callers. Section 4 describes the data. Section 5 explains
the estimation method and provides the estimation
results and their interpretation. Section 6 describes
the counterfactual analysis. Section 7 offers conclud-
ing remarks.

2. Literature Review

The behavioral aspects of waiting have been stud-
ied extensively. Mostly, waiting is shown to have a
negative effect on individuals. Leclerc et al. (1995)
study whether people treat waiting as losing mone-
tary utility. In an experiment, they show that individ-
uals” marginal cost of waiting is a concave function
when the waiting time is large, e.g., 20 minutes to
five hours. Suck and Holling (1997) model the effect of
waiting-time duration and variability on stress caused
by waiting. They show that an increase in either the
duration or variability of the waiting time results in
more stressful conditions for the customers. Bitran
et al. (2008) study the implications of the psychology
of waiting for the design of queuing systems and pro-
vide a comprehensive review.
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The same waiting experience can have different
effects on different people, depending on how it is
perceived. Indeed, a stream of research in the behav-
ioral literature analyzes the effect of time perception
on the behavior of callers. Hornik (1984) studies the
difference between the perceived waiting time and
the actual waiting time of the customers. The author
verifies the existence of this difference empirically.
Chebat et al. (1993) state that musical and visual
cues, e.g., playing music, may decrease customers’
perception of the time spent waiting and thus reduce
customers’ dissatisfaction from waiting. According to
experiments in Munichor and Rafaeli (2007), a sense
of progressing in the queue enhances the mood of cus-
tomers while waiting. In Zakay (1989), the author sug-
gests that the perceived waiting time is longer when
a customer is more conscious about the passage of
time. The author also states that conveying the delay
information may shorten the perceived waiting time
because it decreases the customer’s need to pay atten-
tion to the passage of time.

A growing body of literature studies the effect of
delay information on callers’ behavior and the per-
formance of the service center. We refer the reader
to Whitt (1999), Guo and Zipkin (2007), Jouini et al.
(2011), Armony et al. (2009), and references therein
for a detailed account of that literature. In the data,
no delay information is provided to callers, consistent
with our model.

Apart from the delay information, instruments such
as price can be used to control the customers” behav-
ior and decision in waiting situations. Naor (1969)
is one of the first papers in the queuing context to
model customers as utility maximizing agents whose
actions can be modulated via pricing. Naor (1969)
models a system where imposing tolls affects cus-
tomers’ decision to join the queue or to balk. Mendel-
son (1985) studies how queuing delays and pricing
change the behavior of customers and their arrival
rate. The author shows that a manager can maxi-
mize the value of the services to the organization or
minimize the costs by choosing the proper price and
capacity.

A closely related area is the equilibrium analysis of
abandonments by rational customers, who maximize
their utilities in choosing between waiting and aban-
doning. Zohar et al. (2002) provide a model of ratio-
nal abandonments suggesting that customers adapt
their patience to their anticipated waiting time. The
authors assume that customers’ patience follows a
parametric distribution, where its parameters are only
affected by anticipated waiting time of the customers,
and it depends on neither customers’ utility from
receiving service nor their waiting cost. Hassin and
Haviv (1995) study the abandonment profile of ratio-
nal customers in the setting of a single-server Marko-
vian queue with abandonments. The authors assume

that the customers’ waiting cost is linear and the cus-
tomers’ utility from service becomes zero if they do
not receive service within a fixed time after arrival.
The authors show that the optimal behavior of the
customers is one of the two abandonment profiles:
abandoning upon arrival or abandoning when the ser-
vice utility drops to zero.

As reviewed in the introduction, Mandelbaum and
Shimkin (2000) and Shimkin and Mandelbaum (2004)
analyze rational abandonment behavior of impatient
customers in a Markovian queue with a general aban-
donment time distribution (an M/M/m + G queue).
In both papers, the authors assume that the wait-
ing cost and service utility of the callers are given,
and customers depending on these parameters act
rationally and decide upon arrival when to aban-
don if they do not receive service. Our work differs
from Mandelbaum and Shimkin (2000) and Shimkin
and Mandelbaum (2004). An important difference
is that callers make their decisions dynamically in
our model, not just upon arrival. In essence, each
caller solves an optimal stopping problem where
“stopping” means abandoning. Another important
difference is that we do not undertake a queuing
theoretical analysis to derive the equilibrium wait-
ing time. Rather, we deduce the equilibrium distri-
bution of the waiting time from the observed data
and assume that it is common knowledge among the
callers and the call center provider; callers acquire this
knowledge through their past experiences of contact-
ing the call center.

We assume that the callers” utility depends on the
waiting cost, reward, and their idiosyncratic random
shocks, which resemble the random utility models
one sees in the structural estimation literature; see
Berry et al. (1995). In that literature, two of the most
relevant papers to our work are Rust (1987) and Nair
(2007). Rust (1987) studies the estimation of struc-
tural parameters of a regenerative optimal stopping
model where a maintenance manager in each period
of time has to decide between two actions: (1) replac-
ing the engine of a bus and incurring the cost of
overhaul or (2) not replacing the engine and incur-
ring the cost of unexpected failure. In Nair (2007),
the author examines the effect of consumers’ forward-
looking behavior on profit of the firms selling video
games. The author proposes a dynamic consumer
choice model where consumers can buy the product
and exit the market or wait to buy the product at a
lower price. The author also models the profit of the
firm and suggests that firms may lose profit by not
taking the forward-looking behavior of the callers into
account when setting prices. Similarly, our counterfac-
tual analysis illustrates how disregarding endogenous
abandonment behavior can lead to erroneous assess-
ment of service levels while making choices of service
discipline in a call center.
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3. The Model

In this section, we present a dynamic model of the
decision-making process of callers. In each period as
callers wait in the queue, they face the decision to
either abandon the call or continue to wait. If a caller
chooses to abandon, she will do so immediately at
the beginning of the period; if the caller chooses to
wait, she will stay in the system for that period. As
the caller waits, she may enter service in which case
she incurs the waiting cost for that period, receives
the reward associated with the service, and exits the
queue. Otherwise, the caller incurs a waiting cost for
that period and then decides again whether to aban-
don or continue to wait as she enters the next period.
We assume that callers know the probability of receiv-
ing service in a period t, which is conditional on not
being served yet. Callers also know that they will
receive service before period T if they do not aban-
don. Furthermore, no information about the duration
of waiting is conveyed to the callers; i.e., there is no
delay announcement.

In our model, callers are forward looking. In each
period, they compare the expected utility of wait-
ing, which consists of utilities from the current and
future periods and the expected utility of abandon-
ment. They then choose the action that maximizes
their expected utility. We assume that the waiting cost
is sunk; i.e., waiting costs incurred in the past are
irrelevant to future decisions. Hence, a caller only
considers the expected future utility associated with
her actions.

We next describe the model primitives. Let c; be
caller i’s cost of waiting for one period, and let r; be
caller i’s reward from receiving service. The callers
are heterogeneous in their rewards and waiting costs.
More specifically, the reward r; and the unit waiting
cost c; of caller 7 are given by

i =exp(m, +o,yy;), 1)

¢ = eXP(mc + Ucl/zi)/

where y,; and y,; are draws from independent and
identical standard normal distributions. In other
words, callers’ reward and cost parameters have log-
normal distributions. The parameters m, and m, are
the means for In(#;) and In(c;), respectively. Similarly,
the parameters o, and o, are the standard deviations
for In(r;) and In(c;).!

The utility of caller i for choosing action d in
period t is given by

ult, r;, c;, 84(d), d) =o(t, 1;, ¢;, d) + &,,(d),  (2)

! The mean and standard deviation of callers’ rewards are given

by exp(m, + 02/2) and exp(m, + 02/2)/exp(c?) — 1, respectively.
Similarly, for callers’ costs, these statistics are exp(m, + ¢2/2) and

exp(m, +0?/2)/exp(0?) — 1.

where g;,(d) denotes the idiosyncratic shock incurred
by choosing action d. The term v(t,r;, c;, d) is the
nominal utility and is independent of the idiosyn-
cratic stochastic shocks. We let d =1 if a caller chooses
to abandon in that period and zero otherwise.

Because caller i will exit the queue at the beginning
of the period if she chooses to abandon the call, the
nominal utility of caller i abandoning in period ¢ is
zero, i.e.,

U(t, Ti, Cil ].):0. (3)

If caller i decides to wait, the nominal utility of wait-
ing is given by

o(t,1:,¢;,0) = —c;+m(H)r;+ (1 -7 (1))

E| max u(t4+1,71,6,5500(@), )|, (@)

where 7 (t) is the probability of receiving service in
period t conditional on not being served yet and
7(T)=1; i.e., all callers receive service within T peri-
ods. We assume that 7(-) is the equilibrium outcome
of the system, where callers correctly anticipate the
service probabilities based on their past experiences
of contacting the call center. Furthermore, the proba-
bility of receiving service 7 (-) is common knowledge
among the callers. The first term on the right-hand
side of (4) is the waiting cost for the current period.
The second term is the expected utility from receiving
service in period t. Finally, the last term is the future
value of waiting. We refer to the expectation in (4) as
the integrated value function, denoted by V(t, r;, c;).
The expectation is taken with respect to the condi-
tional distribution of &,y given &;, where & stands
for (£(0), &(1)). Assuming g;(d) is independent and
identically distributed (iid) across different callers,
periods, and actions, we denote caller i’s integrated
value function as

V(t, 1, c) = f/ max u(t+1,1;,c;, &(d), d)
-8(£(0))g(e(1)) de(0) de(1),  (5)

where g(&(d)) is the probability density function (pdf)
of the error term &(d) for d=0, 1.

Given r; and ¢; caller i’s optimal decision in
period t is given by

d;, =argmaxu(t, r;, c;, €;(d), d). (6)
defo, 1)

The following proposition (see Appendix A for its
proof) characterizes callers’” choice probabilities under
the assumption that the idiosyncratic shocks have iid
type I extreme value distribution. (See Appendix A
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for the definition of this distribution.) As explained in
Rust (1987), this distributional form enables a closed-
form representation of the choice probabilities.

ProrosITION 1. Suppose that the idiosyncratic shocks
€,(1) and €;(0) have iid type I extreme value distribu-
tion. Denoting by P, (d,,; 1;, ¢;) the probability that caller i
chooses action d;, in period t, we have

exp(U(t, ¥i, Ci, dit))
1+exp(v(t, 1;,¢;,0))”

Py(dy; 11, ¢;) = (7)

where

’U(t, i, Ciy dit)

— 0 if dy=1, 8)
ot mOr+A—7@®)VIt, 7, 0) if dy=0.

Moreover, caller i’s integrated value function for t < T is
recursively given by

V(t,1;,c;) = log(1+exp(—c;+m(t+1)r;
+(A=m(E+ D))V (E+1,7,0))),  (9)

and V(T, r;, ¢;) =0.

4. Data

Our data set was generously made available to us by
the Service Enterprise Engineering (SEE) lab at the
Technion (http://ie.technion.ac.il/Labs/Serveng/). It
contains individual call-level data as well as agent
data from a bank call center for a six-month period
between April and September 2008. The call center
operates 24 hours a day, seven days a week. It pro-
cesses up to 85,000-90,000 calls a day on weekdays
and 15,000-40,000 calls a day on weekends. There are
300-350 agents working in the call center on week-
days and 50-175 agents during weekends.

Around 30,000-35,000 calls, or 35%-40% of total
arrivals, are routed according to the agents’ skills. The
rest are IVR/VRU (interactive voice response/voice
response unit, representing automated response) calls.
The center offers six types of services: private, secu-
rities, Internet, other languages, loans, and solutions.
The service type of a call can be observed in the data.
Private calls (retail banking) are the largest call type.
These are the calls we focus on in our basic analysis.
A preliminary look at the data indicates that weekdays
and weekends are significantly different in terms of
call traffic, server numbers, and wait patterns. In our
analysis, we choose to focus on the weekday calls.

The data traces each call from its entry to exit.
Each call is broken down into subcalls. Entry and exit
times from each subcall are available. Calls are distin-
guished by the route they follow within the call center
(directly joining the queue, VRU and then joining the

Table 1 Definitions of Outcomes
Code Outcome Description
1 Normal The caller receives service and then terminates
terminations the call
2 Transfer Call was transferred to another agent or unit

Customer has terminated the call while on hold
or because the agent logged off

Agent did not pick up the phone

Agent has finished his shift without logging
off and the phone system continues to send
incoming calls to this agent

11 Abandoned A call placed into queue was abandoned with the

short wait time less than five seconds

12 Abandoned A call placed into queue was abandoned with
wait time longer than or equal to five seconds

A call placed into queue did not reach the agent
for unknown reasons (mainly because of
hardware malfunctioning)

3 Disconnected

4 On ring
5 No agent

13 Other
unhandled

queue, or other) and by the outcome of the call (nor-
mal termination, transfer, disconnected, on ring, no
agent, abandoned short, abandoned, or other unhan-
dled). Calls joining the queue directly represent calls
transferred from the branches or calls when a cus-
tomer ID has not been identified. A definition of each
outcome is provided in Table 1. Our analysis focuses
on the route VRU and joining the queue as well as the
outcomes’ normal termination, transfer, abandoned
short, and abandoned, which consist of more than
80% of the observations. Because our model does not
consider multistage service and intermediate waits by
customers, we restrict our analysis to the first sub-
call, which consists of waiting in the queue and talk-
ing to the first agent. The callers do not receive any
delay announcements, but they may receive informa-
tion announcements (working hours, etc.) and mar-
keting announcements or hear music.

Customers in this call center have different prior-
ities in the queue. There are four levels of priority:
high, medium, low, and no priority. The no-priority
calls are those that cannot be associated with a cus-
tomer at the point of entry and are thus treated as
having no priority, which corresponds to the lowest
priority. We observe the priority group of each caller
from the data.

Depending on the caller’s priority type, each caller
receives a priority point upon arrival. The priority
point of a customer is updated dynamically as the
customer waits in queue. These priority updates are
performed after every 60 seconds of waiting. The
updates in priority points occur such that higher-
priority calls receive higher increases in their prior-
ity points relative to lower-priority calls. Although
for the same waiting duration a call with a higher-
priority type always has higher priority points,
a lower-priority-type caller who has waited a long



Aksin et al.: Structural Estimation of Callers’ Delay Sensitivity in Call Centers

2732

Management Science 59(12), pp. 27272746, ©2013 INFORMS

Figure 1
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time may have higher priority points than a newly
arriving high-type caller because of the dynamic
priority point updates. We observe the effect of
these dynamic priority increases in waiting-time his-
tograms. In particular, we observe peaks at multiples
of 60 seconds, corresponding to the dynamic priority
point updates. An example for medium-priority calls
on May 12, 2008, in Figure 1 illustrates the pattern.

Dynamic priority updates are not recorded in the
data. Although we know the update mechanism, we
do not make use of this in our estimation. Rather,
we use the resulting service probabilities directly as
estimated from the data. This estimation is described
in §5.

The average arrival pattern for calls on working
days is shown in Figure 2. To focus on the relatively
busy hours of the day, we restrict our analysis to calls
between 9 A.M. and 2 P.M. on each weekday:.

The abandonment rate during the day for July 17,
2008, is plotted in Figure 3. This pattern suggests
that there may be different staffing patterns during

different times of the day. We verify this by making
use of available agent data. Figure 4 provides aver-
age staff numbers during the day on Mondays (other
working days exhibit a similar pattern), showing that
the time interval we focus on represents a highly
staffed interval, thus ensuring reasonable abandon-
ment rates.

Finally, we focus on calls with a wait duration rang-
ing between 0 and 960 seconds. Calls with waiting
times longer than 960 seconds constitute fewer than
0.01% of our observations and have been eliminated
to reduce the length of the time horizon in our estima-
tion. Data from weeks with a holiday were excluded
from the analysis (these are April 20-26, May 4-10,
June 8-14, and September 28-30) as potential outliers.

In summary, our analysis focuses on 1,323,071 calls
with the private service type, received on weekdays
during weeks without a holiday in the interval April-
September 2008, between 9 AM. and 2 p.m., having
entered the system through the VRU and proceeded
to a wait in the queue and having normal termination,

Figure 2 Average Arrival Pattern for Weekday Calls
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Figure 3 Pattern of Average Abandonment Rate for July 17, 2008
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Figure 4  Average Agent Numbers on Mondays
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transfer, short abandonment, and abandonment as an
outcome. We are focusing on the subcall starting with
the wait in the queue and including the encounter
with the first agent. The summary statistics for this
portion of the data are given in Table 2.

5. Estimation

In this section, we first discuss the identification of
callers’ parameters from the data. Next, we describe
the estimation methodology and results. Finally, we

discuss the cross-validation and out-of-sample tests to
examine the ability of our model to predict the aban-
donment behavior of callers.

5.1. Identification

As can be seen in Figure 5, our data exhibit significant
intertemporal variation in the service probabilities
7 (t). This observation, along with the fact that wait-
ing times vary across different callers (see the waiting-
time histograms of the priority groups in the data
in §6), allows us to identify the reward and cost

Table 2 Summary Statistics for the Portion of the Data Used in the Analysis

Number of Abandonment Average waiting Average waiting time Maximum waiting
Priority group observations rate (%) time (sec.) (abandoned calls) (sec.) time (sec.)
High priority 184,722 212 18.83 71.73 857
Medium priority 516,685 3.68 42.19 108.58 958
Low priority 253,963 6.66 72.02 123.25 949
No priority 367,701 24.65 96.20 100.31 960

Sum 1,323,071
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Figure 5 Service Probabilities of the Priority Groups in the Data
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parameters separately. To see the intuition behind
this, note from Equations (7)—(9) in Proposition 1 that
the probability of abandoning in period ¢ depends on
the terms {w(s)r; —¢;},_, v and is given by

Py(1; 1, ¢;)
=y (m(t)ri—c;, w(t+1)r,—c;, ..., w(T)r;—c;), (10)

where , is a suitably defined function that does not
depend on r; and c;. Equation (10) shows that if there
were no variation in 7 (t), i.e., 7(t) = 7 for all ¢, then
we could only identify the difference between wr;
and c;. This follows because the abandonment prob-
ability P,(1; ;, c;) would then be solely a function of
at; — ¢;, which would prevent the identification of
the reward and cost parameters separately. However,
since callers” waiting times exhibit sufficient variabil-
ity, we can identify the abandonment probabilities
in each period as given in (10), from which we can
identify the reward and cost parameters separately
given the intertemporal variation in service probabil-
ities 7 (t).

Moreover, heterogeneity in callers’ cost and reward
(i.e., 0,, 0,) is identified by the variation in the aban-
donment behavior of callers in a given period. To see
this, consider N callers who have waited for ¢ peri-
ods, and recall that the abandonment probability in
period t is given by (7). If there is no heterogene-
ity (i.e., o, = g, =0), then each caller has the same
abandonment probability. Hence, the total number
of abandonments in period t is a binomial random
variable. In contrast, under heterogeneity, callers will
have different abandonment probabilities, and the
total number of abandonments in period ¢ is the sum

of N binary random variables where success proba-
bilities are random variables (as determined through
t;, ¢; in Equations (1) and (7)). Therefore, the total
number of abandonments in period t exhibits more
variation under heterogeneity. In other words, the
degree of variation (or volatility) in the abandon-
ment behavior of callers helps us identify the variance
parameters o,, o.. Nonetheless, our model is flexible
enough to allow o, = 0. = 0. Indeed, we find that
this is the case for all but no-priority callers (Table 3).
However, allowing heterogeneity can be critical, as
illustrated in §6.

5.2. Estimation Methodology and Results

The estimation of callers’ parameters is carried out
in two stages. We first estimate the probability of
receiving service 7 (t). Next, given that probability, we
construct the likelihood function of callers’” observed
decisions in the data and maximize it to estimate the
parameters.?

We estimate w(t), the probability of receiving
service in period t (which is conditional on not
being served yet), directly from the data. This direct
approach allows us to capture all operational aspects
of the call center for the interval under analysis. Given
the cumulative distribution of a caller’s waiting time
(time spent in the queue before receiving service),
denoted by F, w(t) is given by

_F(t+1) — F(t)

(=15 (11)

2This is similar to the approach taken in Rust (1987), where the
author first estimates the transition probabilities in mileage directly
from the data and then uses those fixed transition probabilities to
estimate the structural parameters.
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To estimate the waiting-time distribution of the
callers, we use the Kaplan-Meier estimator (Kaplan
and Meier 1958). This estimator is used to find the
survival time distribution when the data is censored,
which is the case herein because of the presence of
abandonments. See Appendix B for details.

Next, we describe the MLE problem of callers’
parameters given the service probabilities (t) for
t > 1. Recall that callers are indexed by i=1,..., N,
where N is the total number of callers in the data, and
that 7; and c¢; are given in (1), where y;; and y,; are
standard normal random variables. Let 7; denote the
last period in which caller i decides between waiting
and abandoning. Also, let {d;: t=0,1, ..., 7;} denote
the observed actions of caller i, where d,, is the action
of caller i in period t.

Recall that P,(d; r;, c;) denotes the probability of
choosing the action d;, by caller i in period ¢. Let ® =
(m,, m,, o,, 0.) denote the vector of structural param-
eters to be estimated. Under the assumption that 7;
and c; have log-normal distributions, the likelihood of
observing the sequence of actions {d;: t=0,1, ..., 7;}
by caller i is given by

1,(®) = [/ ﬁpit(dit; 71, €) O (Y1) D (Yai) Ay Ay,
t=0

= // 1_[ Pft(dit; exp(m, + o-ryli)r exp(mc + Uc]/zi))
t=0
O 1) P (W) Ay Ay, (12)

where ¢(-) is the pdf of the standard normal distri-
bution. The likelihood function of the entire sample is
then the product of the individual caller’s likelihood
and is defined as follows:

N
L(©) = [1(0)

N T
= [T/ T1Pu(ds expim, +0,1.), exp(m +0.4))
i=1 t=0
O (Y1:) P (Y2i) Ay Y- (13)

The estimation problem is to choose the structural
parameters © to maximize the log-likelihood function
log L(®) with the integrated value function (9) as a
constraint (Su and Judd 2012). To be more specific, the
formulation of the estimation problem is given below:

mpmize 108
N T
=) log <// [1P:(dis;7i,¢) (Y1) D (i) Ay d}/z:‘)
i=1 t=0

subject to (foralli=1,...,N):

Vit: Pyd,=1;7,¢)
_ 1
o 1 +eXp(—C7- +7T(t)7’, + (1 - W(t))V(t, Ti, Ci)) ’

Vi Py(dy=0;7,0)
_exp(—¢+m(t)r+(1—7m(t)V(t, 1, c))
- 1+exp(—C,- —‘,—77(1’)1’,- + (1 - 7T(t))V(i’, Tis Ci)) ’

Vit V(t, 1, ¢)=log(l+exp(—c;+m(t+1)r;
+A-7(t+))V(+1,1,0))),
V(T, I”i, Cl) =O,

= exp(mr + O-ryli)/
c;=exp(m.+o.y),
o,, 0.>0. (14)

In the estimation, we assume that each caller makes
the decision every five seconds. Thus, the maximum
number of periods in our model is 192 (= 960/5).
Because our data is more granular, we truncate the
abandonment times downward and service initiation
times that happen in a period upward, consistent with
our modeling assumptions in §3.

We solve the MLE problem (14) using the nonlin-
ear optimization solver, KNITRO (Byrd et al. 2006),
with an AMPL interface. We use 50 randomly gen-
erated starting points to find a better estimate. To
approximate the two-dimensional integration in the
likelihood function over y;; and v,;, we use the Gauss—
Hermite integration (Judd 1998, §7.2, p. 261). We
choose five points in each dimension and approx-
imate the integral by the weighted sum of the
likelihood values at the resulting 25 nodes in the two-
dimensional space associated with the pair (y;;, ¥»;)-
We also conduct a Monte Carlo experiment to show
that our estimation method can recover the true
parameter values; see Appendix C for details.

Our empirical analyses focus on four priority
groups within the private service group as described
in §4. For each priority group, the corresponding prob-
ability of service m(t) is estimated directly from the
data. Note that the direct estimation of the service
probabilities 7 (-) allows us to capture the interac-
tion between the different priority callers in the queue.
We estimate the parameters of each priority group sep-
arately. The estimated parameter values and standard
errors (shown in parentheses) are reported in Table 3.
To compute standard errors, we use the parametric
bootstrap method (Horowitz 2001). We generate 100
simulated data sets with the same size as the real data
from the estimates. We then estimate parameters of the
simulated data sets and compute the standard errors.
In Table 4 we report the mean and standard deviation
for callers’ rewards and costs for each priority group,
which are calculated from the estimates in Table 3
using the formulas in Footnote 1.

As can be seen in Table 4, mean reward parameters
increase with the priority level although they are com-
parable in magnitude. Similarly, the mean cost param-
eters are higher for the high- and medium-priority
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Table 3  Estimation Results Let P,,..(t) denote the ex ante probability of aban-
Priority group m m, . N doning in period ¢, which is given by
High priority 1.842 —2.420 7.16E-06  2.89E-05  Pupan(t)

(0.011) (0.089) (0.028) (0.156)
Medium priority ~ 1.820 ~3166  7.39E-06  5.46E-05 (1-F(0)) f / Po(1; 75, ;)

(0.009) (0.070) (0.027) (0.140) o N v due i F—0
Low priority 1667  —10.000 569E-06  1.09E-03 P (Vi) s Ay ’

(0.006) (1.517) (0.032) (0.912) _ -1 (15)
No priority 1.426 —7.420 0.152 2.379 (1—F() (// (1_[ P, (0; r;, ci)> P,(1; 7, c)

(0.006) (0.219) (0.006) (0.079) s=0

- d(y1:)P(yai) Ay, dym') if t>0.
Table 4 Mean and Standard Deviation for Callers’ Rewards and Costs
Priority group  r-mean (§) c-mean (§/minute) r-st dev. c-st. dev The callers’ decisions to abandon in each period
— —  are independent of each other. Therefore, the pre-

High priority 6.309 1.067 452E-05 3.09E-05  dicted number of abandonments in period f has a
't"ed'”“? p{|0r|ty g;;g s 255E0604 gggg'gg gg?g‘gg binomial distribution. Let m,,(t) and o,,,,(t) denote
ow priority ) 45E- .02E- 91E- o L, avant .
No priority 4911 0422 0.645 2 057 the mean and standard deviation of this distribution,

groups. This suggests that the high-priority callers
are less patient. The waiting cost is negligible for the
low-priority group. Recall that the maximum waiting
time in the data is about 15 minutes. The negligible
cost parameter for the low-priority callers suggests
that they abandon not because of high waiting costs
but rather because of external events, as modeled by
the random shocks. Interestingly, the waiting cost for
the no-priority callers is nonzero. Recall that the no-
priority calls cannot be associated with a customer at
the point of entry and, hence, contain a mix of delay-
sensitive and nondelay-sensitive callers. The mean
waiting cost captures the average of this heteroge-
neous group and is therefore higher than that of the
low-priority group. Note, however, that our random-
coefficients model is rich enough to accurately capture
this heterogeneity and reflects its implications in the
counterfactual analysis.

The negligible variance estimates for the high-,
medium-, and low-priority groups suggest that callers
in these groups are homogeneous. In other words,
the call center provider was successful in segmenting
the callers into these groups. On the other hand, the
estimates for the no-priority group suggest significant
heterogeneity within this group, which is consistent
with the fact that callers in this group are not identi-
fied by the system and may also be new customers.
This observation calls for further efforts to better iden-
tify and segment the no-priority group.

5.3. Cross-Validation and Out-of-Sample Tests

We use ten-fold cross-validation with stratification to
examine the ability of the model to predict the aban-
donment behavior of callers (Kohavi 1995). The vali-
dation is done for each priority group in isolation.

respectively. Then, m,,,(t) = NP (t) and 0., (f) =
VNP (1) (1 = Pypan(t)). Moreover, the predicted num-
ber of aggregate abandonments is Y, M. (t) =
N Y2y Proan(t)- Let a,,,(t) denote the actual number
of abandonments in period ¢.

We consider the relative and absolute errors in pre-
dicting the aggregate abandonment rates as the per-
formance metrics for the cross-validation. Note that

| Z?;)l maban(t) - Z?:?)l aaban(t)|
ZtT:_Ol aaban(t)

relative error =

, (16)

and
1|71 T-1

absolute error = — | > myn () = Y apan (D], (17)
N t=0 t=0

The averages of the performance metrics across all
test sets are shown in Table 5, which shows that our
estimates are fairly accurate.

A more detailed comparison of the predicted and
actual abandonments is provided in Figure 6. In addi-
tion to my,,(t) and o, (), it also shows m,,,, (t) =
20,pan () Over time, which helps assess the accuracy of
the prediction in relation to the inherent variability
of the abandonments, as captured by o, (#).

In addition to the cross-validation study, we also
perform several out-of-sample tests to illustrate the
accuracy of the estimation. To this end, we first split
the data across weeks into two samples. The first half
is used to estimate the model, whereas the second
half is used for prediction and testing its accuracy.

Table 5 Averages of the Performance Metrics Across All Test Sets
Priority group Relative error (%) Absolute error (%)
High priority 0.29 6.15E-03
Medium priority 0.05 1.86E-03
Low priority 0.04 2.35E-03

No priority 0.15 0.03
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Figure 6
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Table 6 Out-of-Sample Testing of the Model Across Different Weeks
Priority group Relative error (%) Absolute error (%)
High priority 20.02 0.38
Medium priority 8.91 0.26
Low priority 5.47 0.32
No priority 3.72 1.03

The results for different priority groups are shown in
Table 6.

As can be seen in Table 6, the estimates from the
first half of the data produce fairly accurate predic-
tions for the abandonments observed in the second
half of the data. It is interesting to note, however,
that because the abandonment rate is small for the
high-priority group, even a small prediction error
is magnified under the relative error metric. Hence,
although the relative error may seem high for the
high-priority group, the corresponding absolute error
is small (Table 6).

Next, we repeat the out-of-sample testing for dif-
ferent hours of the day. We use peak-hours data
(9 AM—2PM.) to estimate the parameters reported
in Tables 3 and 4, and we use those parameters to
predict the abandonments during off-peak hours.?
More specifically, we consider two off-peak peri-
ods: 2 pm.—6 P.M. and 6 P.M.—10 .M. The prediction

*In the prediction, the service probabilities (t) for the relevant
hours are used.

Predicted Abandonments m,,, (f), Actual Abandonments a,,,(t), and m,,, (f) & 20,,,(f) over Time for the Priority Groups
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Table 7 Out-of-Sample Testing of the Model Across

Peak (9 A.M.-2 p.Mm.) vs. Off-Peak (2 p.m.—6 p.m.) Hours

Priority group Relative error (%) Absolute error (%)
High priority 14.00 0.46
Medium priority 4.04 0.18

Low priority 10.90 0.76

No priority 9.40 2.30

Table 8 Out-of-Sample Testing of the Model Across

Peak (9 A.M.-2 p.m.) vs. Off-Peak (6 P.m.—10 p.m.) Hours

Priority group Relative error (%) Absolute error (%)
High priority 50.77 2.99
Medium priority 15.69 1.4
Low priority 16.21 2.1
No priority 12.77 5.36

results for 2 PM.—6 P.M. and 6 P.M.—10 P.M. are shown
in Tables 7 and 8, respectively.

Although the predictions of the model for
2 p.M.—6 P.M. (based on the peak-hours estimates) are
accurate (see Table 7), they are not as accurate for
6 p.M.—10 p.M. This discrepancy can be explained by
the differences in caller demographics during dif-
ferent hours. Our hypothesis is that the callers in
2 P.M.—6 P.M. are similar to the callers in peak hours,
whereas those calling during 6 r.m.~10 P.M. are less
similar to the peak-hour callers. Therefore, the reward
and cost parameters and, consequently, the abandon-
ment behavior of the callers during peak hours are
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Table 9 Bhattacharyya Distance for Comparing Caller Similarity in
Peak vs. Off-Peak Hours
Distance between Distance between
peak callers and peak callers and
Priority group 2 P.M.—6 P.M. callers 6 P.M.—10 P.Mm. callers
High priority 0.20 0.48
Medium priority 0.29 0.47
Low priority 0.35 0.53

more similar to those of the callers who contacted
during 2 p.M.—6 P.M.

To assess the similarity of callers during different
hours, we adopt the Bhattacharyya distance (between
probability distributions), which is widely used in
information theory literature (Bhattacharyya 1943).
To be specific, for discrete probability distribution p
and g over the domain X, the Bhattacharyya distance
is given by

DB(P,q)=—1n<Z W>;

xeX

see, for example, Kailath (1967) and Basseville (1989).
In our context, probability distributions p and g corre-
spond to the identity of a random caller during peak
and off-peak hours, respectively. To be more specific,
p(x) denotes the probability that a randomly selected
peak-hour caller is caller x. In our data set, callers in
high-, medium-, and low-priority groups are identi-
fied. Therefore, we can calculate the distance for those
priority groups to assess the similarity of the callers
in different hours, as shown in Table 9.

The distances in Table 9 show that callers during
peak hours are more similar to those calling during
2 P.M.-6 P.M. (in the sense of overlap) than those call-
ing during 6 p.M.~10 r.m. This explains the contrast
between the prediction accuracies reported in Tables 7
and 8. In conclusion, the out-of-sample tests provide
further support that our model offers accurate pre-
dictions, provided that the caller demographics in the
two samples are similar.

Building on the estimation results, in the next sec-
tion, we provide a counterfactual analysis to assess
the impact of policy changes.

6. Counterfactual Analysis
This section provides a simulation study of the call
center using the estimated reward and cost param-
eters. The ultimate objective is to perform what-if
analyses to assess the impact of changes in the ser-
vice discipline. The aforementioned assumptions will
be maintained throughout this section unless stated
otherwise.

The simulation study is constructed along the lines
of the usual discrete-event simulations. However, it

has a novel feature in that the callers decide dynam-
ically to abandon a call or to continue to wait by
computing their expected utilities under each choice.
Consistent with §5, in the simulation the callers make
their decision to wait or to abandon every five sec-
onds. Consequently, the unit of time in the simulation
is five seconds. The expected utility computation on
the callers’ part requires the knowledge of the equi-
librium service probabilities (7 (t), t > 0). Although
these can be computed readily from the data for the
current service discipline, they need to be recalculated
when a new service discipline is considered. Comput-
ing these equilibrium service probabilities (for a new
policy) seems intractable analytically. Therefore, we
use the following iterative procedure, which seems
to work well. First, given a new policy, we simulate
the system as if no one abandons calls to obtain an
estimate of service probabilities (7°(t), t > 0). In the
next step, we allow the callers to abandon using 7°(-)
and simulate the system to get the new estimates of
service probabilities (7! (t), t > 0). We repeat this pro-
cedure until both the average waiting time and the
abandonment rate converge for all priority groups.
The first step of the simulation study is to recon-
struct the existing as is performance of the call cen-
ter. However, there are challenges to performing this
task accurately. The difficulty stems in part from the
variation in the data across different days (because
of the inherent uncertainty). Therefore, we choose to
replicate the aggregate performance over all days,
which presents challenges too, mainly because it is
not immediately clear what number of agents should
be used in our simulation. In particular, the number
of agents in the data vary across days (and hours
within a day). Moreover, the agents handle not just
the first subcalls we focus on but also the subsequent
subcalls (in addition to other types of calls we do not
consider). Consequently, to determine the number of
agents, we vary the number of agents between 105
and 165. We pick the number of agents to be 133, for
which the waiting time and abandonment statistics
are closest to those in the data.* In what follows, this
constitutes the base case for our simulation study.
The simulated system consists of four queues and
one pool of agents. Each queue corresponds to one
of the priority groups in the data. Recall that the ser-
vice discipline currently used by the call center is a
periodic point-update priority policy. In the simula-
tion, this policy is used to determine priority points of
callers as a function of their priority type and waiting

* Under each staffing level being considered, the waiting time and
abandonment rate for each priority group is simulated. These val-
ues are compared with the values observed in the aggregated data
and a weighted relative error, where weights are taken as the size
of the priority groups relative to the size of the entire data, is con-
sidered as the comparison metric.
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Figure 7 Waiting-Time Histograms of the Priority Groups in the Data
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Figure 8 Waiting-Time Histograms of the Priority Groups in the Simulation Results of the Current Policy
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time. The periodicity of the priority updates is also
reflected in the waiting-time histograms of the various
groups, as shown in Figure 7. The simulation of the
current policy yields a similar pattern of periodicity;
see Figure 8.

To illustrate the usefulness of our approach, we
consider assessing the impact of policy changes to
the service discipline. To this end, in addition to the
current policy, we consider the following policies:®
first-come, first-served (FCFS) policy, a static (and
nonpreemptive) priority policy, and a threshold pol-
icy. Under the FCFS policy, calls are served in the
order they arrive irrespective of their group. The static

®We also considered changing the frequency and the size of pri-
ority point updates to the current policy. The frequency changes
did not change the average waiting times or abandonment rates.
The impact of changes to the size of updates were as one would
predict.

priority policy gives the highest priority to the high-
priority group, next to the medium-priority group,
then to the low-priority group. The lowest priority is
given to the no-priority group. The threshold policy
acts like the static priority policy when the number of
no-priority calls waiting is less than or equal to the
threshold. Otherwise, the no-priority calls have the
highest priority and the other groups preserve their
relative priority levels amongst themselves. The aver-
age waiting times and the abandonment rates under
these policies are given in the top panel of Table 10.
As expected, the waiting times under the FCFS policy
are similar across different priority groups though the
abandonment rates differ.

Recall that the callers are forward looking in our
model and their behavior may change as the service
discipline changes. To shed light on this, we also con-
sider modeling the abandonment behavior of callers
using an exogenous time-to-abandon distribution.



Aksin et al.: Structural Estimation of Callers’ Delay Sensitivity in Call Centers

2740 Management Science 59(12), pp. 2727-2746, ©2013 INFORMS
Figure 9 Hazard Rates of the Priority Groups for Time to Abandon in the Data
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To this end, we first estimate the exogenous distri-
bution from the data. Because the abandonments are
censored (by the callers” entering service), we use the
Kaplan—-Meier estimate. The hazard rates of time to
abandon are as shown in Figure 9. Treating these as
if they were constant, we use a geometric distribu-
tion for the time to abandon, where the probability of
abandonment is estimated using the 25% quartile of
the Kaplan-Meier estimate of the cumulative distri-
bution function.® The lower panel of Table 10 shows
the average waiting times and the abandonment rates
resulting from the model with exogenous abandon-
ment distribution under the static priority and thresh-
old policies.

Comparisons between the endogenous model with
strategic customers and the model using an exoge-
nous time to abandon lead to the four major observa-
tions below.

First, if a caller has a negligible waiting cost, her
probability of abandoning decreases as the service
probability gets worse. For such callers, the exoge-
nous model will underestimate waiting times relative
to the endogenous model, under policies that deteri-
orate service probability for these callers.

As can be seen in Table 10, the no-priority group
suffers from long waiting times and high abandon-
ment rates under the current policy or the static
priority policy. Recall that callers in this group are
unidentified and some are new customers. There-
fore, the call center may wish to improve the service
quality they receive for retention purposes. Although
there is a large number of alternatives for improv-
ing the service quality of no-priority callers, we focus

¢ Brown et al. (2005) observe that the Kaplan—-Meier estimates may
be biased under heavy censoring. Therefore, following Brown et al.
(2005), we use the first quartile when estimating the probability of
abandoning.

attention on the threshold policy (described above)
for simplicity. Setting the threshold at 15 improves
the waiting times and lowers the abandonment rates
somewhat for the no-priority group. For the low-
priority group, this leads to significantly higher wait-
ing times and abandonment rates; see the top panel
of Table 10. (The impact on the other two groups is
small.)

Under the threshold policy (with 15 as the thresh-
old), the model with exogenous abandonment dis-
tribution underestimates the service degradation to
the low-priority group (in terms of waiting times,
236.75 sec. versus 265.50 sec.); see Table 10.” Next,
we clarify the source of discrepancy for the low-
priority group (which sheds light on what happens
to other classes as well). Recall that the delay cost ¢
is negligible for the low-priority group; see Table 4.
Substituting ¢ = 0 in Equation (9) shows that the
integrated value function is V(t) > r for all t. Then
it is straightforward to conclude from Equations (7)
and (8) that as the service quality worsens (i.e., 7(f)
decreases), the probability of abandoning decreases.
Intuitively, as the service probability decreases, the
probability of getting served in later periods increases,
and the callers are willing to wait longer to receive
service (because their waiting costs are negligible).
The decreased abandonment probability and service
degradation lead to higher queue lengths.

Given this observation, comparing the current pol-
icy with the threshold policy (with 15 as the thresh-
old) reveals that the service quality gets worse for the
low-priority calls when switching from the current

7To test the significance of the differences between the results of
the exogenous and endogenous models, we use the two-sample
t-test (Snedecor and Cochran 1989). Under the threshold policy
with 15 as the threshold for the average waiting time of the low-
priority callers, the difference is significant with 90% confidence
(t-statistic =1.75).
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Table 10 Average Waiting Times and Abandonment Rates of Different Caller Groups Under Various
Service Disciplines for the Endogenous and Exogenous Models
High priority Medium priority Low priority No priority
Policy Sec. % ab. Sec. % ab. Sec. % ab. Sec. % ab.
Endogenous model
Current policy 5.49 0.22 17.13 0.91 64.56 6.25  147.29 37.67
FCFS policy 80.67 7.51 83.23 5.39 83.47 8.18 75.78 23.32
Static priority policy 5.46 0.22 8.47 0.39 24.39 246  183.69 41.77
Threshold policy (th=15) 7.02 0.28 17.82 0.90 26550  21.55 82.16 24.97
Threshold policy (th =5) 7.66 0.34 23.36 1.17 51747  37.78 32.59 11.10
Exogenous model
Static priority policy 5.37 0.73 8.26 0.86 23.64 2.48  160.61 40.51
Threshold policy (th =15) 7.07 0.91 17.91 1.89 236.75  24.42 82.49 20.70
Threshold policy (th =5) 7.54 1.09 22.54 2.31 366.47  38.29 32.61 8.28

Note. For each group, the first and the second column show the average waiting times and the abandonment rates,

respectively.

policy to the threshold policy; see the top panel of
Table 10. Hence, we expect lower probability of aban-
doning, i.e., callers abandon more slowly (especially
early on). This, in turn, leads to longer queue lengths
and waiting times. Figure 10 shows the abandon-
ment probability of the low-priority callers under the
current policy and the threshold policy with 15 as
the threshold. On the other hand, in the model with
exogenously given abandonment distributions, the
callers’” abandonment probability is estimated from
the current policy, which is higher than that in our
model.® Thus, in the exogenous model, callers aban-
don sooner, which leads to lower waiting times.
Therefore, the prediction of the model with exoge-
nous abandonment distribution can be off substan-
tially. This is demonstrated further by setting the
threshold to 5 (366.47 sec. versus 517.47 sec.).”

Second, if a caller has a significant waiting cost,
her probability of abandoning increases as the ser-
vice quality degrades. For such callers, the exogenous
model will overestimate waiting times relative to the
endogenous model under policies that deteriorate ser-
vice probability for these callers.

The fact that the probability of abandoning goes
down as the service quality degrades for the low-
priority group (in our model) may seem counterintu-
itive at first. However, what drives this result is that
the delay cost for the low-priority group is negligi-
ble. Indeed, if callers have significant delay costs, the
implication will be different.

To better understand the effect of service degra-
dation on callers with significant waiting costs, we

8 Moreover, the abandonment probability estimated from the data
is extrapolated beyond what is observed under the current policy.

? Under the threshold policy with 5 as the threshold for the average
waiting time of the low-priority callers, the difference between the
results of the exogenous and the endogenous models is significant
with 90% confidence (t-statistic =9.28).

consider the reversed strict priority policy, in which
the priority order of the groups in the static priority
policy is reversed. Although this policy is not prac-
tical, it is of theoretical interest because it provides
additional insights. For the high-priority group, the
comparisons under the reversed strict priority pol-
icy show the model with exogenous abandonment
distribution significantly overestimates the waiting
times and somewhat underestimates the abandon-
ment rates (397.79 sec. versus 89.06 sec. and 57.66%
versus 62.98%).1

Switching to the reversed strict priority degrades
the service quality for the high-priority group. The
model with exogenous abandonment distributions
works precisely as explained above. In contrast, given
positive delay costs, callers anticipate the significant
future delay costs (embedded in the integrated value
function) in our model and they choose to abandon
early with high probability. This effect is illustrated
in Figure 11, which shows the abandonment probabil-
ity of the high-priority callers under the current pol-
icy and the reversed strict priority policy. This effect
leads to significantly shorter queue lengths and wait-
ing times than those in the model with exogenous
abandonments. Comparing the abandonment rates in
the two models requires trading off the counteracting
forces: shorter queue lengths but a significantly higher
probability of abandoning during each period in our
model. The net effect leads to a higher, albeit compa-
rable, abandonment rate in our model. This will be
elaborated on further below.

10Under the reversed strict priority policy for the average waiting
time of the high-priority callers, the difference between the results
of the exogenous and endogenous models is significant with 90%
confidence (t-statistic = 29.87). For the abandonment rate of the
high-priority callers, the difference is significant with 90% confi-
dence (-statistic =2.99).
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Figure 10
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Third, when there is heterogeneity in the callers’
waiting cost, both the first and the second observa-
tions made immediately above are present. In this
case, it is the heterogeneity in the cost estimate and
its composition that will determine which effect will
dominate for such callers. (See Appendix D for a dis-
cussion about the impact of callers’ heterogeneity.)

The comparison of the results for the no-priority
group under the endogenous versus the exogenous
abandonment time distribution reveals a surprising
result and exemplifies the usefulness of the random
coefficients model. Although the mean waiting cost
of the no-priority group is positive, the callers in
that group do not behave like the callers in the
high-priority group, who have positive waiting costs
too. Note, however, that the waiting cost for the
no-priority group exhibits significant heterogeneity
(whereas that for the high-priority group does not).

Indeed, the no-priority group can be seen as a mix of
callers from the low- and high-priority groups quali-
tatively as far as their delay cost is considered. Hence,
we expect to see a decrease in the abandonment prob-
ability for those callers who have negligible delay
costs under service degradation. On the contrary, we
expect to see an increase in the abandonment proba-
bility if the caller has a high delay cost.

A simple plot of the probability density function
of the waiting cost for the no-priority group reveals
that the great majority of no-priority callers have neg-
ligible waiting costs. Hence, we expect their behav-
ior to be similar to those callers in the low-priority
group (see the first observation made above). Indeed,
comparing the average waiting time of the no-priority
callers for the two models (with the endogenous ver-
sus exogenous abandonment distribution) under the
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static priority rule verifies this intuition (160.61 sec.
versus 183.69 sec.).!!

In addition, comparing the two models under the
threshold policy, we expect the abandonment prob-
ability to be higher for the model with the endoge-
nous abandonment distribution because the threshold
policy improves the service for the no-priority group
(relative to the current policy). The threshold pol-
icy will ensure that the queue lengths for the no-
priority group in both models will be close to the
threshold and, hence, close to each other. Combin-
ing these two suggests that the overall abandonment
rate will be determined by the (per period) probabil-
ity of abandoning, which is higher in the model with
the endogenous abandonment distribution. Compar-
ing the results for the two models under the threshold
policies verifies this intuition; see Table 10 (20.70%
versus 24.97% for th =15 and 8.28% versus 11.10% for
th=5).12

Fourth, the effect of forward-looking callers is
more prominent in waiting-time estimates than aban-
donment rate estimates. Consider the two forces
that contribute to the overall abandonment rate:
queue length and the probability of abandoning in a
period. For the low-priority group, our endogenous
model suggests longer queues and lower probabil-
ity of abandoning, whereas the model with exoge-
nous abandonment distribution has shorter queues
and higher probability of abandoning. However, the
simulation results show that the abandonment rates
(which can be approximated by the product of the
two) are comparable. This suggests that the waiting-
time estimates are likely to be off significantly if
one ignores the endogenous caller behavior, but the
difference in the abandonment rate estimates will
be smaller. Nonetheless, when the threshold is 15,
the abandonment rate of the low-priority group is
higher under the exogenous abandonment distribu-
tion because the effect of the higher abandonment
probability dominates.

In many contexts such as making outsourcing deci-
sions, designing service-level agreements, and ser-
vice contracting, the ex ante performance analysis of
the call center by simulation is essential. Our model
highlights the importance of modeling callers’ behav-
ior endogenously. Namely, we observe that using

' Under the static priority policy for the average waiting time of
the no-priority callers, the difference between the results of the
exogenous and endogenous models is significant with 90% confi-
dence (t-statistic = 3.99).

12 Under the threshold policy with 15 and 5 as the thresholds for the
abandonment rate of the no-priority callers, the difference between
the results of the exogenous and endogenous models is significant
with 90% confidence (f-statistics = 16.86 (th = 15) and t-statistics =
14.56 (th =5)).

a model with exogenously given abandonment dis-
tributions may lead to waiting-time estimates that
can be off significantly. This would be problem-
atic in a setting like call center outsourcing where
service-level measures on waiting-time distributions
are used. The estimates of the abandonment rate are
less problematic because of the counteracting forces
of queue length and the probability of abandoning
as explained above. Our modeling approach offers
another potential advantage: its ability to estimate
what happens when extrapolation is needed. Con-
sider a promotional campaign that increases the num-
ber of high-priority calls significantly. Simulating the
system performance in this case may require under-
standing callers’ abandonment patterns in a regime
where waiting times are longer than those observed in
the data. This is challenging to do nonparametrically,
whereas our approach can be helpful in studying such
situations.

7. Concluding Remarks

This paper studies the patience of callers in call center
queues. Understanding customer patience behavior
is essential in call center management. The individ-
ual level decision-modeling approach we take herein
allows us to draw a natural bridge between observed
behavior (in the data) and subsequent modeling of
strategic customers in queues. The callers” valuation
for the service obtained and their cost for waiting
are empirically estimated from call center data using
a structural estimation approach. The estimation can
be used within models that explore the management
of informational or delay announcements, dynamic
routing or priority-type choices, and, more generally,
as part of a call center’s overall customer relationship
efforts.

To illustrate this, the estimation results are used
to study the role endogenous abandonment behavior
modeling plays in call center performance analysis.
A comparison is made between the proposed model
with endogenous abandonment behavior and one
where the abandonment distribution is exogenously
determined from the data, as is typically done in the
literature. In a series of experiments that contrast the
performance under the service discipline in place at
the call center, with several different alternatives, it
is shown that the two models can lead to signifi-
cantly different results in terms of waiting-time per-
formance. These examples highlight the importance
of modeling callers as strategic agents for managerial
decisions that are based on caller waiting times (like
delay announcements or service-level agreements in
outsourcing).

A growing literature in operations management
deals with models where customers are modeled



Aksin et al.: Structural Estimation of Callers’ Delay Sensitivity in Call Centers

2744

Management Science 59(12), pp. 27272746, ©2013 INFORMS

as strategic decision makers; see Hassin and Haviv
(2003). Empirical analyses for such models is mostly
lacking in the operations management literature. Our
paper illustrates how customer preference parameters
can be estimated for such models making use of struc-
tural estimation. Although we focus on the estimation
of a linear utility model in a queuing wait situation,
the technique is not restricted to our specific model
or setting.

Our analysis points to several future research
directions worth exploring. In our estimation, the
equilibrium service probability, w(t), is estimated
directly from the data. Although this is a reasonable
approach for our estimation, in a call center with
delay announcements, the equilibrium service proba-
bilities that take into account caller reactions need to
be recomputed for counterfactual studies. Also, our
model assumes that callers make decisions at discrete
time periods. We analyzed the effect of the length of
these periods in our estimation, but the question of
what decision period length is the most appropriate
for a given setting remains to be answered. This is a
topic for experimental investigation that is beyond the
scope of our analysis. In our model, we assume that
the callers” waiting cost has a linear form and that
the reward and cost parameters are independent. We
also assume that the idiosyncratic shocks have type I
extreme value distribution. It would be worth exam-
ining these assumptions in future research.
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Appendix A. Proofs

ProoF oF ProrosITION 1. We first derive the formula for
choice probabilities P, (d;; 1;, ¢;) and then the recursive for-
mula for the integrated value function V(t, r;, ¢;).

Recall that caller i takes action d;, if the utility of choosing
d; is higher than the utility of taking the reverse action,
1—d,;; that is,

u(t, ri, i, e(dy), dy) = olt, 17, ¢;, dy) + £;,(d;y)
olt, 1, ¢, 1—dy) + &3 (1—dy)
= u(t, r, ¢, e4(1—dy), 1—dy).

\Y

Therefore, we have
Pudii Tir ) = [ ottr-eut-tiroce o 1ti-ote s )

x 8(£i(0)g(ei(1)) de;(0) de; (1) (A1)
We assume that the idiosyncratic shocks have iid type I
extreme value distribution with scale parameter 1 and
location parameter 8 € R with the pdf exp(—(e(d)—p)) -
exp(—exp(—(e(d) — B))) for d =0, 1. As will be seen below,

for technical convenience, we will set 8 = —y, where vy
is Euler’s constant. From (A1), by Ben-Akiva and Lerman
(1985, §5.2) and the fact that v(¢, r;, ¢;, 1) =0, we obtain the
formula for the choice probability as follows:

eXp(U(f, T, Ciy dif))
exp(v(t, r;, ¢;, 1)) +exp(v(t, 1, c;, 0))

_exp(o(t, 7y, ¢, dy))
" 1+exp(o(t, 1, ¢;,0)°

Py(dy; 15, ¢;)

(A2)

What remains is to derive the recursive formula for the
integrated value function. Recall from (5) that the integrated
value function is given by

Vt,.,,.=[E[ t41, 7,08 d,d],
(t, 11, ¢) dg}g‘/)l(]“( +1, 75, ¢ 841y (d), d)

where the expectation is taken over the distribution of
€i¢41)(1) and &;;44)(0). By Ben-Akiva and Lerman (1985,
§85.2), max;¢(o, 1y u(t+1, 7;, ¢;, €441y (d), d) has type I extreme
value distribution with scale parameter 1 and location
parameter B + log(e” + %), where v, = v(t +1,1;,¢;, k),
k=0, 1. Therefore, we have

Vt,-,l‘z[El: t 1,1',1‘,1‘ d,d]
(£, 73, ) = | max u(t+1, 7, ¢i, 8y (d), )

= B+log(e" +¢%) + 7. (A3)

For technical convenience, we assume that the location
parameter for the distribution of the idiosyncratic shocks 8
is equal to —vy. Then, by definitions of v; and v, and (A3),
it follows that

Vi(t, 1, ¢) = log(exp(v(iL +1,7,¢,1))
+exp(v(t+1,1;,¢;,0))). (A4)

By substituting the values of the nominal utilities into (A4),
the integrated value function can be written as follows:

V(t, 1, ¢;) =log(1+exp(—c;+m(t+1)r;
+A=m(t+1)V(t+1,7,c))), (A5)

which provides the recursive formula for the integrated
value function. To conclude the proof, note that for period
T —1, the integrated value function is given by

V(T-1,1,¢) =log(l+exp(—c;+m(T—1+1)r
+A—m(T—1+1)V(T,7,,c))). (A6)

Since w(T) =1, from (A5) and (A6), the integrated value
functions in period T —1 and consequently all earlier peri-
ods do not depend on V(T, r;, ¢;), and for convenience, we
assume that V(T,r;,¢;)=0foralli. O

Appendix B. Kaplan-Meier Estimator

Because some callers abandon the queue, and we cannot
observe the actual waiting times of all callers, the data is
censored. Therefore, we use the Kaplan-Meier estimator
to estimate the cumulative distribution of callers’” waiting
times, which is denoted by F(t).

Recall that N denotes the number of callers in the data.
Suppose that t; <t, <--- <t,, are the ordered waiting times
of the callers who receive service, where m is the number
of distinct waiting times. Note that m < N because some
callers may receive service at the same time.
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Suppose that #; callers have not received service or aban-
doned the queue just prior to t;, je{l,..., m}. In addition,
8; denotes the number of callers who receive service at ¢;.
The conditional probability that a caller receives service
after ¢; given that the caller has not received service before
t; is given by q; =1—0;/n;. Denote by S(t) the probability
that a caller’s waiting time exceeds t. The Kaplan—-Meier
estirr}ation of S(t) for t € [t;, t;,1) is given by S(t) = ]_[f:1 g;-
Let F(t) denote the Kaplan—-Meier estimation for F(t). Then,
F(t)=1-5(1).

Appendix C. Monte Carlo Experiments

To test the capability of the proposed estimation method to
identify the true parameters of the callers, we use Monte
Carlo experiments. To do so, we first generate simulated
data sets assuming certain values for the structural param-
eters. We denote these values by true values. Then, we esti-
mate the parameters of the simulated data sets, construct
the 95% confidence intervals, and check whether the true
values are in the corresponding confidence intervals.

To implement the Monte Carlo experiment, we consider
the following true values for the structural parameters:
m,=18, m.= -3, 0, =0.2. and o, =1. We set the maxi-
mum waiting time of the callers T to 120 periods. In addi-
tion, for the waiting-time distribution and probability of
receiving service, F(t) and (t), we use those from the data
(suitably truncated), which are estimated using the Kaplan-
Meier estimator (see Appendix B). We generate 40 simulated
data sets such that each data set contains 100,000 callers.

To simulate the abandonment behavior of the callers, for
each caller, we draw y; and y, from the standard normal
distribution. Then, we find r and ¢ of the callers making
use of the assumed true values of the structural parameters
and, consequently, can calculate the integrated value func-
tion and the nominal utilities of the callers. Next, we add iid
type I extreme value distributed random shocks to the nom-
inal utilities to find the utilities of waiting and abandoning.

With the probability of receiving service w(t) and the
utilities of waiting and abandoning, we can decide if the
simulated caller receives service, abandons the queue, or
continues to wait as follows:

1. Draw a random variable x from the uniform distribu-
tion between 0 and 1. If x < 7 (t), the caller receives service
and we end the procedure.

2. If x > w(t), compare the utilities of waiting and
abandoning. If the utility of abandoning is larger, the caller
abandons the queue and we end the procedure. If not, the
caller continues to wait and we repeat steps 1 and 2 for the
next period.

Table C.1 shows the mean, standard deviation, and upper
and lower bounds of the 95% confidence intervals for the

Table C.1 Results of the Monte Carlo Experiment

Structural parameter m, g, m, a,
True value 1.80 020 -3.00 1.00
Mean (simulated data) 1.79 018 -317 1.11
Standard deviation (simulated data) 0.02 0.04 0.09 0.06

Upper bound of the 95% confidence interval 1.82 0.26 —2.98 1.24
Lower bound of the 95% confidence interval 1.76 0.10 —-3.35 0.98

Table D.1 Mean and Standard Deviation of the Reward and Cost
Parameters for the High-Priority Group in Cases 1 and 2
Reward and cost r-mean c-mean
parameter sets ($) ($/minute)  r-st.dev.  c-st. dev.
Parameters estimated 6.309 1.067 452E-05  3.09E-05
from the data
Case 1 6.309 1.067 4.52E-05 1.579
Case 2 6.309 1.067 4.52E-05 5.069
Table D.2 Average Waiting Times and Abandonment Rates of
Different Caller Groups in Cases 1 and 2
High Medium Low No
i priority priority priority priority
Reversed strict
priority policy Sec. % ab. Sec. % ab. Sec. % ab. Sec. % ab.

Parameters estimated 89.06 62.98 41.08 2.45 7.68 0.77 5.46 1.94
from the data

Case 1

Case 2

152.43 60.94 46.10 2.74 7.72 0.76 553 1.94
276.97 60.24 45.90 2.65 8.00 0.85 5.68 2.04

estimated parameters of the simulated data sets. These
results as well as a series of extensive Monte Carlo experi-
ments (available from the authors) show that our estimation
method can recover the true parameter values from the data.

Appendix D. The Impact of Callers’

Heterogeneity on System Performance

The estimation results (Table 4 in §5.2) show that there is
little heterogeneity in the high-, medium-, and low-priority
groups, whereas there is significant heterogeneity in the no-
priority group. To study the impact of increased heterogene-
ity on system performance, we consider two scenarios (see
cases 1 and 2 in Table D.1), where we vary the degree of
heterogeneity in the high-priority group. To be more spe-
cific, we change the variance of the cost parameter for the
high-priority group'® while keeping all other parameters the
same as the estimated ones for simplicity. We focus attention
on the reversed strict priority policy because under that pol-
icy the high-priority callers experience long delays. Hence,
the effect of heterogeneity is significant. The resulting aver-
age waiting times and abandonment rates of different caller
groups are shown in Table D.2.

Table D.2 shows that the average waiting time of the
high-priority callers increases with the amount of hetero-
geneity. This indicates that the heterogeneity impacts sys-
tem performance. To see the reason behind this, consider
the probability density function of the waiting cost for the
high-priority callers (Figure D.1). It shows that increas-
ing heterogeneity increases the proportion of high-priority
callers with negligible waiting costs. Following the first
major observation in §6, callers with a negligible wait-
ing cost stay longer in the system if the service quality
degrades. Therefore, by increasing the amount of hetero-
geneity, the proportion of the callers who tend to stay longer
in the system increases, which contributes to the increase in
the average waiting time of the high-priority callers.

B3 Case 1 corresponds to a moderate degree of heterogeneity, and
Case 2 corresponds to a high degree of heterogeneity.
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Figure D.1 Probability Density Function of the Waiting Cost of the High-Priority Callers in Cases 1 and 2
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