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Inspired by self-replicating 3D printers and innovative agricultural and husbandry goods, we study optimal

production and sales policies for a manufacturer of self-replicating innovative goods with a focus on the

unique “keep-or-sell” trade-off, namely whether a newly produced unit should be sold to satisfy demand and

stimulate future demand or added to inventory to increase production capacity. We adopt the continuous-

time optimal control framework and marry a self-replication model on the production side to the canonical

innovation diffusion model on the demand side. By analyzing the model, we identify a condition that differ-

entiates Strong and Weak Replicability regimes wherein production and sales respectively take priority over

the other, and fully characterize their distinct optimal policies. These insights prove robust and helpful in sev-

eral extensions, including backlogged demand, liquidity constraints, stochastic innovation diffusion, launch

inventory decision, and exogenous demand. We also find that social marketing strategies are particularly

well-suited for self-replicating innovative goods under Strong Replication.
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1. Introduction

3D printing, also known as additive manufacturing, is an emerging manufacturing technology

which operates on the principle of depositing layers of material following 3D blueprints to form

objects (Additive Manufacturing 2018). The most common printable materials are various plastics,

although technologies have been developed to print metals (The Verge 2017), concrete (CNN 2017),

food (NASA 2013), and even living cells (ScienceDaily 2018). Additive manufacturing has made

its way into producing a wide range of products from customized shoes (MIT Sloan Management

Review 2013) to rocket engines (The Guardian 2017), but one of the most fascinating products

made with additive manufacturing is arguably 3D-printed 3D printers.

RepRap (short for replicating rapid prototyper) is an open-source project to develop 3D printers
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that can replicate themselves (RepRap.org 2018). A RepRap printer is designed to comprise in-

house engineered plastic parts which are 3D-printable, and other commodities such as metal rods,

bolts and nuts, motors, and circuit boards. As such, one can use a RepRap printer to print engi-

neered parts and procure remaining commodities to build an identical or evolved “child” RepRap

printer. The RepRap project has had a significant impact on the consumer-grade 3D printer indus-

try. In 2015, Josef Prusa, a core developer of the RepRap project, began selling a RepRap printer

kit of his own design called the Original Prusa i3 under his company Prusa Research1. All plastic

parts in the kit were 3D-printed in the company’s “print farm” which is simply a room filled with

the same printers. The printer was an immense success. Its design and quality coupled with an

affordable price created a dedicated following, and there was a constant backlog of demand (3DPI

2016). By July 2019, Prusa Research’s print farm had grew from 15 printers to 500 printers, and

it had shipped 130,000 3D-printed printers to more than 130 countries (Prusa Research 2020); see

Figure 1 for a view of the print farm as of 2018. For his achievements, Josef Prusa was name in

Forbes’ 2018 30 Under 30 - Europe - Technology list (Forbes 2018). Astonishingly, the company

had grown its demand “without a sales team, through word of mouth and with the support of the

international maker community (Digital Social Innovation 2017)”. Such dependency on word-of-

mouth (previous sales stimulating new demands) rather than conventional marketing efforts is not

uncommon in this highly innovative industry. Peter Misek, an analyst at Jefferies, interviewed over

15 3D printer exhibitors at a 3D Printshow in New York, and noted the 3D printer market had

become a “word-of-mouth/branding game” (Business Insider 2014).

Prusa Research had taken advantage of the 3D printing technology to drive a business model

where the manufacturing mode is self-replication and the demand for their innovative prod-

uct is heavily driven by word-of-mouth. Self-replicating machines have existed for some time.

The Japanese industrial robot manufacturer FANUC uses its own robots to make more robots

(Bloomberg 2017). The same is happening in the Chinese factory of ABB, a Swiss-Swedish robotics

and automation corporation (Reuters 2018). Yamazaki Mazak, a leading machining tool manufac-

turer, has machined needed components on their own Flexible Manufacturing Systems for decades

(Jaikumar 1989). Such self-replicating innovative products exhibit unique and fascinating oper-

ational characteristics and trade-offs. For a conventional manufacturer, the production capacity

is usually exogenous or ex-ante determined, the inventory primarily serves as a buffer against

variability, and production and sales have no fundamental conflict. (Production and inventory

1 Derivation and commercialization of open-source products are allowed as long as the sold products remain open-
source.
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Figure 1 Prusa Research’s print farm (Prusa Research 2020)

management is a huge literature; for some recent developments, see Caro and Mart́ınez-de Albéniz

2010, Berling and Mart́ınez-de Albéniz 2011, Mayorga and Ahn 2011, Feng et al. 2013, Feng and

Lu 2013, Feng et al. 2020.) For a self-replicating manufacturer like Prusa Research, however, such

operational common sense is turned upside down. Prusa Research uses its own finished products

for replication, therefore its production capacity is limited by its inventory and can be dynamically

adjusted. After each 3D printer is produced, Prusa Research faces the trade-off of adding the new

printer to its inventory to increase production capacity versus selling the printer to earn a revenue

and stimulate future demand. With production, inventory, and sales deeply intertwined and the

unique “keep-or-sell” trade-off, it is not straightforward how to manage the production and sales

of self-replicating innovative goods.

Although self-replicating machines carry a futuristic aura, humanity has actually manufactured

goods by self-replication since ancient times—in agriculture and husbandry—through planting

seeds, rhizomes and cuttings, grafting, and breeding. Admittedly, not all agricultural goods are

produced through self-replication (e.g., seedless watermelons are grown from triploid seeds, and

mules are crossbred from horses and donkeys; both are sterile), and most agricultural and hus-

bandry goods are staple commodities that face relatively stable demands (such as wheat and beef).

Nonetheless, many innovative agricultural and husbandry goods are produced by self-replication

and depend on word-of-mouth to drive demands, not unlike self-replicating 3D printers. In 2012,

Native Seeds/SEARCH began selling seeds for a translucent rainbow-colored corn called Glass

Gem (Figure 2); the corn soon went viral on social media and Native Seeds/SEARCH could not

meet demand because they “did not grow out enough to sell” (Business Insider 2012). From 2016

to 2018, ten new dog breeds had debuted at the annual Westminster Dog Show (Bloomberg 2018),
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and their breeders must breed their dogs to meet growing demands. Such innovative agricultural

and husbandry goods exhibit similar operational characteristics that their “inventories” (crops or

herds) are used to produce off-springs and thus limit the production capacities, and the producers

face a similar “reproduce-or-sell” trade-off.

Figure 2 Glass Gem corn (Native Seeds/SEARCH 2018)

A natural concern with self-replicating goods is that customers may produce their own goods

through replication and even compete with the original producer, but in most cases the concern

is not serious enough to threaten the business model. In the case of Prusa Research which pub-

lishes all printable part design files on their website (Prusa Research 2018), the sold kits contain

not only printed parts but also other commodities which are not necessarily easily procurable by

customers. Their pricing is also at such a level that replicating and selling 3D printers may not be

lucrative for customers, considering the company’s economies of scale and established manufactur-

ing expertise and distribution channels. On the contrary, the open-source printable design allows

Prusa Research to push hardware updates to existing customers (who can download and print

revised parts to replace old parts) in a manner similar to software developers pushing updates.

For many agricultural and husbandry goods, the same economic argument would apply. Where it

does not, legal measures may be taken to protect the business model; for example, Monsanto, a

former US agricultural biotechnology giant, sued hundreds of farmers for replanting its patented

seeds (The Guardian 2013). Therefore, despite the potential concern, the self-replication business

model remains viable.

Inspired by these examples, we set out to study optimal production and sales policies for a

manufacturer of self-replicating innovative goods. We adopt a continuous-time optimal control
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model which marries a self-replication model on the production side (where the production rate is

limited by the inventory) to the canonical innovation diffusion model for new product adoption on

the demand side (where existing sales stimulate new demand generation). Despite the problem’s

complexity, we are able to identify conditions for two regimes, in which we fully characterize the

manufacturer’s optimal production and sales policies. In the Strong Replicability regime, production

takes priority over sales as long as the produced goods will eventually be sold, and sales may be

held back even with enough inventory to satisfy demand. In the Weak Replicability regime, sales

have priority over production and are never held back, although replication using unsold inventory

may still be optimal. These insights are found to be robust and help characterize optimal policies

in several extensions of the model.

In what follows, we review related literature in Section 2 and analyze the base model in Section 3

to derive our main results and insights. We then show in Section 5 that our main insights are robust

and help characterize optimal policies in several extensions, including backlogged demand, liquidity

constraints, stochastic innovation diffusion, launch inventory decision, and exogenous demand. We

summarize the paper in Section 6. Additional analysis and proofs are relegated to the Appendix.

2. Literature review

This paper studies manufacturing innovative goods by self-replication to meet demand driven by

word-of-mouth. Therefore, it is most related to the streams of literature on managing renewable

(self-replicating) resources and on manufacturing innovative goods with demand diffusion. The

literature on managing renewable resources dates back to Gordon (1954) and Schaefer (1957)

who study fishery and Kilkki and Väisänen (1969) who study forestry; see Chapter 10 of Sethi

(2019) for a summary of this literature. Their models share with ours the growth of resources

through self-replication with two major differences. First, they model a simple unit revenue for the

consumption of the resources, implicitly assuming infinite demand, whereas we model limited and

endogenous demand that grows through innovation diffusion. Second, they assume uncontrolled

natural resource growth (as is appropriate for their applications), whereas we model production as

an explicit decision and show that it should be shut off in certain cases.

On the other hand, stemming from the classic paper by Bass (1969) grows a rich literature

on innovation diffusion; see Mahajan et al. (1991), Mahajan et al. (2000) and Meade and Islam

(2006) for reviews of this literature. The majority of this literature focuses on describing demand

growth while ignoring a firm’s ability to meet such demand, with a few notable exceptions. Jain

et al. (1991) are among the first to consider innovation diffusion under supply constraints, although
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they take a strictly marketing perspective and focus on modeling how production constraints

impede demand growth, rather than studying production decisions. In the operations management

literature, Kumar and Swaminathan (2003) and Ho et al. (2002) (with a follow-up note by Ho

et al. 2011) study the joint optimal production and sales decisions for innovative goods under

supply constraints. Shen et al. (2011, 2014) further include pricing decisions in the model. These

papers generally assume fixed production capacities. Our paper can be seen as an extension of

the literature that study joint optimal production and sales decisions under demand diffusion and

production capacity constraints, where the production capacity is dynamic and endogenous to the

decisions. Bilginer and Erhun (2015) in a more stylized two-period discrete diffusion model also

incorporate endogenous capacity decisions. By comparison, we adopt the canonical continuous-time

optimal control framework, and our endogenous production capacity is driven by past production

and sales decisions—a feature unique to the self-replication business model. Another contribution

to the innovation diffusion literature is that we extend the model to accounts for diminishing

word-of-mouth.

Topic-wise, our paper belongs to an emerging literature on the operations management of 3D

printing. Various aspects of 3D printing are being investigated, including flexibility (Dong et al.

2016), customization (Sethuraman et al. 2018), retail (Chen et al. 2017, Arbabian and Wagner

2020), and spare part manufacturing (Song and Zhang 2020). We grow this literature by studying

the self-replication business model inspired and enabled by 3D printing.

3. Base model

Following the canonical innovation diffusion literature (Kumar and Swaminathan 2003, Ho et al.

2002, 2011, Shen et al. 2011, 2014), we consider a continuous-time continuous-quantity model 2.

Suppose a firm develops an innovative good that can only be produced through self-replication, and

at time 0 when the good is introduced to market, there is IL > 0 units of initial launch inventory.

The good can be sold from time 0 to time T which represents its maximum life cycle. The good’s

replication rate is r, meaning a unit of the good in a unit time can produce up to r units of itself.

The cost to produce (replicate) a unit of the good is c. The retail price of the good is fixed at π.

We denote the inventory level at time t by I(t), and the inventory holding cost per unit good-time

2 Although 3D printers are not infinitely divisible, with sufficiently large inventory and sales, a continuous-quantity
model is a reasonably accurate approximation of the discrete operations. For reference, by July 2019, Prusa Research
had shipped 130,000 3D printers produced in its print farm that had grown to have 500 printers (Prusa Research
2020). The same argument applies to animal herds. Crop grains are nearly infinitely divisible. On the other hand,
when the replication cycle is relatively short compared with the product’s life cycle and replication is not necessarily
in batches, a continuous-time model is a reasonably accurate approximation of the discrete adjustments.
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by h. At time T , we assume that all remaining inventory is discarded without loss of generality (it

is obvious that assuming any salvage value below c does not change the optimal policies).

We denote the total market size for the good by m, namely at time 0, m consumers are potentially

interested in the good. The classical innovation diffusion model is an ordinary differential equation

(ODE) D′(t) = [α+βD(t)/m][m−D(t)] where D(t) denotes the cumulative demand at t, namely

the total number of consumers thus far having wanted to buy the good. The parameter α is

called the coefficient of innovation which captures the rate at which potential customers discover

the good by themselves. The model states that new demand (D′(t)) is generated as a percentage

(α+βD(t)/m) of the remaining market size (m−D(t)). The parameter β is called the coefficient

of imitation which captures the rate at which “imitators” are influenced by existing customers

into wanting the good, namely word-of-mouth. The model yields an S-shaped demand curve which

starts slow, accelerates as customers increasingly generate word-of-mouth, but eventually slows

down and tapers as the market comes saturated. Ho et al. (2002) and Kumar and Swaminathan

(2003) propose a revised model D′(t) = [α+βS(t)/m][m−D(t)], where S(t) denotes the cumulative

sales at time t, by recognizing that when production is constrained, demand may not equal sales,

and it should be cumulative sales rather than demand that generate word-of-mouth. While we

adopt this demand model formulation, we make a further observation that the word-of-mouth effect

may be the strongest immediately after purchase and diminishes over time. Therefore, in our model

we let S(t) denote the adjusted (rather than actual) cumulative sales to account for diminishing

word-of-mouth; the details of the adjustment will be elaborated later.

The firm’s objective is to maximize the total discounted profit by controlling instantaneous

production rate p(t) and sales rate s(t) subject to constraints. We assume π > c and r > ρ, where

ρ ≥ 0 is the continuous discounting factor, to rule out uninteresting cases where replication is

obviously never optimal. In other words, the firm decides how many units of the good in the

inventory are used for replication, how many units are delivered to satisfy demand, and how many

units to simply keep in the inventory. In the base model we assume that all unmet demand is lost.

The firm faces an optimal control problem, with control variables p(t) and s(t) and state variables

D(t), S(t), and I(t):

max
p(t),s(t)

∫ T

0

[πs(t)− cp(t)−hI(t)]e−ρt dt (1)

s.t. D′(t) = d(t)
.
= [α+βS(t)/m][m−D(t)], S′(t) = s(t)−wS(t), I ′(t) = p(t)− s(t),

0≤ p(t)≤ rI(t), 0≤ s(t)≤ d(t), I(T )≥ 0,

D(0) = S(0) = 0, I(0) = IL > 0.
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We would first like to explain the constraint S′(t) = s(t)− wS(t). Solving this ODE under the

boundary condition S(t) = 0 yields S(t) =
∫ t

0
e−w(t−u)s(u)du. Therefore, S(t) is the discounted

integration of past sales rates with continuous discounting factor w ≥ 0, which we referred to

as the adjusted cumulative sales. When used in the innovation diffusion equation D′(t) = [α +

βS(t)/m][m−D(t)], the adjusted cumulative sales capture the effect that distant past sales generate

less word-of-mouth than more recent past sales. The parameter w captures the diminishing rate; in

particular, when w= 0, S(t) =
∫ t

0
s(u)du becomes the cumulative sales. Therefore, our model is an

extension of that of Ho et al. (2002) and Kumar and Swaminathan (2003) to capture diminishing

word-of-mouth. Note that S(t) is not the actual cumulative sales (which would be a non-discounted

integration of past sales rates); in particular the latter never decreases over time while the former

may decrease (albeit never negative). In Section 4.1 we investigate a similar effect of sales intensity

and find it to behave qualitatively similarly.

We further elaborate on three more constraints. First, p(t)≤ rI(t) captures the self-replication

characteristic that one’s inventory limits its production capacity. Second, s(t) ≤ d(t) reflects the

lost-sales assumption (see the discussion at the beginning of this section): because past unmet

demands have been lost, one can only satisfy current demand. Also, because s(t) is the instanta-

neous sales rate while I(t) is the available inventory level, s(t) is not directly constrained by I(t).

As long as I(t)> 0, any arbitrarily large s(t) is allowed by the inventory at the instant t. Finally,

one may expect a non-negative inventory constraint I(t)≥ 0, t≤ T . However, note that for a self-

replicating good, whenever the inventory is depleted (I(t) = 0), production is no longer possible

(0≤ p(t)≤ rI(t) = 0) and the inventory cannot increase henceforth. This unique property means

that a non-negative ending inventory (I(T )≥ 0) also guarantees a general non-negative inventory

(I(t)≥ 0, t≤ T ). Being able to replace the pure-state constraint I(t)≥ 0 by a terminal constraint

I(T )≥ 0 greatly simplifies the optimal control problem.

An assumption implied by the formulation is that after replicating itself, a unit of the good

remains in the original state and can be sold as new. This is clearly not true in practice, but one

can easily adjust the replication rate parameter to account for wear. For example, suppose a 3D

printer can print a printer kit each day, and will wear out after printing 100 kits. Mathematically, it

is equivalent to assuming that a 3D printer can print 99/100 of a printer kit each day, but remains

brand new after printing 99 kits (essentially replacing itself with one of its “offsprings”). In a

continuous model, this logic can be applied in real time, i.e., the worn-out printers are replenished

by some of their “offsprings” instantaneously.
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We apply standard Pontryagin’s maximum principle to Problem (1). The details are relegated

to the Appendix. We then solve the problem based on the principle in multiple steps. All non-

straightforward proofs are in the Appendix. An immediate result from the analysis is that the

optimal control for Problem (1) is bang-bang ; namely the optimal p(t) is either 0 or rI(t), and the

optimal s(t) is either 0 or d(t). As such we will simply use “off” and “on” to refer to these specific

levels, respectively. We first show two properties.

Proposition 1. After production is switched on, it is never optimal to switch it off (until T or

inventory depletion).

Proposition 2. Under the optimal policy, if (r− ρ)π > cr+ h, then the product life cycle will

last until T (i.e., I(t) > 0, ∀t < T ) regardless of how large T is; if (r − ρ)π < cr + h, then the

product life cycle will be cut short (i.e., I(t) = 0, τ ≤ t≤ T, ∃τ < T ) for sufficiently large T .

Proposition 1 characterizes the optimal production policy structure. Proposition 2 further reveals

an important condition that defines two fundamentally different parameter domains. When (r−

ρ)π > cr+h, which we refer to as the Strong Replicability regime for reasons that will become clear

later, it is optimal to keep the inventory positive (by maximizing production and/or curbing sales)

and stay in business for arbitrarily large T . On the other hand, when (r− ρ)π < cr+h, which we

refer to as the Weak Replicability regime, it may be optimal to sell out the inventory and end the

product life cycle prematurely before T .

To understand the intuitive meaning of the strong replicability condition (r − ρ)π > cr + h,

consider the firm with one unit of the good facing ample demand. The firm can sell the good

now and earn revenue π. Alternatively, the firm may let the good replicate itself for a small time

interval δ. The benefit of doing so is that after δ the firm will be able to sell 1 + rδ units of the

good and earn π(1 + rδ). There are costs though: replication itself costs crδ; holding the good for

δ for replication incurs inventory cost hδ (omitting higher-order terms); and finally, earning the

revenue δ later incurs discounting cost ρπδ (omitting higher-order terms). By requiring that the

benefit of replication outweighs the costs, we have

π(1 + rδ)− crδ−hδ− ρπδ > π⇒ (r− ρ)π > cr+h, (2)

thus recovering the Strong Replicability condition in Proposition 2. Therefore, the interpretation of

Strong Replicability is that replication and selling later is more lucrative than immediate sales. It

is worth pointing out that this statement is stronger than “replication is profitable”, which means

that the value created by replication outweighs the direct cost of replication, or π > c but does
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not account for indirect costs due to holding back sales. On the other hand, Weak Replicability

π < (cr+h)/(r− ρ) means that, if possible, the firm would sell the good immediately rather than

using it for replication and selling it later. Note that Weak Replicability does not preclude profitable

replication; i.e., c < π < (cr+h)/(r− ρ) is possible.

The Strong and Weak Replicability insights allow us to show the next two theorems which

completely characterize the optimal production and sales policies in the two regimes.

Theorem 1 (Strong Replicability). Assume (r − ρ)π > cr + h. Let I be such a level of IL

that always keeping production and sales on leads to inventory depletion at exactly T . Let I be such

a level of IL that always keeping production off and sales on leads to inventory depletion at exactly

T . Clearly I < I.

(a) When IL < I, it is optimal to always keep production on, and switch and keep sales on at

such a time that the inventory is depleted exactly at T .

(b) When I < IL < I, it is optimal to always keep sales on, and switch and keep production on

at such a time that the inventory is depleted exactly at T .

(c) When IL > I, it is optimal to always keep sales on and production off, and the inventory is

not depleted at T .

Figure 3 Optimal policies of Problem (1) under Strong Replicability
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Note. These examples are generated with m = 100, π = 2.3, c = 2, h = 0.2, r = 2, α = 0.1, β =

1, ρ= 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability holds: (r−

ρ)π= 4.37> cr+h= 4.2.
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Corollary 1. Assume (r − ρ)π > cr + h. The optimal production (sales) switch-on time

increases (decreases) in the replication rate r.

As we discussed after Proposition 2, Strong Replicability means that replication and selling later

is more lucrative than immediate sales. For this reason, the firm should postpone sales despite lost

revenues to maximize production, as long as the built inventory will eventually be sold. Therefore,

the optimal policy is generally to always keep production on, and initially hold off sales to be

switched on at such a time that the inventory is depleted exactly at T (Case (a) of Theorem 1,

illustrated by Figure 3 (a)), and the optimal production (sales) switch-on time increases (decreases)

in the replication rate. Unless, if the launch inventory IL is sufficiently large that always keeping

production on is not necessary (will lead to leftover inventory at T ), the optimal policy is to always

keep sales on, and initially hold off production to be switched on at such a time that the inventory

is depleted exactly at T (Case (b) of Theorem 1, illustrated by Figure 3 (b)). In the extreme and

unlikely case where the launch inventory IL is so large that it cannot be sold through T , production

is never needed (Case (c) of Theorem 1, not illustrated).

Although closed-form expressions are unavailable due to Problem (1)’s complexity, Theorem 1

completely characterizes the unique optimal production and sales policies, and the optimal time to

switch on production/sales can be easily found through a one-dimensional search with linear com-

putational complexity. Corollary 1 further characterizes the optimal switch-on times’s sensitivity

to the replication rate. (All figures in this paper are however directly evaluated from the original

problems without assuming any structure, in order to verify the theoretical results.)

To summarize, under Strong Replicability, the firm should prioritize the future over the present:

replication is kept on as long as future demand justifies it, sales are postponed when getting in

the way of maximizing production, and the inventory always lasts through the entire product life

cycle (as predicted by Proposition 2).

Theorem 2 (Weak Replicability). Assume (r− ρ)π < cr+ h. Define the maximum produc-

tion interval

∆
.
=

{
− ln[1− r(π− c)/h]/r if ρ= 0,

− ln{1− r[ln(ρπ+h)− ln(ρc+h)]/ρ}/r if ρ> 0.
(3)

Let Ǐ be such a level of IL that always keeping production and sales on leads to inventory depletion

at exactly min(∆, T ). For T ≥ ∆, let Î be such a level of IL that always keeping sales on and

switching production on at T −∆ leads to inventory depletion at exactly T . Let I be such a level

of IL that always keeping production off and sales on leads to inventory depletion at exactly T .

Clearly Ǐ < Î < I.
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(a) When IL < Ǐ, it is optimal to always keep production and sales on, and the inventory is

depleted before min(∆, T ).

(b) When T ≥ ∆ and Ǐ < IL < Î, it is optimal to always keep sales on, and switch and keep

production on at such a time that production lasts for exactly ∆ until inventory depletion.

(c) When T ≥∆ and Î < IL < I, or when T < ∆ and Ǐ < IL < I, it is optimal to always keep

sales on, and switch production on at such a time later than max(T −∆,0) that production lasts

shorter than min(∆, T ) and the inventory is depleted exactly at T .

(d) When IL > I, it is optimal to always keep production off and sales on, and the inventory is

not depleted at T .

Figure 4 Optimal policies of Problem (1) under Weak Replicability
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Note. These examples are generated with m = 100, π = 2.1, c = 2, h = 0.2, r = 2, α = 0.1, β =

1, ρ= 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods, not fully plotted). Weak Replica-

bility holds: (r− ρ)π = 3.99< cr+ h= 4.2. The theoretical prediction of the maximum production

interval is ∆ =− ln{1− r[ln(ρπ+ h)− ln(ρc+ h)]/ρ}/r ≈ 0.3405. The numerically observed maxi-

mum production interval in Case (b) is 0.3401.

Corollary 2. Assume (r− ρ)π < cr+ h. The maximum production interval ∆ defined in (3)

increases in the replication rate r and the retail price π, and decreases in the production cost c and

inventory holding cost h.

Opposite to Theorem 1, Weak Replicability means that immediate sales are more lucrative than

replication and selling later. For this reason, the firm should always keep sales on even if the

inventory will be depleted before T with all potential future demand lost, thus the optimal sales
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policy in Theorem 2. The more interesting question is whether replication may ever be optimal,

and if so, when. While inventory that can be sold immediately should not be used for replication,

replication using leftover inventory after satisfying all demand may still be profitable given that

π > c. However, since all demand is already being satisfied with existing inventory, additional units

produced through replication are only to be sold after existing inventory is depleted, leading to

inventory cost being accumulated over the total production interval. This intuition suggests that

despite Weak Replicability, replication may still happen toward the end of the product life cycle,

but should never last longer than a maximum interval when the accumulated inventory cost exactly

offsets the profit margin. Theorem 2 formalizes this intuition and derives the closed-form expression

for the maximum production interval ∆. Generally, with moderate levels of launch inventory IL,

production should be switched on at such a time that it will last for exactly ∆ before the inventory

is depleted at τ ≤ T (Case (b) of Theorem 2, illustrated by Figure 4 (b); the theoretical prediction

of ∆ is verified numerically with very high precision). Unless, if the launch inventory is sufficiently

small, production simply cannot last for ∆ even if it is always kept on (Case (a) of Theorem 2,

illustrated by Figure 4 (a)). Conversely, in the unlikely extreme cases where the launch inventory

is sufficiently large, production does not need to last for ∆ (Case (c) of Theorem 2, not illustrated)

or does not need to happen at all (Case (d) of Theorem 2, not illustrated) because all demand can

already be satisfied. Similar to Theorem 1, Theorem 2 completely characterizes the unique optimal

production and sales policies, and the optimal time to switch on production/sales can be easily

found through a one-dimensional search with linear computational complexity. Corollary 2 further

characterizes the maximum production interval ∆’s sensitivity to key model parameters. Since the

maximum production interval is determined by the tradeoff between the profit from replication

and the cost to hold inventory, it is intuitive that ∆ increases in r and π and decreases in c and h.

We also want to distinguish certain cases of Weak Replicability (Theorem 2 (b), (c) and (d),

Figure 4 (b)) from certain cases of Strong Replicability (Theorem 1 (b) and (c), Figure 3 (b)). In

both groups of cases, sales are always on since the beginning while production is switched on later

or kept off. The causes of the similar behavior are however distinct. Under Weak Replicability, sales

intrinsically take priority and thus are always on while production is generally switched on later,

as a result sales may not last through the product life cycle. Under Strong Replicability, production

intrinsically take priority and thus are generally switched on before sales to make sure that sales

always last through the product life cycle; the reason in these cases of Strong Replicability why sales

are switched on before production is the abundant launch inventory, which means that production

does not need to be always on to meet all demand through the product life cycle.



14

To summarize, under Weak Replicability, the firm should prioritize the present over the future:

demand is immediately satisfied as long as inventory is available despite slowing down replication

and causing more future demand to be lost, and the inventory generally does not last through the

entire product life cycle (as predicted by Proposition 2). Interestingly, replication generally still

occurs toward the end of the product life cycle, but will never last longer than a maximum interval.

Our analysis of the base model reveals several crucial insights about the self-replication business

model. First, we show that the “keep-or-sell” trade-off boils down to a simple yet informative

condition (2) which compares the value of replication against not only the replication cost, but

also crucially the inventory holding and discounting costs. In the Strong Replicability regime when

(2) holds, a firm should generally hold back sales despite lost demand. This finding is reminiscent

of Kumar and Swaminathan (2003)’s finding that a myopic policy of selling as much as possible

may not be optimal in capacitated innovation diffusion, and that a build-up policy is optimal

with lost sales. The driving forces are however not the same. In their setting, holding back sales

serves two purposes: building up inventory, and decelerating demand growth. In our self-replication

setting, holding back sales also serves a third purpose: accelerating production. We also show that

the optimal time to switch on sales should balance life-cycle demand and supply. These results

provide a guideline for producers of self-replicating innovative goods in their capacity ramp-up

and ramp-down decisions. On the other hand, in contrast with Kumar and Swaminathan (2003)

who show in their setting with lost sales that it is always optimal to build up inventory before

sales begin, we show in our self-replication setting that sales should begin right away in the Weak

Replicability regime when (2) does not hold. Interestingly, replication may still be optimal near

inventory depletion, although it would never last longer than a maximum interval. This non-

straightforward insight cautions firms that not all self-replicating innovative goods should prioritize

replication over sales, yet even those that do not may still benefit from limited replication near

inventory depletion. This insight is unique to self-replication and enriches our understanding of

capacitated innovation diffusion.

Lastly, we note that (2) is a local condition independent of the demand process. It suggests that

the aforementioned insights should apply to a much wider range of settings beyond our base model,

which are explored in Section 5.

4. Numerical studies

4.1. Effect of sales intensity

In the base model (1) we capture diminishing word-of-mouth by defining the adjusted cumulative

sales. In this section we consider a similar effect of sales intensity. The motivation is that aside
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from the regular word-of-mouth generated by cumulative sales, the sudden increase of a product’s

sales also tends to create a trend and generate word-of-mouth (especially in the age of social

networking). To capture this effect, we modify the classical demand diffusion model by including

the sales intensity s(t) alongside the cumulative sales S(t) to generate word-of-mouth:

D′(t) = d(t)
.
= [α+ (β1S(t) +β2s(t))/m][m−D(t)], (4)

where β1 and β2 are the corresponding coefficients of imitation for the cumulative sales and sales

intensity, respectively. With β2 = 0 the diffusion model is reduced to that in Ho et al. (2002)

and Kumar and Swaminathan (2003). Analyzing this model is challenging, and thus we resort

numerical experiments. Figures 5 and 6 respectively illustrate the optimal policies with demand

diffusion model (4) under Strong and Weak Replicability. One can see that the optimal policies are

qualitatively similar to that of the base model (Figures 3 and 4), which is unsurprising considering

that the effect of sales intensity is similar to the effect of diminishing word-of-mouth in that more

recent sales generate more word-of-mouth than those from distant past.

Figure 5 Optimal policies with sales intensity under Strong Replicability
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Note. These examples are generated with m= 100, π = 2.3, c= 2, h= 0.2, r = 2, α= 0.1, β1 =

1, β2 = 0.25, ρ = 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability

holds: (r− ρ)π= 4.37> cr+h= 4.2.

4.2. Sensitivity analysis

Most parameters in our model are exogenous, such as the production cost, the inventory holding

cost, the rate of replication, the market size, and the diminishing rate of word-of-mouth. These

parameters are difficult to change. By contrast, the coefficient of innovation α and the coefficient
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Figure 6 Optimal policies with sales intensity under Weak Replicability
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Note. These examples are generated with m= 100, π = 2.1, c= 2, h= 0.2, r = 2, α= 0.1, β1 =

1, β2 = 0.25, ρ = 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods). Weak Replicability

holds: (r− ρ)π= 3.99< cr+h= 4.2.

of imitation β are more easily manipulated. In particular, α can be increased through conventional

marketing efforts such as running ads and commercials in media channels, whereas β can be

increased through social marketing efforts such as rewarding customers who share their experiences

in their social circles and referral bonuses. We numerically study the impact of changing α and β

to drive insights into marketing innovative self-replicating goods.

Lilien et al. (2017)’s Exhibit 5.8 lists estimated coefficients of innovation and imitation for a

range of goods. Two cases most relevant to this paper are camcorders (representing innovative

electronics) with α= 0.044 and β = 0.304, and hybrid corns (representing innovative agriculture)

with α= 0.000 and β = 0.789. The ranges of the parameters across all products are 0≤ α≤ 0.265

and 0≤ β ≤ 1.390. Based on these estimates, we limit our numerical studies within the range of

0≤ α≤ 0.3 and 0≤ β ≤ 2 for practical relevance.

We first investigate the case of Strong Replication with limited launch inventory (which is more

practically relevant than abundant launch inventory). Recall that in this case production is always

on, and sales are switched on when there is enough inventory to last through the entire product

life cycle. Figure 7 illustrates the optimal time to switch on sales and total lost sales for varying

α and β. The general observation is that the greater demand potential, the later sales should be

switched on and the more sales should be given up. This observation can seem counterintuitive:

facing greater demand potential, one may feel instinctive to start meeting demand earlier. However,

the nature of self-replicating goods is such that giving up earlier demands is necessary to preserve



17

inventory for greater production to satisfy later demands. The numerical study reaffirms the need

to resist the urge to switch on sales too early, which would only lead to more severe shortage later.

Figure 7 Optimal time to switch on sales and total lost sales under Strong Replicability
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Note. This example is generated with IL = 1, m= 100, π= 2.3, c= 2, h= 0.2, r= 2, ρ= 0.1, w=

0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability holds.

Figure 8, which illustrates the optimal total profits for varying α and β under Strong Replicabil-

ity, shows a more interesting pattern. Increasing β through social marketing efforts unsurprisingly

improves total profits. However, increasing α through conventional marketing efforts, especially

when combined with high β values, may backfire and reduce total profits. The contrast high-

lights fundamentally different demand growth patterns driven by conventional and social marketing

efforts.

Consider the innovation diffusion equation D′(t) = [α+ βS(t)/m)][m−D(t)]. First we consider

α� β so that the demand is mostly driven by conventional marketing efforts. In this case, the

demand growth is the fastest at product launch and follows an exponential decay. Then we consider

α� β so that the demand is mostly driven by social marketing efforts. In this case, the demand

growth is minimum before sales are switched on (because S(t)≡ 0), and after sales are switched on

the demand growth initially increases exponentially and then flattens out before finally decaying

exponentially, forming the classic S-shaped innovation diffusion curve. On the other hand, recall

that the self-replication production mode is characterized by an initial supply shortage period

followed by an exponential supply growth. It is easy to see that the early gradual exponential

demand growth of social marketing is a good match with the early gradual exponential supply

growth of self-replication. It means that even with aggressive social marketing efforts, the lost sales
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Figure 8 Optimal total profits under Strong Replicability
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Note. This example is generated with IL = 1, m= 100, π= 2.3, c= 2, h= 0.2, r= 2, ρ= 0.1, w=

0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability holds.

are relatively minor. On the other hand, aggressive conventional marketing efforts mean that the

highest initial demand growth is met with the most severe initial supply shortage, and significant

sales lost will ensue. This insight explains why in Figure 8 large α values can backfire and reduce

total profits whereas large β values do not. The explanation is also consistent with Figure 7 (b)

which shows that the total lost sales increase dramatically for larger α values, but only modestly

for larger β values.

Next we plot the optimal total profits and lost sales for varying α and β under Weak Replicability.

Figure 9(b) resembles Figure 7(b). Figure 9(a) however differs from Figure 8 in that under Weak

Replication increasing α no longer reduces total profits. The reason is that in this case the firm

prioritizes sales over replication. As a result, the inventory tends to be depleted before neither the

demand nor the production enters the exponential growth stage, meaning that the effect which

causes conventional marketing efforts to backfire under Strong Replicability is absent under Weak

Replicability.

To summarize, the sensitivity analysis reveals an interesting insight: under Strong Replicability,

social marketing which boosts the word-of-mouth effect is a particularly well-suited marketing

strategy for self-replicating innovative goods, while conventional marketing strategies should be

used conservatively and cautiously. The insight matches our key motivating examples—the Prusa

3D printers and the Glass Gem corns—which are self-replicating innovative goods promoted almost

exclusively through social marketing strategies.
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Figure 9 Total profits and total lost sales under Weak Replicability
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Note. This example is generated with IL = 1, m= 100, π= 2.1, c= 2, h= 0.2, r= 2, ρ= 0.1, w=

0.25, and T = 10 (discretized into 1,000 periods). Weak Replicability holds.

5. Extensions

In this section, we show how our main insights from the base model remain robust and help charac-

terize optimal policies in a range of extensions. These extensions are technically more complicated

to analyze. For brevity, we will forgo full analyses and focus on how the insights from the base

model can inform optimal policies in these extensions.

5.1. Backlogged demand

Our base model assumes lost sales. In line with Kumar and Swaminathan (2003) and Shen et al.

(2011, 2014), we consider backlogged demand in this section. In particular, we adopt the partial-

backlog model of Shen et al. (2014) and assume that a γ ∈ [0,1] fraction of unmet demand is

backlogged and 1−γ is lost. Backlogged demand incurs backlog cost b per unit good-time. Revenue

from backlogged demand is earned upon delivery of the good. We assume that orders are filled

first-in-first-out, namely backlogged demand is satisfied before new demand, following prevalent

business practices including at Prusa Research. To model such a system, we need an additional

state variable B(t) to capture the cumulative backlog at time t. Let 1B(t)
.
= 1 indicate B(t)> 0,

and 1B(t)
.
= 0 indicate otherwise.

Note that for our self-replicating product, once the inventory is depleted, no further production

or sales is possible. In such a case the firm should announce the end of life for the product and no

longer be penalized for the backlog. In other words, allowing a backlog necessitates formally cutting

short the product life cycle at inventory depletion. (It was not necessary in the base model because

without a backlog the firm incurs no cost after inventory depletion.) We present the modified model
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below, where τ represents the end of the product life cycle. Note that the definition of τ depends

on the property that once I(t) reaches zero it can never become positive again. The fact that the

product life cycle ends whenever the inventory is depleted also eliminates the need for both the

pure state constraint I(t)≥ 0 and the terminal condition I(T )≥ 0.

max
p(·),s(·)

∫ τ

0

[πs(t)− cp(t)−hI(t)− bB(t)]e−ρt dt (5)

s.t. D′(t) = d(t)
.
= [α+βS(t)/m][m−D(t)], S′(t) = s(t)−wS(t), I ′(t) = p(t)− s(t),

B′(t) = γ[d(t)− s(t)]−1B(t)(1− γ)s(t),

0≤ p(t)≤ rI(t), s(t)≥ 0, s(t)[1−1B(t)]≤ d(t),

D(0) = S(0) =B(0) = 0, I(0) = IL > 0, τ
.
= min(T, sup{t|I(t)> 0}).

Note the differential equation governing backlogged demand: B′(t) = γ[d(t)−s(t)]−1B(t)(1−γ)s(t).

When there is no backlog (B(t) = 0), the equation becomes B′(t) = γ[d(t) − s(t)] because any

unmet demand is partially backlogged. (In this case the constraint s(t)[1− 1B(t)]≤ d(t) becomes

s(t)≤ d(t) which implies B(t)≥ 0.) When there is backlog (B(t)> 0), the equation becomes B′(t) =

γd(t)− s(t). Recall that backlogged demand is satisfied before new demand. Therefore, all sales go

toward reducing backlog while a γ fraction of new demand adds to backlog.

Strong Replicability from Section 3 states that the value of replication outweighs the production,

inventory holding and discounting costs. In the backlog model, there is an additional backlog cost

to be weighed against, and Strong Replicability is defined by

π(1 + rδ)− crδ−hδ− ρπδ− γbδ > π⇒ (r− ρ)π > cr+h+ γb. (6)

Therefore, with Condition (2) replaced by (6), Theorems 1 and 2 fully characterize the optimal

policies with partial backlog. This observation contrasts Kumar and Swaminathan (2003) who show

in their setting that a build-up policy is not always optimal with backlog.

Figure 10 illustrates Theorem 1’s Case (a) with partial backlog, and compares interestingly with

Figure 3 (a). The backlog model’s optimal policies share a similar overall structure: sales are held

back in the beginning to maximize production; once enough inventory is built so that all future

demand can be satisfied, sales are switched on and the inventory is depleted at exactly T . However,

in Figure 10, as sales are held back in the beginning, a backlog is accumulated. As a result, a larger

inventory needs to be built compared with Figure 3 before sales can be switched on, at which time

a chunk of the inventory is used to instantly satisfy the entire backlog, leading to a drop of I(t) in
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the amount of B(t), a drop of B(t) to zero, and an infinite spike of s(t)—a policy known technically

as impulse control (Sethi 2019, p. 19). (In discretized numerical experiments the spike of s(t) is

large but finite; it is truncated in Figure 10.) No demand is ever backlogged past this point. We

omit illustrating Theorem 1’s Cases (b) and (c) and Theorem 2, because with abundant launch

inventory, and under Weak Replicability where immediate sales have priority over production, no

demand will ever be backlogged.

Figure 10 Optimal policies of Problem (5) under Strong Replicability
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Note. This example is generated with m= 100, π= 2.5, c= 2, h= 0.2, b= 0.5, r= 2, α= 0.1, β =

1, ρ = 0.1, γ = 0.8, w = 0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability

holds: (r− ρ)π= 4.75> cr+h+ γb= 4.6.

The analysis and numerical example show that under Strong Replicability, when demand may be

backlogged, the firm should resist the urge to reduce the ever-growing backlog, and instead focus

on maximizing replication and only satisfy all backlog at once when enough inventory (production

capacity) is built for the product’s remaining life cycle.

5.2. Liquidity constraint

In our base model, to focus on the most fundamental insights of self-replicating goods, we only

considered the self-replication production constraint. Indeed, a corporate giant such as Monsanto

producing an innovative agricultural good through self-replication faces few other production con-

straint. Yet for a startup with limited financial resources such as Prusa Research, the firm faces

the liquidity constraint, namely that it need to carefully manage their cash flows to stay solvent

at all times.
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In this section, we modify the base model (1) to incorporate the liquidity constraint as follows.

Suppose at time 0 the firm has an initial cash level (or a line of credit) L0. Production and inventory

costs deplete the cash deposit whereas sales replenish it, leading to cash level L(t) at time t. We

require that at any time the cash level cannot be negative.3 The problem formulation is

max
p(t),s(t)

∫ T

0

[πs(t)− cp(t)−hI(t)]e−ρt dt (7)

s.t. D′(t) = d(t)
.
= [α+βS(t)/m][m−D(t)],

S′(t) = s(t)−wS(t), I ′(t) = p(t)− s(t), L′(t) = πs(t)− cp(t)−hI(t),

0≤ p(t)≤ rI(t), 0≤ s(t)≤ d(t), L(t)≥ 0, I(T )≥ 0,

D(0) = S(0) = 0, I(0) = IL > 0, L(0) =L0 ≥ 0.

The liquidity constraint is irrelevant in most cases under Weak Replicability because sales take

priority over production. Unless there is a huge launch inventory such that the inventory cost drains

cash faster than sales revenue replenishes it, the liquidity constraint will never become binding.

Henceforth, we focus on Strong Replicability where replication takes priority over sales and the

cash level may dip significantly during the early production ramp-up stage. Figure 11 illustrates the

optimal policies under Strong Replicability and the liquidity constraint. The two cases in Figure

11 respectively correspond to those of Figure 3, between which a comparison can be drawn.

One can see that the basic patterns of Figure 3 are preserved in Figure 11: in Case (a) with a low

launch inventory, sales are initially held back to maximize production; in Case (b) with a higher

launch inventory, sales are always on and production does not need to be switched on initially;

and in both cases the inventory is depleted at T . This shows that the liquidity constraint does not

alter the fundamental Strong Replicability insight and the basic structural result of Theorem 1.

There is however an astonishing observation from Figure 11: when the liquidity constraint is

binding (the firm runs dry of cash), the optimal policy is to scale back sales to a level that provides

just enough revenue to cover the cost of inventory and production, as such the cash position

remains at zero for a period. This observation is counter-intuitive. When a firm runs out of cash,

common sense may dictate that sales be maximized so as to resolve the cash crisis. Nonetheless,

this observation can actually be explained with the Strong Replicability insight.

3 More generally, the liquidity constraint should be modeled as a terminating condition, namely the product life cycle
is cut short whenever the cash position reaches zero; however note that if at this time there is remaining inventory, the
firm can always cease production and sell off the inventory to improve the objective while staying solvent, meaning
that it is never optimal to cut short the product life cycle because of the liquidity constraint. Therefore our constraint
of requiring the cash level to be non-negative is without loss of generality.
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Figure 11 Optimal policies of Problem (7) under Strong Replicability
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Note. These examples are generated with m = 100, π = 2.3, c = 2, h = 0.2, r = 2, α = 0.1, β =

1, ρ= 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability holds: (r−

ρ)π= 4.37> cr+h= 4.2.

Recall that Strong Replicability requires production and inventory-building to be maximized

until enough inventory is built. When a firm runs out of cash, production is constrained and needs

to be financed by sales. However, sales also drain inventory which tightens the replication constraint

on production. The optimal policy to maximize production, therefore, should be to relieve the

cash shortage without limiting replication—in other words, to sell just enough inventory to finance

production and keep the cash level at zero, until enough inventory is built for the remainder of the

product life cycle when sales can be thereafter maximized, as is observed in Figure 11. This insight

may prove instructive for innovative startups such as Prusa Research.

5.3. Stochastic innovation diffusion

The majority of the capacitated innovation diffusion literature, as well as our base model, assume no

uncertainty for analytical tractability. However, real-life markets can be highly uncertain, especially

those for innovative goods which motivate this paper. Among the three market parameters in

our models, arguably, the market size m and the coefficient of innovation α are relatively easy to

estimate through established marketing techniques, whereas the coefficient of imitation β, which is

deeply rooted in human behavior, may be the most elusive parameter to estimate. In this section,

we investigate a model where β is a random variable.

We adopt the approach of Kanniainen et al. (2011) and Shen et al. (2014) and multiply β by

a random noise X(t)∼Uniform[0,2] which is independently and identically distributed over time.
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In other words, the realized coefficient of imitation may be as low as 0 or as high as 2β, with the

average being β. The modified problem formulation is

max
p(t),s(t)

∫ T

0

[πs(t)− cp(t)−hI(t)]e−ρt dt

s.t. D′(t) = d(t)
.
= [α+βX(t)S(t)/m][m−D(t)], S′(t) = s(t)−wS(t), I ′(t) = p(t)− s(t),

0≤ p(t)≤ rI(t), 0≤ s(t)≤ d(t), I(T )≥ 0, X(t)∼Uniform[0,2],

D(0) = S(0) = 0, I(0) = IL > 0.

We note that this formulation is in fact technically ill-defined. The demand rate d(t) cannot be

adapted to a finite-variation process and is thus not a semimartingale. This means that d(t) is non-

integrable in common (e.g., Itô or Stratonovich) stochastic calculus variations. However, once we

discretize the decision horizon to numerically evaluate the model, the problem disappears. Because

of the model’s non-integrality, its behavior and the heuristics’ performances do not converge as the

interval approaches zero. As such, we fix the discretization period to be 1,000 and make horizontal

comparisons of different heuristics.

We will focus on the most relevant case—Strong Replicability with a small launch inventory—

namely Case (a) of Theorem 1 and Figure 3, where the key decision is when to switch on sales.

We will restrict our numerical considerations among bang-bang policies, namely to satisfy either

all or no demand. Under stochastic innovation diffusion, finding the optimal policy requires solving

a complex stochastic dynamic program (SDP) which is computationally challenging. Instead, we

consider an oracle—who knows the entire realized coefficient of imitation trajectory and chooses

the optimal policy based on a deterministic model—as a benchmark, which is much easier to

compute. Clearly, such an oracle will always outperform the optimal SDP solution, and a heuristic’s

performance loss against the oracle (known as the regret) is an upper bound of its performance

loss against the optimal SDP solution. Note that the oracle does not exist in real life and is only

conceived for benchmarking purposes.

We propose two heuristics. The first, which we refer to as the deterministic heuristic or H1,

is that the firm simply ignores all uncertainty (replacing all X(t) with 1) at time 0, finds the

“optimal” time to switch on sales based on the deterministic model, and executes the policy in the

uncertain environment. The computational complexity of H1 is the same as Theorem 1, namely

linear. A potential issue with H1 is that it does not dynamically readjust the strategy. Therefore,

we propose another heuristic which we refer to as the rolling deterministic heuristic or H2. The
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heuristic is such that in every period the firm takes the realized cumulative demand and sales as

given, ignores all future uncertainty (replacing all future X(t) with 1), finds the “optimal” time to

switch on sales based on the deterministic model for the remaining periods, and executes the policy

for the current period. In other words, H2 involves running H1 in every period for all remaining

periods. As such H2 has a quadratic computational complexity. We extensively evaluate the average

performance losses (regrets) of H1 and H2 against the oracle over 1,000 simulation trials for a wide

range of parameter combinations, and have observed highly consistent patterns. The percentage

regrets range from insignificant (e.g., 3%) to very significant (e.g., 50%) depending on parameters.

Percentage regrets tend to be high when the profit margin is low (e.g., with a smaller π), which is

understandable because the oracle’s profit, the basis for the percentage regret, becomes smaller. By

comparison, the absolute regret varies much less when the profit margin varies. Some representative

examples are provided in Table 1.

Table 1 Average percentage regrets of H1 and H2 against the oracle for varying r and π

r= 2 r= 3

π 2.3 4.3 6.3 8.3 10.3 12.3 2.3 4.3 6.3 8.3 10.3 12.3

H1 (%) 13.87 4.88 3.87 3.49 3.29 3.17 17.26 9.39 6.91 6.02 5.57 5.29

H2 (%) 19.98 6.97 5.52 4.96 4.66 4.49 47.10 11.92 8.65 7.48 6.85 6.46

H2/H1 1.44 1.43 1.43 1.42 1.42 1.42 2.73 1.27 1.25 1.24 1.23 1.22

Note. These examples are generated with m = 100, c = 2, h = 0.2, α = 0.1, β = 5, ρ = 0.1, T =

1 (discretized into 1,000 periods), w = 0.25, and IL = 1 over 1,000 simulation trials. The horizon

is discretized into 100 periods. Strong Replicability holds for all cases.

The most surprising observation however is that H2 consistently performs worse than H1 with

at least 20% larger regrets. Why does the static heuristic H1 outperform the dynamic heuristic

H2? Recall that H1 makes a single decision in the first period ignoring all future uncertainty.

H2 seemingly remedies H1’s static nature by repeatedly performing H1 in each period based on

the realized cumulative demand and sales. However, despite being apparently dynamic, H2 is not

forward-looking, in the sense that the decision at each period fails to account for future decisions.

For example, H2’s first-period decision is identical to H1, thus also as bad as H1. In future periods,

H2 continues to introduce noises based on the realized uncertainty and past decisions. As a result,

the dynamic H2 is actually noisier than the static H1 and is consistently outperformed by the latter.

The numerical experiments show that practitioners can simply use the static deterministic heuris-

tic H1 to address uncertainty, which performs particularly well for high-margin goods, whereas
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dynamically adjusting the heuristic without being forward-looking actually backfires and worsens

the performance. The usefulness of the deterministic heuristic is consistent with the findings of

Shen et al. (2014).

5.4. Launch inventory decision

The base model assumes an exogenous launch inventory IL. This assumption is equivalent to

assuming that demand diffusion begins at product launch (time 0)—an appropriate assumption

when the firm is not the only player in the market, such as in the case of Prusa Research. To see

the equivalence, consider the following scenario. Assume the firm has inventory IL at time 0, and

recall that the only way to increase inventory is by self-replication. Should the firm want to have

more launch inventory, it needs to postpone the product launch to allow replication. However, if

the firm is not the only player in the market, its potential customers will still be gradually lost to

competing firms, and the product will still be obsolete at time T , despite the postponed launch.

Such a scenario is no different from the firm holding back sales and maximizing production after

a product launch at time 0 as in Theorem 1’s Case (a). In this sense, the firm has no real ability

to choose the product launch time or, equivalently, the launch inventory.

However, if the innovative product faces no competition and demand diffusion does not begin

until the firm launches the product, such as the case of the Glass Gem corn, the firm will have the

option to postpone the product launch and produce enough launch inventory, and the product’s

life cycle can still last for T . The cost of doing so is that revenue will be postponed and discounted.

Due to the self-replicating nature of the good, we still need to assume an initial “seed” inventory

I0 > 0 from the research and development process. Let tL denote the product launch time. The

problem formulation is

max
tL≥0

[
−I0(cr+h)

∫ tL

0

e(r−ρ)t dt+ e−ρtL max
p(t),s(t)

∫ T

0

[πs(t)− cp(t)−hI(t)]e−ρt dt

]
s.t. D′(t) = d(t)

.
= [α+βS(t)/m][m−D(t)], S′(t) = s(t)−wS(t), I ′(t) = p(t)− s(t),

0≤ p(t)≤ rI(t), 0≤ s(t)≤ d(t), I(T )≥ 0,

D(0) = S(0) = 0, I(0) = I0e
rtL > 0.

In this formulation, the term −I0(cr+h)
∫ tL

0
e(r−ρ)t dt is the production and inventory cost of the

launch inventory preparation period tL. The subsequent life-cycle value is discounted by e−ρtL due

to the postponement. In exchange, the launch inventory is increased to I0e
rtL .

It is clear that under Weak Replicability where replication is not a priority, or under Strong

Replicability but with a sufficiently large seed inventory I0, the firm should immediately launch



27

the product. Let us focus on the case of Strong Replicability and a small seed inventory I0; more

specifically, Theorem 1’s Case (a) should we force tL = 0. In this case, should the firm postpone the

product launch to build more launch inventory, and if yes, by how long? The answer is provided

by the following proposition and illustrated in Figure 12.

Proposition 3 (Launch inventory). Assume (r−ρ)π > cr+h, and I0 < I which is defined as

such a level of IL that always keeping production and sales on leads to inventory depletion at exactly

T after the product launch. It is optimal to postpone the product launch by tL = (ln I− ln I0)/r until

the launch inventory is IL = I, and keep both production and sales on after launch until inventory

depletion at exactly tL +T .

Figure 12 Optimal launch inventory under Strong Replicability
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Note. This example is generated with I0 = 1, m= 100, π= 2.3, c= 2, h= 0.2, r= 2, α= 0.1, β =

1, ρ= 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability holds: (r−

ρ)π = 4.37 > cr + h = 4.2. The optimal launch time and inventory are tL = 1.0 and IL = 7.39,

respectively.

The proposition states that under Strong Replicability and with a small seed inventory, it is

optimal to postpone the product launch so that sales are on right after the launch and no demand

is lost. While it is intuitive to avoid losing demand, it is non-trivial that doing so is justified

despite delayed and thus discounted revenue. The explanation is again tied to Strong Replicability,

which states that the benefit of growing inventory outweighs the production, inventory holding

and discounting cost. This result is potentially helpful for firms determining product launch times

for their exclusive innovations, such as Native Seeds/SEARCH which regretted that they “did not

grow out enough [Glass Gem corns]” before launching the product (Business Insider 2012).
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5.5. Exogenous demand

Our research problem is inspired by self-replicating innovative goods such as the Original Prusa

i3 3D printers and the Glass Gem corns. The challenge of growing a small launch inventory to

meet future demand is particularly relevant in the early stages of innovative goods; for mature

self-replicating goods with stable demands such as regular wheat, there is typically already suf-

ficient inventory to sustain replication to meet the demands. This is why we adopt a demand

diffusion model appropriate for early stages of innovative goods. However, our key finding of the

Strong Replicability condition (2) contains no demand model parameters, suggesting that the self-

replicating insights technically also apply to exogenous (non-diffusion) demands. In this section we

analyze self-replicating goods facing exogenous demands, the simplest of which is stable demand.

Consider the following formulation with a stable demand stream d:

max
p(t),s(t)

∫ T

0

[πs(t)− cp(t)−hI(t)]e−ρt dt

s.t. I ′(t) = p(t)− s(t), 0≤ p(t)≤ rI(t), 0≤ s(t)≤ d, I(T )≥ 0,

I(0) = IL > 0.

We focus on the most interesting case of Strong Replicability with insufficient launch inventory to

meet the stable demand through self-replication (the insights for other cases similarly carry over).

The next proposition presents the optimal policies.

Proposition 4 (Stable demand). Assume (r − ρ)π > cr + h and rIL < d. It is optimal to

always keep production on, and switch and keep sales on at such a time ts < (lnd− ln IL− ln r)/r

that the inventory is depleted exactly at T ; limT→∞ ts = (lnd− ln IL− ln r)/r, limT→∞ I(ts) = d/r.

Figure 13 (a) illustrates Proposition 4. Facing stable demands, the firm should build (nearly)

enough inventory to meet all demand all demand through replication while sustaining the inventory

level, until the end-of-life-cycle sell-off. In Figure 13 (b), we numerically evaluate the optimal policies

for a highly seasonal exogenous demand pattern. One can see that the basic Strong Replicability

insights still apply: production is always on, sales are initially held back and then switched and

kept on, and the inventory runs out exactly at the end of the product life cycle. Admittedly, it

is less likely in practice that an innovative self-replicating good with a small launch inventory

would already face a stable or exogenous demand pattern. Nevertheless, the fact that our main

insights carry over and help characterize optimal policies with exogenous demands speaks to their

robustness and usefulness.
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Figure 13 Optimal policies with exogenous demands under Strong Replicability
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Note. This example is generated with I0 = 1, m= 100, π= 2.3, c= 2, h= 0.2, r= 2, α= 0.1, β =

1, ρ= 0.1, w = 0.25, and T = 10 (discretized into 1,000 periods). Strong Replicability holds: (r−

ρ)π= 4.37> cr+h= 4.2.

6. Conclusion

Inspired by self-replicating 3D printers and innovative agricultural and husbandry goods, we study

optimal production and sales policies for a manufacturer of self-replicating innovative goods. Such

a production system is operationally fascinating: the inventory serves as the production facility

and limits the production capacity, and the firm faces the unique “keep-or-sell” trade-off for each

newly-produced unit—should it be sold to satisfy demand and stimulate future demand, or should

it be added to inventory to increase production capacity?

We adopt the continuous-time optimal control framework and marry a self-replication model on

the production side to the canonical innovation diffusion model on the demand side. By analyzing

the model, we identify two regimes: the Strong Replicability regime where production takes priority

over sales as long as the produced goods will eventually be sold, and the Weak Replicability regime

where sales have priority over production and are never held back. Following these insights, we fully

characterize their distinct optimal production and sales policies. Generally speaking, under Strong

Replicability, sales are initially held back to maximize production and the inventory is depleted

exactly at the end of the product life cycle, whereas under Weak Replicability, sales are never held

back, the inventory may be depleted within the product life cycle, and production only takes place

near inventory depletion.

These insights prove robust and helpful in several extensions, including backlogged demand, liq-

uidity constraints, launch inventory decision, and exogenous demand. We also numerically evaluate
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the performance of deterministic heuristics under stochastic demand diffusion, and under a seasonal

exogenous demand pattern. The insights and policies derived in this paper are potentially instruc-

tive for manufacturers of innovative self-replicating goods. A firm should first evaluate if it resides

in the Strong or Weak Replicability regime, and then apply the respective priorities (production

or sales) to derive appropriate policies. The models can provide further quantitative support. We

also show that social marketing strategies are particularly well-suited for self-replicating innovative

goods under Strong Replicability.

Our model assumes a fixed retail price. The assumption is partly motivated by the fact that the

Prusa 3D printers are sold at fixed retail prices during their primary life cycles. In general, pricing

can be a powerful lever to balance demand and supply in innovation diffusion as shown by Shen

et al. (2011, 2014). On the other hand, dynamic pricing could lead to strategic consumer behavior

(e.g., speculative waiting) and actually worsen supply-demand imbalance, which may explain Prusa

Research’s pricing policy. A promising future research direction is to allow dynamic pricing and

account for resulting strategic customer behavior. It would require a substantial development of

the model and methodology, but will likely also reveal substantial insights.
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Appendix

Pontryagin’s maximum principle for Problem (1). We apply Pontryagin’s maximum principle

for the current-value formulation (Sethi 2019, p. 80) to Problem (1). For state variables D, S and

I, respectively denote their co-state variables by λD, λS and λI . The current-value Hamiltonian is

H(D,S, I, p, s,λD, λS, λI , t)

.
= πs(t)− cp(t)−hI(t) +λD(t)d(t) +λS(t)[s(t)−wS(t)] +λI(t)[p(t)− s(t)]

= λD(t)[α+βS(t)/m][m−D(t)]−hI(t)−λS(t)wS(t) + [λI(t)− c]p(t) + [π+λS(t)−λI(t)]s(t).
(8)

Note that the Hamiltonian (8) is linear in p(t) and s(t). Since Pontryagin’s maximum princi-

ple requires that the Hamiltonian must be maximized at any time by the optimal controls, we

immediately come to the conclusion that the optimal control for Problem (1) is bang-bang.

Because Problem (1) contains constraints on control variables p(t) and s(t), we also need to

define a Lagrangian for the Hamiltonian. Let µpL (µpU) and µsL (µsU) be the Lagrange multipliers

for the lower (upper) constraints of p(t) and s(t), respectively. Let ν be the Lagrange multiplier

for the transversality constraint I(T )≥ 0. The current-value Lagrangian is

L(D,S, I, p, s,λD, λS, λI , µpL, µpU , µsL, µsU , t)

.
=H(D,S, I, p, s,λD, λS, λI , t) +µpL(t)p(t) +µpU(t)[rI(t)− p(t)] +µsL(t)s(t) +µsU(t)[d(t)− s(t)]

= [λD(t) +µsU(t)][α+βS(t)/m][m−D(t)] + [rµpU(t)−h]I(t)−λS(t)wS(t)
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+ [λI(t) +µpL(t)−µpU(t)− c]p(t) + [π+λS(t)−λI(t) +µsL(t)−µsU(t)]s(t).

Pontryagin’s maximum principle requires the following conditions for any t for optimality:

Maximum conditions:

p(t) = rI(t)⇔ λI(t)> c, p(t) = 0⇔ λI(t)< c,

s(t) = d(t)⇔ π+λS(t)>λI(t), s(t) = 0⇔ π+λS(t)<λI(t).

First-order conditions:

λI(t) +µpL(t)−µpU(t)− c= π+λS(t)−λI(t) +µsL(t)−µsU(t) = 0.

Complementary slackness:

µpL(t), µpU(t), µsL(t), µsU(t)≥ 0,

µpL(t)p(t) = µpU(t)[rI(t)− p(t)] = µsL(t)s(t) = µsU(t)[d(t)− s(t)] = 0,

Adjoint conditions:

λ′I(t) = ρλI(t) +h− rµpU(t),

λ′D(t) = ρλD(t) + [λD(t) +µsU(t)][α+βS(t)/m],

λ′S(t) = (ρ+w)λS(t)− [λD(t) +µsU(t)][β−βD(t)/m].

Transversality conditions:

λD(T ) = λS(T ) = 0, λI(T ) = ν ≥ 0, νI(T ) = 0.

�

Proof of Proposition 1. Since Problem (1) does not contain pure state constraints, all co-state

variables are continuous in t under optimality. Consider any time t where I(t) > 0 and p(t) = 0,

such that p(t)< rI(t). Due to the complementary slackness, µpU(t) = 0. The adjoint condition for

λI becomes

λ′I(t) = ρλI(t) +h⇒ λI(t) =Ceρt−h/ρ

where C is a constant. We argue that in a non-trivial setting C > 0, otherwise λI would always

be negative and production can never take place (recall the maximum condition that p(t)> 0⇔

λI(t)> c). Therefore λ′I(t)> 0 whenever p(t) = 0. This implies that p(t) can never be switched off

as long as there is inventory, thus the proposition. �
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Proof of Proposition 2. If at optimality p(t)≡ 0, then the optimal sales policy is clearly s(t)≡

d(t) (selling off IL), and thus the inventory will run out before T for sufficiently large T . Now

consider p(t)> 0 for some t at optimality.

When production is on, due to the complementary slackness, µpL(t) = 0. Due to the first-order

condition, µpU(t) = λI(t)− c. The adjoint condition for λI becomes

λ′I(t) = ρλI(t) +h− r[λI(t)− c]⇒ λI(t) =C ′e−(r−ρ)t +
cr+h

r− ρ

where C ′ is a constant.

When T →∞, λI(T )→ (cr + h)/(r − ρ). Due to the transversality condition, λS(t)→ 0. If

(r−ρ)π > cr+h, we know π+λS(t)>λI(t) for sufficiently large t. Due to the optimality condition,

s(t) = d(t) for sufficiently large t. This implies that I(t) is never depleted before T and production

and sales are maximized until T . If (r−ρ)π < cr+h, we have π+λS(t)<λI(t) for sufficiently large

t. Due to the optimality condition, s(t) = 0 for sufficiently large t. It is however clearly suboptimal

to stop sales before the inventory is depleted, implying that the inventory cannot be positive,

namely I(t) = 0, τ ≤ t≤ T, ∃τ < T , for sufficiently large T . �

Proof of Theorem 1. First, note that it is clearly not optimal to keep both production and sales

off. Consider the optimal trajectory. Suppose at time t, I(t)> 0 and production and sales are both

off for an interval δ. The discounted-profit-to-go at t+ δ must be positive, otherwise I(t)> 0 would

not have been possible (it would have been optimal to cut the product life cycle short). We argue

that bringing all future production and sales controls forward by δ has three effects: 1. it saves

inventory cost I(t)hδ; 2. it saves discount cost by bringing forward a positive discounted-profit-

to-go; and 3. it effectively increases the remaining market size from m−D(t+ δ) to m−D(t),

which means that all future production and sales controls remain admissible. Effects 1 and 2 have

positive impacts on the total discounted profit and Effect 3 has a non-negative impact on the total

discounted profit, thus the overall value is improved. Therefore any control policies with production

and sales both off can be improved.

When IL > I, it is clearly optimal to never produce and maximize sales, thus the policy.

When I < IL < I, consider the policy to always keep sales and production on, which would lead

to leftover inventory at T . Now consider shutting off production over certain time periods while

still having leftover inventory at T . Due to Proposition 1, it is never optimal to switch production

back on, which implies that shutting off production can only take place in an initial time interval

(namely postponing switching on production). Doing so does not affect sales because inventory is

never depleted, but clearly saves production cost and inventory cost. Therefore one can improve
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the policy by shutting off production in such an initial time interval such that the inventory is

depleted exactly at T while always keeping sales on.

We then argue that this is the optimal policy. Note that the aforementioned analysis reveals that

anytime there are only three possible optimal controls: only production on; only sales on; both

production and sales on, and that production can never be switched off until the inventory becomes

depleted. Therefore, the only changes allowed on the policy without violating optimality are 1.

shut off production for a longer initial period; 2. shut off sales for some interval during production.

Change 2 is clearly not optimal because doing so causes reduced revenue during this interval and

future time (through reduced demand). Change 1 would cause inventory depletion before T . To

see why this is not optimal, consider the short time interval prior to when production is switched

on. In this time interval, sales is on and production is off. Because of Strong Replicability, we

know that it would increase the total discounted profit to postpone sales and use the inventory for

replication and sell the good in the immediate future. The problem is that the immediate future

demand is being satisfied already. However, by the same argument, the immediate future sales

can be pushed further for replication to increase the total discounted profit. By making the same

argument recursively, the inventory depletion time will be pushed back which is feasible given

it happens before T . Therefore, as long as the inventory is depleted before T , we can use this

argument to switch production on earlier and push back inventory depletion while increasing the

total discounted profit, until the inventory is depleted exactly at T .

When IL < I, consider the policy to always keep sales and production on, which would lead to

inventory depletion before T . Consider a small time interval after time 0 during which sales is

on. Because of Strong Replicability, we know that it would increase the total discounted profit to

postpone sales and use the inventory for replication and sell the good in the immediate future.

The problem is that the immediate future demand is being satisfied already. However, our earlier

reasoning shows that all future sales can be postponed leading to inventory depletion being pushed

back, while increasing the total discounted profit. Therefore, as long as the inventory is depleted

before T , the time to switch on sales can be postponed until the inventory is depleted exact at T .

We argue that this is the optimal policy following the same reasoning as above. �

Proof of Corollary 1. Denote the optimal production switch-on time by t∗p(r) and the optimal

sales switch on time by t∗s(r) when the replication rate is r. Theorem 1(a) implies that t∗p(r) = 0

when the launch inventory IL is lower than I. When t < t∗s(r), because of the bang-bang nature of

the optimal policy, we have p(t) = rI(t) and s(t) = 0, I ′(t) = rI(t), and I(t) = ILe
rt. With a larger
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replication rate r′ > r, the inventory level at t∗s(r) is ILe
r′t∗s(r) > ILe

rt∗s(r). Since the inventory is

always depleted at T , sales must be switched on earlier, i.e., t∗s(r
′)< t∗s(r).

Theorem 1(b) implies that t∗s(r) = 0 when I < IL < I. When t < t∗p(r), because of the bang-

bang nature of the optimal policy, we have p(t) = 0 and s(t) = d(t), and I ′(t) =−d(t). Since the

demand diffusion process does not depend on production, neither does the inventory given p(t) = 0.

Therefore, I(t) does not depend on r when t < t∗p(r). With a larger replication rate r′ > r, the total

production from t∗p(r) to T is larger. Since the inventory is always depleted at T , production must

be switched on later, i.e., t∗p(r
′)> t∗p(r). �

Proof of Theorem 2. Weak Replicability implies that it is never optimal to postpone sales for

replication, and the proof of Theorem 1 shows that it is never optimal to keep both production

and sales off, thus it is optimal to always keep sales on.

When IL > I, it is clearly optimal to never produce, thus the policy.

When IL < I, the inventory would be depleted at some τ before T without production. Consider

a small time interval δ before τ . Consider switching production on at τ − δ. Doing so increases

the revenue by rπδ while incurring production cost rcδ, plus other higher-order terms of δ. Since

π > c, production should be switched on when it is sufficiently close to τ (at the same time pushing

back τ). The question is how far back should production be switched on. When production lasts

for a non-trivial time interval, there are three additional effects to be accounted for. First, the

produced units will incur additional inventory costs. Second, because production takes place before

sales, revenue and inventory costs need to be discounted. Third, the exponential growth due to

production during this period needs to be considered.

We first consider effects 1 and 2. A unit of the good should be produced no longer than a

maximum production interval ∆̄ prior to being sold, where ∆̄ is such that effects 1 and 2 exactly

offset the profit margin π− c, namely

c+h

∫ ∆̄

0

e−ρt dt= e−∆̄ρπ⇒ ∆̄ =

{
(π− c)/h if ρ= 0,

[ln(ρπ+h)− ln(ρc+h)]/ρ if ρ> 0.

We call ∆̄ the effective maximum production interval because it is solved assuming a fixed unit of

the good being held in inventory during the interval without considering effect 3, the exponential

growth of self-replication. In reality, a unit of the good to be sold at τ was only e−rt units at τ − t.

Therefore, the actual maximum production interval ∆ for which production should take place is

be longer than the effective maximum production interval ∆̄, with the per-unit average maximum

production interval being equal to the latter, namely∫ ∆

0

e−rt dt= ∆̄⇒∆ =

{
− ln[1− r(π− c)/h]/r if ρ= 0,

− ln{1− r[ln(ρπ+h)− ln(ρc+h)]/ρ}/r if ρ> 0.
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The meaning of ∆ is the maximum production period prior to inventory depletion. Producing

longer than ∆ and the revenue cannot justify the production and inventory costs. In other words,

the optimal policy for Weak Replicability with IL < I can be generally stated as to always keep

sales on, and switch production on at such a time that production lasts for exactly ∆, and the

inventory will be depleted before T . This outcome will occur in Case (b). On the other hand,

several reasons may cause production to be unable to last for ∆. If IL is sufficiently small in Case

(a), even if production is always kept on, it may not last for ∆. If IL is sufficiently large in Case

(c), production lasting for ∆ will lead to leftover inventory at T which is clearly suboptimal, and

thus production lasts shorter than ∆. These arguments are formalized as Theorem 2. �

Proof of Corollary 2. By Theorem 2, we have ∆ =− ln(1− rθ)/r, r ∈ (0,1/θ), where θ = (π−

c)/h if ρ= 0, and θ= [ln(ρπ+h)− ln(ρc+h)]/ρ if ρ> 0. It is easy to verify that limr→0 ∆ = θ > 0.

Taking the derivative of ∆ with respect to r yields

d∆

dr
=

1

r2

[
ln (1− θr) +

θr

1− θr

]
, lim

r→0

d∆

dr
=
θ2

2
> 0.

Let f(r)
.
= ln(1− θr) + θr

1−θr and we have

lim
r→0

f(r) = 0, and f ′(r) = r

(
θ

1− θr

)2

> 0, ∀r ∈ (0,1/θ),

hence f(r)> 0 and d∆
dr
> 0, ∀r ∈ (0,1/θ).

Taking the derivatives of θ with respect to π, c and h yields

dθ

dπ
=

1

ρπ+h
> 0,

dθ

dc
=− 1

ρc+h
< 0,

dθ

dh
=

−(π− c)
(ρπ+h)(ρc+h)

< 0, ∀ρ≥ 0.

Since d∆
dθ

= (1− rθ)−1 > 0, we have

d∆

dπ
=

d∆

dθ

dθ

dπ
> 0,

d∆

dc
=

d∆

dθ

dθ

dc
< 0,

d∆

dh
=

d∆

dθ

dθ

dh
< 0,

hence the corollary. �

Proof of Proposition 3. Note that the proof of Theorem 1 does not depend on the demand

process. Therefore, we know that it is optimal to keep production on (both pre- and post-launch),

and switch and keep sales on at such a time that the inventory is depleted at the end of the

product’s life cycle. Clearly, the optimal tL should not be past (ln I − ln I0)/r, otherwise there will

be leftover inventory at tL +T . What remains is to show that the optimal tL should not be before

(ln I − ln I0)/r either.

Suppose the optimal t′L < (ln I − ln I0)/r, and sales are switched on sometime t′ > 0 after the

product launch. The firm’s profit in this case is the same as the optimal profit if the total market
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size m is increased to m′ =meαt
′
L (calculated from the demand diffusion equation with S(t)≡ 0)

and the product’s life cycle T is increased by t′L, but demand diffusion began at time 0. On the

other hand, consider t′′L = (ln I − ln I0)/r. The firm’s profit in this case is the same as the optimal

profit if the total market size m is increased to m′′ = meαt
′′
L >m′ and the product’s life cycle T

is increased by t′′L > t′L, but demand diffusion began at time 0. We argue that the latter optimal

profit is strictly larger than the former. First, Theorem 1 states that under Strong replicability, the

optimal policies must ensure that the product is sold through the entire life cycle T . Therefore, an

optimal policy for T can be implemented to generate the same profit for a longer T , which cannot

be optimal because production does not last for the entire T , implying that a longer T strictly

increases the optimal profit. Similarly, an optimal policy for m can be implemented to generate

the same profit for a larger m, implying that a larger m cannot decrease the optimal profit. As a

result, we know that the optimal tL = (ln I − ln I0)/r. �

Proof of Proposition 4. Note that the proof of Theorem 1 does not depend on the demand

process. Therefore, we know that it is optimal to keep production on, and switch and keep sales on

at such a time that the inventory is depleted at the end of the product’s life cycle. With T =∞,

the inventory level to meet stable demand d through replication is d/r, and ILe
tsr = d/r yields the

optimal time to switch on sales (lnd− ln IL − ln r)/r. For finite T , because the inventory will be

gradually sold off to meet some demand, there is no need to build the inventory up to d/r, and

thus ts < (lnd− ln IL− ln r)/r. �
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