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Abstract. Inspired by self-replicating three-dimensional printers and innovative agricul-
tural and husbandry goods, we study optimal production and sales policies for a man-
ufacturer of self-replicating innovative goods with a focus on the unique “keep-or-sell”
trade-off—namely, whether a newly produced unit should be sold to satisfy demand and
stimulate future demand or added to inventory to increase production capacity. We adopt
the continuous-time optimal control framework and marry a self-replication model on
the production side to the canonical innovation-diffusion model on the demand side. By
analyzing the model, we identify a condition that differentiates Strong and Weak Rep-
licability regimes, wherein production and sales, respectively, take priority over the other
and fully characterize their distinct optimal policies. These insights prove robust and
helpful in several extensions, including backlogged demand, liquidity constraints, sto-
chastic innovation diffusion, launch inventory decision, and exogenous demand. We also
find that social marketing strategies are particularly well suited for self-replicating in-
novative goods under Strong Replication.
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1. Introduction
Three-dimensional (3D) printing, also known as ad-
ditive manufacturing, is an emerging manufacturing
technology that operates on the principle of depos-
iting layers of material following 3D blueprints to
form objects (Additive Manufacturing 2018). Themost
common printable materials are various plastics, al-
though technologies have been developed to print
metals (Vincent 2017), concrete (Yurieff 2017), food
(NASA2013), andeven livingcells (ScienceDaily 2018).
Additive manufacturing has made its way into pro-
ducing a wide range of products, from customized
shoes (Fitzgerald 2013) to rocket engines (The Guardian
2017), but one of the most fascinating products made
with additive manufacturing is arguably 3D-printed
3D printers.

RepRap (short for replicating rapid prototyper) is an
open-source project to develop 3D printers that can
replicate themselves (RepRap.org 2018). A RepRap
printer is designed to comprise in-house engineered
plastic parts that are 3D-printable and other com-
modities, such as metal rods, bolts and nuts, motors,
and circuit boards. As such, one can use a RepRap
printer to print engineered parts and procure remain-
ing commodities to build an identical or evolved
“child”RepRap printer. The RepRap project has had a

significant impact on the consumer-grade 3D printer
industry. In 2015, Josef Prusa, a core developer of the
RepRap project, began selling a RepRap printer kit
of his own design called the Original Prusa i3 under
his company Prusa Research.1 All plastic parts in the
kit were 3D-printed in the company’s “print farm,”
which is simply a room filled with the same printers.
The printer was an immense success. Its design and
quality, coupled with an affordable price, created a
dedicated following, and there was a constant back-
log of demand (Moore 2016). By July 2019, Prusa
Research’s print farm had grown from 15 printers to
500 printers, and it had shipped 130,000 3D-printed
printers to more than 130 countries (Prusa Research
2020); see Figure 1 for a view of the print farm as of
2018. For his achievements, Josef Prusa was named
in Forbes’ 2018 30 Under 30—Europe—Technology list
(Forbes 2018). Astonishingly, the company had grown
its demand “without a sales team, through word of
mouth and with the support of the international maker
community” (Digital Social Innovation 2017). Such
dependency on word-of-mouth (previous sales stimu-
lating new demands), rather than conventional mar-
keting efforts, is not uncommon in this highly inno-
vative industry. Peter Misek, an analyst at Jefferies,
interviewed more than 15 3D printer exhibitors at
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a 3D Printshow in New York and noted that the
3D printer market had become a “word-of-mouth/
branding game” (Derrick 2014).

Prusa Research had taken advantage of the 3D-
printing technology to drive a business model where
the manufacturing mode is self-replication and the
demand for their innovative product is heavily driven
by word-of-mouth. Self-replicating machines have
existed for some time. The Japanese industrial robot
manufacturer FANUC uses its own robots to make
more robots (Hunt 2017). The same is happening in
the Chinese factory of ABB, a Swiss-Swedish robotics
and automation corporation (Miller 2018). Yamazaki
Mazak, a leading machining-tool manufacturer, has
machined needed components on their own Flexible
Manufacturing Systems for decades (Jaikumar 1989).
Such self-replicating innovative products exhibit unique
and fascinating operational characteristics and trade-
offs. For a conventionalmanufacturer, the production
capacity is usually exogenous or ex ante determined;
the inventory primarily serves as a buffer against var-
iability; and production and sales have no fundamental
conflict. (Production and inventory management is a
huge literature; for some recent developments, see Caro
andMartı́nez-de Albéniz 2010, Berling andMartı́nez-
deAlbéniz 2011,Mayorga andAhn 2011, Feng and Lu
2013, Feng et al. 2013, 2020.) For a self-replicating
manufacturer like Prusa Research, however, such
operational common sense is turned upside down.
Prusa Research uses its own finished products for
replication; therefore, its production capacity is lim-
ited by its inventory and can be dynamically adjusted.
After each 3D printer is produced, Prusa Research
faces the trade-off of adding the new printer to its
inventory to increase production capacity versus sell-
ing the printer to earn a revenue and stimulate future
demand. With production, inventory, and sales deeply
intertwined and the unique keep-or-sell trade-off, it is
not straightforward how to manage the production
and sales of self-replicating innovative goods.

Although self-replicating machines carry a futur-
istic aura, humanity has actuallymanufactured goods
by self-replication since ancient times—in agriculture
and husbandry—through planting seeds, rhizomes
and cuttings, grafting, and breeding. Admittedly, not
all agricultural goods are produced through self-
replication (e.g., seedless watermelons are grown
from triploid seeds, and mules are cross-bred from
horses and donkeys; both are sterile), and most ag-
ricultural and husbandry goods are staple commodities
that face relatively stable demands (such as wheat and
beef). Nonetheless, many innovative agricultural
and husbandry goods are produced by self-replication
and depend on word-of-mouth to drive demands, not
unlike self-replicating 3D printers. In 2012, Native
Seeds/SEARCH began selling seeds for a translucent
rainbow-colored corn called Glass Gem (Figure 2); the
corn soon went viral on social media, and Native
Seeds/SEARCH could not meet demand because
they “did not grow out enough to sell” (Lutz 2012).
From 2016 to 2018, 10 new dog breeds debuted at the
annual Westminster Dog Show (Tabuas 2018), and
their breeders must breed their dogs to meet grow-
ing demands. Such innovative agricultural and hus-
bandry goods exhibit similar operational character-
istics that their “inventories” (crops or herds) are used
to produce offsprings and, thus, limit the production
capacities, and the producers face a similar “repro-
duce-or-sell” trade-off.
A natural concern with self-replicating goods is

that customersmay produce their own goods through
replication and even compete with the original pro-
ducer, but, in most cases, the concern is not serious
enough to threaten the business model. In the case of
Prusa Research, which publishes all printable part
design files on their website (Prusa Research 2018),
the sold kits contain not only printed parts, but also

Figure 1. (Color online) Prusa Research’s Print Farm

Source. Prusa Research (2020).

Figure 2. (Color online) Glass Gem Corn

Source. Native Seeds/SEARCH (2018).
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other commodities, which are not necessarily easily
procurable by customers. Their pricing is also at
such a level that replicating and selling 3D printers
may not be lucrative for customers, considering
the company’s economies of scale and established
manufacturing expertise and distribution channels.
On the contrary, the open-source printable design
allows Prusa Research to push hardware updates to
existing customers (who can download and print
revised parts to replace old parts) in a manner similar
to software developers pushing updates. For many
agricultural and husbandry goods, the same economic
argument would apply. Where it does not, legal mea-
sures may be taken to protect the business model; for
example, Monsanto, a former U.S. agricultural biotech-
nology giant, sued hundreds of farmers for replanting
its patented seeds (Harris 2013). Therefore, despite the
potential concern, the self-replication business model
remains viable.

Inspired by these examples, we set out to study
optimal production and sales policies for a manu-
facturer of self-replicating innovative goods.We adopt
a continuous-time optimal controlmodel, whichmarries
a self-replication model on the production side (where
the production rate is limited by the inventory) to the
canonical innovation-diffusion model for new prod-
uct adoption on the demand side (where existing
sales stimulate new demand generation). Despite the
problem’s complexity, we are able to identify con-
ditions for two regimes, in which we fully charac-
terize the manufacturer’s optimal production and
sales policies. In the Strong Replicability regime, pro-
duction takes priority over sales, as long as the pro-
duced goods will eventually be sold, and sales may
be held back, even with enough inventory to satisfy
demand. In the Weak Replicability regime, sales have
priority over production and are never held back,
although replication using unsold inventory may still
be optimal. These insights are found to be robust and
help characterize optimal policies in several exten-
sions of the model.

In what follows, we review related literature in
Section 2 and analyze the base model in Section 3 to
derive our main results and insights. We conduct
numerical studies in Section 4. We then show in
Section 5 that our main insights are robust and help
characterize optimal policies in several extensions,
including backlogged demand, liquidity constraints,
stochastic innovation diffusion, launch inventory deci-
sion, and exogenous demand. We summarize the paper
in Section 6. Additional analysis and proofs are rel-
egated to the appendix.

2. Literature Review
This paper studies manufacturing innovative goods
by self-replication to meet demand driven by word-

of-mouth. Therefore, it is most related to the streams
of literature onmanaging renewable (self-replicating)
resources and on manufacturing innovative goods
with demand diffusion. The literature on managing
renewable resources dates back to Gordon (1954) and
Schaefer (1957), who study fishery, and Kilkki and
Väisänen (1969), who study forestry; see chapter 10
of Sethi (2019) for a summary of this literature. Their
models share with ours the growth of resources
through self-replication with two major differences.
First, they model a simple unit revenue for the con-
sumption of the resources, implicitly assuming in-
finite demand, whereas we model limited and en-
dogenous demand that grows through innovation
diffusion. Second, they assume uncontrolled natural
resource growth (as is appropriate for their applica-
tions), whereas we model production as an explicit de-
cision and show that it should be shut off in certain cases.
On the other hand, the classic paper by Bass (1969)

grows a rich literature on innovation diffusion; see
Mahajan et al. (1991), Mahajan et al. (2000), and
Meade and Islam (2006) for reviews of this literature.
The majority of this literature focuses on describing
demand growth while ignoring a firm’s ability to
meet such demand, with a few notable exceptions.
Jain et al. (1991) are among the first to consider in-
novation diffusion under supply constraints, although
they take a strictly marketing perspective and focus
on modeling how production constraints impede
demand growth, rather than studying production
decisions. In the operations-management literature,
Kumar and Swaminathan (2003) and Ho et al. (2002)
(with a follow-up note by Ho et al. 2011) study the
joint optimal production and sales decisions for in-
novative goods under supply constraints. Shen et al.
(2011, 2014) further include pricing decisions in the
model. These papers generally assume fixed produc-
tion capacities. Our paper can be seen as an extension
of the literature that studies joint optimal production
and sales decisions under demand diffusion and
production-capacity constraints, where the produc-
tion capacity is dynamic and endogenous to the de-
cisions. Bilginer and Erhun (2015) in a more stylized
two-period discrete diffusion model also incorporate
endogenous capacity decisions. By comparison, we
adopt the canonical continuous-time optimal control
framework, and our endogenous production capacity
is driven by past production and sales decisions—a
feature unique to the self-replication business model.
Another contribution to the innovation-diffusion lit-
erature is that we extend the model to account for
diminishing word-of-mouth.
Topic-wise, our paper belongs to an emerging lit-

erature on the operations management of 3D print-
ing. Various aspects of 3D printing are being in-
vestigated, including flexibility (Dong et al. 2016),
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customization (Sethuraman et al. 2018), retail (Chen
et al. 2017, Arbabian and Wagner 2020), and spare-
part manufacturing (Song and Zhang 2020). We grow
this literature by studying the self-replication busi-
ness model inspired and enabled by 3D printing.

3. Base Model
Following the canonical innovation-diffusion litera-
ture (Ho et al. 2002, Kumar and Swaminathan 2003,
Ho et al. 2011, Shen et al. 2011, 2014), we consider a
continuous-time continuous-quantity model.2 Sup-
pose a firm develops an innovative good that can only
be produced through self-replication, and at time zero
when the good is introduced to market, there are IL > 0
units of initial launch inventory. The good can be sold
from time zero to time T, which represents its max-
imum life cycle. The good’s replication rate is r,
meaning a unit of the good in a unit time can produce
up to r units of itself. The cost to produce (replicate) a
unit of the good is c. The retail price of the good isfixed
atπ. We denote the inventory level at time t by I(t) and
the inventory holding cost per unit good-time by h. At
time T, we assume that all remaining inventory is
discardedwithout loss of generality (it is obvious that
assuming any salvage value below c does not change
the optimal policies).

We denote the total market size for the good by m,
namely at time 0, m consumers are potentially inter-
ested in the good. The classical innovation-diffusion
model is an ordinary differential equation (ODE)
D′(t) � [α + βD(t)/m][m −D(t)]whereD(t)denotes the
cumulative demand at t—namely, the total number
of consumers thus far havingwanted to buy the good.
The parameter α is called the coefficient of innova-
tion, which captures the rate at which potential cus-
tomers discover the good by themselves. The model
states that new demand (D′(t)) is generated as a per-
centage (α + βD(t)/m) of the remaining market size
(m −D(t)). The parameter β is called the coefficient
of imitation, which captures the rate at which “imi-
tators” are influenced by existing customers into
wanting the good—namely, word-of-mouth. Themodel
yields an S-shaped demand curve, which starts slow,
accelerates as customers increasingly generate word-of-
mouth, but eventually slows down and tapers as the
market becomes saturated. Ho et al. (2002) and Kumar
and Swaminathan (2003) propose a revised model
D′(t) � [α + βS(t)/m][m −D(t)], where S(t) denotes the
cumulative sales at time t, by recognizing that when
production is constrained, demand may not equal
sales, and it should be cumulative sales rather than
demand that generate word-of-mouth. Although we
adopt this demand-model formulation, we make a
further observation that the word-of-mouth effect
may be the strongest immediately after purchase
and diminishes over time. Therefore, in our model,

we let S(t) denote the adjusted (rather than actual)
cumulative sales to account for diminishing word-of-
mouth; the details of the adjustment will be elabo-
rated on later.
The firm’s objective is to maximize the total dis-

counted profit by controlling instantaneous produc-
tion rate p(t) and sales rate s(t) subject to constraints.
We assume π > c and r > ρ, where ρ ≥ 0 is the con-
tinuous discounting factor, to rule out uninteresting
cases where replication is obviously never optimal. In
other words, the firm decides how many units of the
good in the inventory are used for replication, how
many units are delivered to satisfy demand, and how
many units to simply keep in the inventory. In the
base model, we assume that all unmet demand is lost.
The firm faces an optimal control problem, with
control variables p(t) and s(t) and state variables
D(t),S(t), and I(t):

max
p t( ),s t( )

∫ T

0
πs t( ) − cp t( ) − hI t( )[ ]

e−ρt dt

s.t. D′ t( ) � d t( ) �. α + βS t( )/m[ ]
m −D t( )[ ],

S′ t( ) � s t( ) − wS t( ), I′ t( ) � p t( ) − s t( ),
0 ≤ p t( ) ≤ rI t( ), 0 ≤ s t( ) ≤ d t( ), I T( ) ≥ 0,
D 0( ) � S 0( ) � 0, I 0( ) � IL > 0. (1)

We would first like to explain the constraint S′(t) �
s(t) − wS(t). Solving this ODE under the boundary
condition S(t) � 0 yields S(t) � ∫ t

0 e
−w(t−u)s(u)du. There-

fore, S(t) is the discounted integration of past sales
rateswith continuous discounting factorw ≥ 0, which
we referred to as the adjusted cumulative sales. When
used in the innovation-diffusion equation D′(t) �
[α + βS(t)/m][m −D(t)], the adjusted cumulative sales
capture the effect that distant past sales generate
less word-of-mouth than more recent past sales. The
parameter w captures the diminishing rate; in par-
ticular, when w � 0, S(t) � ∫ t

0 s(u)du becomes the
cumulative sales. Therefore, our model is an exten-
sion of that of Ho et al. (2002) and Kumar and
Swaminathan (2003) to capture diminishing word-
of-mouth. Note that S(t) is not the actual cumulative
sales (which would be a nondiscounted integration of
past sales rates); in particular, the latter never de-
creases over time, whereas the former may decrease
(albeit never negative). In Section 4.1, we investigate a
similar effect of sales intensity and find it to behave
qualitatively similarly.
We further elaborate on three more constraints.

First, p(t) ≤ rI(t) captures the self-replication charac-
teristic that one’s inventory limits its production ca-
pacity. Second, s(t) ≤ d(t) reflects the lost-sales as-
sumption (see the discussion at the beginning of this
section): Because past unmet demands have been lost,
one can only satisfy current demand. Also, because s(t)
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is the instantaneous sales rate, while I(t) is the
available inventory level, s(t) is not directly con-
strained by I(t). As long as I(t) > 0, any arbitrarily
large s(t) is allowed by the inventory at the instant t.
Finally, one may expect a nonnegative inventory
constraint I(t) ≥ 0, t ≤ T. However, note that for a
self-replicating good, whenever the inventory is de-
pleted (I(t) � 0), production is no longer possible
(0 ≤ p(t) ≤ rI(t) � 0), and the inventory cannot in-
crease henceforth. This unique property means that a
nonnegative ending inventory (I(T) ≥ 0) also guar-
antees a general nonnegative inventory (I(t) ≥ 0, t ≤ T).
Being able to replace the pure-state constraint I(t) ≥ 0
a by a terminal constraint I(T) ≥ 0 greatly simplifies
the optimal control problem.

An assumption implied by the formulation is that
after replicating itself, a unit of the good remains in
the original state and can be sold as new. This is
clearly not true in practice, but one can easily adjust
the replication rate parameter to account forwear. For
example, suppose a 3D printer can print a printer kit
each day and will wear out after printing 100 kits.
Mathematically, it is equivalent to assuming that a 3D
printer can print 99/100 of a printer kit each day, but
remains brand new after printing 99 kits (essentially
replacing itself with one of its “offsprings”). In a
continuous model, this logic can be applied in real
time—that is, the worn-out printers are replenished
by some of their offsprings instantaneously.

We apply standard Pontryagin’s maximum prin-
ciple to Problem (1). The details are relegated to the
appendix. We then solve the problem based on the
principle in multiple steps. All nonstraightforward
proofs are in the appendix. An immediate result from
the analysis is that the optimal control for Problem (1)
is bang-bang; namely, the optimal p(t) is either zero
or rI(t), and the optimal s(t) is either zero or d(t).
As such, we will simply use “off” and “on” to refer
to these specific levels, respectively. We first show
two properties.

Proposition 1. After production is switched on, it is never
optimal to switch it off (until T or inventory depletion).

Proposition 2. Under the optimal policy, if (r − ρ)π >
cr + h, then the product life cycle will last until T (i.e.,
I(t) > 0, ∀t < T), regardless of how large T is; if (r − ρ)π <
cr + h, then the product life cycle will be cut short (i.e.,
I(t) � 0, τ ≤ t ≤ T, ∃τ < T) for sufficiently large T.

Proposition 1 characterizes the optimal production
policy structure. Proposition 2 further reveals an
important condition that defines two fundamentally
different parameter domains. When (r − ρ)π > cr + h,
which we refer to as the Strong Replicability regime, for
reasons that will become clear later, it is optimal to
keep the inventory positive (by maximizing production

and/or curbing sales) and stay in business for arbitrarily
large T. On the other hand, when (r − ρ)π < cr + h,
which we refer to as the Weak Replicability regime, it
may be optimal to sell out the inventory and end the
product life cycle prematurely before T.
To understand the intuitive meaning of the strong

replicability condition (r − ρ)π > cr + h, consider the
firm with one unit of the good-facing ample demand.
The firm can sell the good now and earn revenue π.
Alternatively, thefirmmay let the good replicate itself
for a small time interval δ. The benefit of doing so is
that after δ, the firm will be able to sell 1 + rδ units of
the good and earn π(1 + rδ). There are costs though:
Replication itself costs crδ; holding the good for δ for
replication incurs inventory cost hδ (omitting higher-
order terms); and, finally, earning the revenue δ later
incurs discounting cost ρπδ (omitting higher-order
terms). By requiring that the benefit of replication
outweighs the costs, we have

π 1 + rδ( ) − crδ − hδ − ρπδ > π ⇒ r − ρ
( )

π > cr + h,

(2)
thus recovering the Strong Replicability condition in
Proposition 2. Therefore, the interpretation of Strong
Replicability is that replication and selling later is
more lucrative than immediate sales. It is worth
pointing out that this statement is stronger than
“replication is profitable,”whichmeans that the value
created by replication outweighs the direct cost of
replication, or π > c, but does not account for indirect
costs due to holding back sales. On the other hand,
Weak Replicability π < (cr + h)/(r − ρ) means that, if
possible, the firm would sell the good immediately
rather than using it for replication and selling it later.
Note that Weak Replicability does not preclude
profitable replication; that is, c < π < (cr + h)/(r − ρ)
is possible.
The Strong and Weak Replicability insights allow

us to show the next two theorems, which completely
characterize the optimal production and sales policies
in the two regimes.

Theorem 1 (Strong Replicability). Assume (r − ρ)π >
cr + h. Let I be such a level of IL that always keeping
production and sales on leads to inventory depletion at
exactly T. Let I be such a level of IL that always keeping
production off and sales on leads to inventory depletion at
exactly T. Clearly, I < I.
a. When IL < I, it is optimal to always keep production

on, and switch and keep sales on at such a time that the
inventory is depleted exactly at T.
b. When I < IL < I, it is optimal to always keep sales on,

and switch and keep production on at such a time that the
inventory is depleted exactly at T.
c. When IL > I, it is optimal to always keep sales on and

production off, and the inventory is not depleted at T.
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Corollary 1. Assume (r − ρ)π > cr + h. The optimal pro-
duction (sales) switch-on time increases (decreases) in the
replication rate r.

As we discussed after Proposition 2, Strong Rep-
licability means that replication and selling later is
more lucrative than immediate sales. For this reason,
the firm should postpone sales despite lost revenues
tomaximize production, as long as the built inventory
will eventually be sold. Therefore, the optimal policy
is generally to always keep production on, and ini-
tially hold off sales to be switched on at such a time
that the inventory is depleted exactly at T (case (a)
of Theorem 1, illustrated by Figure 3(a)), and the
optimal production (sales) switch-on time increases
(decreases) in the replication rate. Unless if the launch
inventory IL is sufficiently large that always keep-
ing production on is not necessary (will lead to left-
over inventory at T), the optimal policy is to always
keep sales on, and initially hold off production to
be switched on at such a time that the inventory is
depleted exactly at T (case (b) of Theorem 1, illus-
trated by Figure 3(b)). In the extreme and unlikely
case where the launch inventory IL is so large that it
cannot be sold through T, production is never needed
(case (c) of Theorem 1, not illustrated).

Although closed-form expressions are unavailable
due to Problem (1)’s complexity, Theorem 1 com-
pletely characterizes the unique optimal production
and sales policies, and the optimal time to switch on
production/sales can be easily found through a one-
dimensional search with linear computational com-
plexity. Corollary 1 further characterizes the optimal
switch-on times’ sensitivity to the replication rate.

(All figures in this paper are, however, directly eval-
uated from the original problems without assuming
any structure, in order to verify the theoretical results.)
To summarize, under Strong Replicability, the firm

should prioritize the future over the present: Repli-
cation is kept on as long as future demand justifies
it, sales are postponed when getting in the way of
maximizing production, and the inventory always
lasts through the entire product life cycle (as pre-
dicted by Proposition 2).

Theorem 2 (Weak Replicability). Assume (r − ρ)π < cr + h.
Define the maximum production interval

Δ�. − ln 1 − r π − c( )/h[ ]/r if ρ � 0,
− ln 1 − r ln ρπ + h

( ) − ln ρc + h
( )[ ]

/ρ
{ }

/r if ρ > 0.

{

(3)
Let Ǐ be such a level of IL that always keeping produc-
tion and sales on leads to inventory depletion at exactly
min(Δ,T). For T ≥ Δ, let Î be such a level of IL that always
keeping sales on and switching production on at T − Δ
leads to inventory depletion at exactly T. Let I be such a
level of IL that always keeping production off and sales on
leads to inventory depletion at exactly T.Clearly, Ǐ < Î < I.
a. When IL < Ǐ, it is optimal to always keep production

and sales on, and the inventory is depleted beforemin(Δ,T).
b. When T ≥ Δ and Ǐ < IL < Î, it is optimal to always

keep sales on, and switch and keep production on at such a
time that production lasts for exactly Δ until inven-
tory depletion.
c. When T ≥ Δ and Î < IL < I, or when T < Δ and

Ǐ < IL < I, it is optimal to always keep sales on, and switch
production on at such a time later thanmax(T − Δ, 0) that

Figure 3. (Color online) Optimal Policies of Problem (1) Under Strong Replicability

Notes. These examples are generated with m � 100, π � 2.3, c � 2, h � 0.2, r � 2, α � 0.1, β � 1, ρ � 0.1, w � 0.25, and T � 10 (discretized
into 1,000 periods). Strong Replicability holds: (r − ρ)π � 4.37 > cr + h � 4.2. (a) IL = 1. (b) IL = 25.

Hu and Sun: Managing Self-Replicating Innovative Goods
6 Management Science, Articles in Advance, pp. 1–21, © 2021 INFORMS



production lasts shorter thanmin(Δ,T) and the inventory
is depleted exactly at T.

d. When IL > I, it is optimal to always keep production
off and sales on, and the inventory is not depleted at T.

Corollary 2. Assume (r − ρ)π < cr + h. The maximum
production interval Δ defined in (3) increases in the rep-
lication rate r and the retail price π, and decreases in the
production cost c and inventory holding cost h.

Opposite to Theorem 1, Weak Replicability means
that immediate sales are more lucrative than repli-
cation and selling later. For this reason, the firm
should always keep sales on, even if the inventorywill
be depleted before Twith all potential future demand
lost, thus the optimal sales policy in Theorem 2. The
more interesting question is whether replication may
ever be optimal, and, if so, when. Although inventory
that can be sold immediately should not be used for
replication, replication using leftover inventory after
satisfying all demand may still be profitable, given
that π > c. However, because all demand is already
being satisfied with existing inventory, additional
units produced through replication are only to be sold
after existing inventory is depleted, leading to in-
ventory cost being accumulated over the total pro-
duction interval. This intuition suggests that, despite
Weak Replicability, replication may still happen to-
ward the end of the product life cycle, but should
never last longer than a maximum interval when the
accumulated inventory cost exactly offsets the profit
margin. Theorem 2 formalizes this intuition and de-
rives the closed-form expression for the maximum

production interval Δ. Generally, with moderate
levels of launch inventory IL, production should be
switched on at such a time that it will last for exactlyΔ
before the inventory is depleted at τ ≤ T (case (b) of
Theorem 2, illustrated by Figure 4(b); the theoretical
prediction of Δ is verified numerically with very high
precision). Unless if the launch inventory is suffi-
ciently small, production simply cannot last for Δ,
even if it is always kept on (case (a) of Theorem 2,
illustrated by Figure 4(a)). Conversely, in the unlikely
extreme cases where the launch inventory is suffi-
ciently large, production does not need to last for Δ
(case (c) of Theorem 2, not illustrated) or does not
need to happen at all (case (d) of Theorem 2, not
illustrated) because all demand can already be sat-
isfied. Similar to Theorem 1, Theorem 2 completely
characterizes the unique optimal production and
sales policies, and the optimal time to switch on
production/sales can be easily found through a one-
dimensional search with linear computational com-
plexity. Corollary 2 further characterizes the maxi-
mum production interval Δ’s sensitivity to key model
parameters. Because the maximum production in-
terval is determined by the trade-off between the
profit from replication and the cost to hold inventory,
it is intuitive that Δ increases in r and π and decreases
in c and h.
We also want to distinguish certain cases of

Weak Replicability (Theorem 2, (b), (c), and (d) and
Figure 4(b)) from certain cases of Strong Replica-
bility (Theorem 1, (b) and (c) and Figure 3(b)). In both
groups of cases, sales are always on since the beginning,

Figure 4. (Color online) Optimal Policies of Problem (1) Under Weak Replicability

Notes. These examples are generated with m � 100, π � 2.1, c � 2, h � 0.2, r � 2, α � 0.1, β � 1, ρ � 0.1, w � 0.25, and T � 10 (discretized
into 1,000 periods, not fully plotted). Weak Replicability holds: (r − ρ)π � 3.99 < cr + h � 4.2. The theoretical prediction of the maximum
production interval is Δ � − ln{1 − r[ln(ρπ + h) − ln(ρc + h)]/ρ}/r ≈ 0.3405. The numerically observed maximum production interval in case (b)
is 0.3401. (a) IL = 2. (b) IL = 25.
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while production is switched on later or kept off. The
causes of the similar behavior are, however, distinct.
Under Weak Replicability, sales intrinsically take pri-
ority and, thus, are always on, while production is
generally switched on later; as a result, sales may not
last through the product life cycle. Under Strong Rep-
licability, production intrinsically takes priority and,
thus, is generally switched on before sales to make
sure that sales always last through the product life cycle;
the reason in these cases of Strong Replicability why
sales are switched on before production is the abun-
dant launch inventory, which means that production
does not need to be always on to meet all demand
through the product life cycle.

To summarize, under Weak Replicability, the firm
should prioritize the present over the future: Demand
is immediately satisfied as long as inventory is avail-
able, despite slowing down replication and causing
more future demand to be lost, and the inventory
generally does not last through the entire product life
cycle (as predicted by Proposition 2). Interestingly,
replication generally still occurs toward the end of
the product life cycle, but will never last longer than a
maximum interval.

Our analysis of the base model reveals several
crucial insights about the self-replication business
model. First, we show that the keep-or-sell trade-off
boils down to a simple, yet informative, Condition (2),
which compares the value of replication against not
only the replication cost, but also, crucially, the in-
ventory holding and discounting costs. In the Strong
Replicability regime, when (2) holds, a firm should
generally hold back sales, despite lost demand. This
finding is reminiscent of Kumar and Swaminathan’s
(2003) finding that a myopic policy of selling as much
as possible may not be optimal in capacitated inno-
vation diffusion and that a build-up policy is optimal
with lost sales. The driving forces are, however, not
the same. In their setting, holding back sales serves
two purposes: building up inventory and decelerat-
ing demand growth. In our self-replication setting,
holding back sales also serves a third purpose: ac-
celerating production. We also show that the optimal
time to switch on sales should balance life-cycle de-
mand and supply. These results provide a guideline
for producers of self-replicating innovative goods
in their capacity ramp-up and ramp-down decisions.
On the other hand, in contrast with Kumar and
Swaminathan (2003), who show in their setting with
lost sales that it is always optimal to build up inventory
before sales begin, we show in our self-replication
setting that sales should begin right away in the
Weak Replicability regime when (2) does not hold.
Interestingly, replication may still be optimal near
inventory depletion, although it would never last longer
than a maximum interval. This nonstraightforward

insight cautions firms that not all self-replicating in-
novative goods should prioritize replication over
sales, yet even those that do notmay still benefit from
limited replication near inventory depletion. This
insight is unique to self-replication and enriches our
understanding of capacitated innovation diffusion.
Lastly, we note that (2) is a local condition inde-

pendent of the demand process. It suggests that the
aforementioned insights should apply to a much
wider range of settings beyond our basemodel, which
are explored in Section 5.

4. Numerical Studies
4.1. Effect of Sales Intensity
In the Base Model (1), we capture diminishing word-
of-mouth by defining the adjusted cumulative sales.
In this section, we consider a similar effect of sales
intensity. The motivation is that, aside from the reg-
ular word-of-mouth generated by cumulative sales,
the sudden increase of a product’s sales also tends to
create a trend and generate word-of-mouth (espe-
cially in the age of social networking). To capture this
effect, we modify the classical demand-diffusion model
by including the sales intensity s(t) alongside the cu-
mulative sales S(t) to generate word-of-mouth:

D′ t( ) � d t( ) �. α + β1S t( ) + β2s t( )( )
/m

[ ]
m −D t( )[ ], (4)

where β1 and β2 are the corresponding coefficients of
imitation for the cumulative sales and sales intensity,
respectively. With β2 � 0, the diffusion model is re-
duced to that in Ho et al. (2002) and Kumar and
Swaminathan (2003). Analyzing this model is chal-
lenging, and, thus, we resort to numerical experi-
ments. Figures 5 and 6, respectively, illustrate the
optimal policies with Demand-Diffusion Model (4)
under Strong and Weak Replicability. One can see
that the optimal policies are qualitatively similar to
those of the base model (Figures 3 and 4), which is
unsurprising, considering that the effect of sales in-
tensity is similar to the effect of diminishing word-of-
mouth in that more recent sales generate more word-
of-mouth than those from the distant past.

4.2. Sensitivity Analysis
Most parameters in our model are exogenous, such as
the production cost, the inventory holding cost, the
rate of replication, the market size, and the dimin-
ishing rate of word-of-mouth. These parameters are
difficult to change. By contrast, the coefficient of in-
novation α and the coefficient of imitation β are more
easily manipulated. In particular, α can be increased
through conventional marketing efforts, such as run-
ning ads and commercials in media channels, whereas
β can be increased through social marketing efforts,
such as rewarding customers who share their expe-
riences in their social circles and referral bonuses.
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We numerically study the impact of changing α
and β to drive insights into marketing innovative
self-replicating goods.

Exhibit 5.8 in Lilien et al. (2017) lists estimated
coefficients of innovation and imitation for a range
of goods. Two cases most relevant to this paper are
camcorders (representing innovative electronics), with
α � 0.044 and β � 0.304, and hybrid corns (repre-
senting innovative agriculture), with α � 0.000 and
β � 0.789. The ranges of the parameters across all
products are 0 ≤ α ≤ 0.265 and 0 ≤ β ≤ 1.390. Based
on these estimates, we limit our numerical studies

within the range of 0 ≤ α ≤ 0.3 and 0 ≤ β ≤ 2 for
practical relevance.
We first investigate the case of Strong Replication

with limited launch inventory (which is more prac-
tically relevant than abundant launch inventory).
Recall that in this case production is always on, and
sales are switched on when there is enough inventory
to last through the entire product life cycle. Figure 7
illustrates the optimal time to switch on sales and total
lost sales for varying α and β. The general observation
is that the greater demand potential, the later sales
should be switched on and the more sales should be

Figure 5. (Color online) Optimal Policies with Sales Intensity Under Strong Replicability

Notes. These examples are generated with m � 100, π � 2.3, c � 2, h � 0.2, r � 2, α � 0.1, β1 � 1, β2 � 0.25, ρ � 0.1, w � 0.25, and T � 10
(discretized into 1,000 periods). Strong Replicability holds: (r − ρ)π � 4.37 > cr + h � 4.2. (a) IL = 1. (b) IL = 25.

Figure 6. (Color online) Optimal Policies with Sales Intensity Under Weak Replicability

Note. These examples are generated with m � 100, π � 2.1, c � 2, h � 0.2, r � 2, α � 0.1, β1 � 1, β2 � 0.25, ρ � 0.1, w � 0.25, and T � 10
(discretized into 1,000 periods). Weak Replicability holds: (r − ρ)π � 3.99 < cr + h � 4.2. (a) IL = 2. (b) IL = 25.
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given up. This observation can seem counterintuitive:
Facing greater demand potential, one may feel it is
instinctive to start meeting demand earlier. However,
the nature of self-replicating goods is such that giving
up earlier demands is necessary to preserve inventory
for greater production to satisfy later demands. The
numerical study reaffirms the need to resist the urge
to switch on sales too early, which would only lead to
more severe shortage later.

Figure 8, which illustrates the optimal total profits
forvaryingα and βunder StrongReplicability, shows a

more interesting pattern. Increasing β through so-
cial marketing efforts unsurprisingly improves total
profits. However, increasing α through conventional
marketing efforts, especially when combined with
high β values, may backfire and reduce total profits.
The contrast highlights fundamentally different de-
mand growth patterns driven by conventional and
social marketing efforts.
Consider the innovation-diffusion equation D′(t) �

[α + βS(t)/m)][m −D(t)]. First, we consider α 
 β, so
that the demand is mostly driven by conventional
marketing efforts. In this case, the demand growth is
the fastest at product launch and follows an expo-
nential decay. Then, we consider α � β so that the
demand is mostly driven by social marketing efforts.
In this case, the demand growth is minimum before
sales are switched on (because S(t) ≡ 0), and after
sales are switched on, the demand growth initially
increases exponentially and then flattens out before
finally decaying exponentially, forming the classic
S-shaped innovation-diffusion curve. On the other
hand, recall that the self-replication production mode
is characterized by an initial supply-shortage period
followed by an exponential supply growth. It is easy
to see that the early gradual exponential demand
growth of social marketing is a good match with the
early gradual exponential supply growth of self-
replication. It means that, even with aggressive so-
cial marketing efforts, the lost sales are relatively
minor. On the other hand, aggressive conventional
marketing efforts mean that the highest initial de-
mand growth is met with the most severe initial
supply shortage, and significant sales lost will ensue.
This insight explains why in Figure 8, large α values

Figure 7. (Color online) Optimal Time to Switch on Sales and Total Lost Sales Under Strong Replicability

Notes. This example is generated with IL � 1, m � 100, π � 2.3, c � 2, h � 0.2, r � 2, ρ � 0.1, w � 0.25, and T � 10 (discretized into 1,000
periods). Strong Replicability holds. (a) Time to switch on sales. (b) Total lost sales.

Figure 8. (Color online) Optimal Total Profits Under
Strong Replicability

Notes. This example is generatedwith IL � 1, m � 100, π � 2.3, c � 2,
h � 0.2, r � 2, ρ � 0.1, w � 0.25, and T � 10 (discretized into 1,000
periods). Strong Replicability holds.
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can backfire and reduce total profits, whereas large β
values do not. The explanation is also consistent
with Figure 7(b), which shows that the total lost sales
increase dramatically for larger α values, but only
modestly for larger β values.

Next, we plot the optimal total profits and lost
sales for varying α and β under Weak Replicability.
Figure 9(b) resembles Figure 7(b). Figure 9(a), how-
ever, differs from Figure 8 in that under Weak Rep-
lication, increasing α no longer reduces total profits.
The reason is that, in this case, the firm prioritizes
sales over replication. As a result, the inventory tends
to be depleted before neither the demand nor the
production enters the exponential growth stage, mean-
ing that the effect that causes conventional marketing
efforts to backfire under Strong Replicability is absent
under Weak Replicability.

To summarize, the sensitivity analysis reveals an
interesting insight: Under Strong Replicability, social
marketing that boosts the word-of-mouth effect is a
particularly well-suited marketing strategy for self-
replicating innovative goods, whereas conventional
marketing strategies should be used conservatively
and cautiously. The insight matches our key moti-
vating examples—the Prusa 3D printers and the Glass
Gem corns—which are self-replicating innovative
goods promoted almost exclusively through social
marketing strategies.

5. Extensions
In this section, we show how our main insights from
the base model remain robust and help characterize
optimal policies in a range of extensions. These ex-
tensions are technically more complicated to analyze.

For brevity, we will forgo full analyses and focus on
how the insights from the base model can inform
optimal policies in these extensions.

5.1. Backlogged Demand
Our basemodel assumes lost sales. In linewithKumar
and Swaminathan (2003) and Shen et al. (2011, 2014),
we consider backlogged demand in this section. In
particular, we adopt the partial-backlog model of
Shen et al. (2014) and assume that a γ ∈ [0, 1] fraction
of unmet demand is backlogged and 1 − γ is lost.
Backlogged demand incurs backlog cost b per unit
good-time. Revenue from backlogged demand is earned
upon delivery of the good. We assume that orders are
filled first-in-first-out—namely, backlogged demand
is satisfied before new demand, following prevalent
business practices including at Prusa Research. To
model such a system, we need an additional state
variable B(t) to capture the cumulative backlog at
time t. Let 1B(t) �. 1 indicate B(t) > 0, and 1B(t) �. 0 in-
dicate otherwise.
Note that for our self-replicating product, once the

inventory is depleted, no further production or sales
is possible. In such a case, the firm should announce
the end of life for the product and no longer be pe-
nalized for the backlog. In other words, allowing a
backlog necessitates formally cutting short the prod-
uct life cycle at inventory depletion. (It was not nec-
essary in the base model because without a backlog,
the firm incurs no cost after inventory depletion.)
We present the modified model below, where τ rep-
resents the end of the product life cycle. Note that the
definition of τ depends on the property that once I(t)
reaches zero, it can never become positive again.

Figure 9. (Color online) Total Profits and Total Lost Sales Under Weak Replicability

Notes. This example is generated with IL � 1, m � 100, π � 2.1, c � 2, h � 0.2, r � 2, ρ � 0.1, w � 0.25, and T � 10 (discretized into 1,000
periods). Weak Replicability holds. (a) Total profits. (b) Total lost sales.
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The fact that the product life cycle ends whenever the
inventory is depleted also eliminates the need for both
the pure state constraint I(t) ≥ 0 and the terminal
condition I(T) ≥ 0.

max
p ·( ),s ·( )

∫ τ

0
πs t( ) − cp t( ) − hI t( ) − bB t( )[ ]

e−ρt dt

s.t. D′ t( ) � d t( ) �. α + βS t( )/m[ ]
m −D t( )[ ],

S′ t( ) � s t( ) − wS t( ), I′ t( ) � p t( ) − s t( ),
B′ t( ) � γ d t( ) − s t( )[ ] − 1B t( ) 1 − γ

( )
s t( ),

0 ≤ p t( ) ≤ rI t( ), s t( ) ≥ 0, s t( ) 1 − 1B t( )
[ ] ≤ d t( ),

D 0( ) � S 0( ) � B 0( ) � 0, I 0( ) � IL > 0,
τ�. min T, sup t|I t( ) > 0{ }( )

. (5)
Note the differential equation governing backlogged
demand: B′(t) � γ[d(t) − s(t)] − 1B(t)(1 − γ)s(t). When
there is no backlog (B(t) � 0), the equation becomes
B′(t) � γ[d(t) − s(t)] because any unmet demand is
partially backlogged. (In this case, the constraint
s(t)[1 − 1B(t)] ≤ d(t) becomes s(t) ≤ d(t), which implies
B(t) ≥ 0.) When there is backlog (B(t) > 0), the equa-
tion becomes B′(t) � γd(t) − s(t). Recall that back-
logged demand is satisfied before new demand.
Therefore, all sales go toward reducing backlog,
while a γ fraction of new demand adds to backlog.

Strong Replicability from Section 3 states that the
value of replication outweighs the production, in-
ventory holding, and discounting costs. In the back-
log model, there is an additional backlog cost to be
weighed against, and Strong Replicability is defined by

π 1 + rδ( ) − crδ − hδ − ρπδ − γbδ > π

⇒ r − ρ
( )

π > cr + h + γb. (6)
Therefore, with Condition (2) replaced by (6), The-
orems 1 and 2 fully characterize the optimal poli-
cies with partial backlog. This observation contrasts
Kumar and Swaminathan (2003), who show in their
setting that a build-up policy is not always optimal
with backlog.

Figure 10 illustrates Theorem 1’s case (a) with
partial backlog and compares interestingly with
Figure 3(a). The backlog model’s optimal policies
share a similar overall structure: Sales are held back in
the beginning to maximize production; once enough
inventory is built so that all future demand can be
satisfied, sales are switched on, and the inventory is
depleted at exactly T. However, in Figure 10, as sales
are held back in the beginning, a backlog is accu-
mulated. As a result, a larger inventory needs to be
built compared with Figure 3 before sales can be
switched on, at which time a chunk of the inventory is
used to instantly satisfy the entire backlog, leading
to a drop of I(t) in the amount of B(t), a drop of B(t)
to zero, and an infinite spike of s(t)—a policy known

technically as impulse control (Sethi 2019). (In dis-
cretized numerical experiments, the spike of s(t) is
large, but finite; it is truncated in Figure 10.) No de-
mand is ever backlogged past this point. We omit il-
lustrating Theorem 1’s cases (b) and (c) and Theorem 2,
because with abundant launch inventory and under
Weak Replicability where immediate sales have priority
over production, no demand will ever be backlogged.
The analysis and numerical example show that,

under Strong Replicability, when demand may be
backlogged, the firm should resist the urge to reduce
the ever-growing backlog and, instead, focus on
maximizing replication and only satisfy all backlog at
once when enough inventory (production capacity) is
built for the product’s remaining life cycle.

5.2. Liquidity Constraint
In our base model, to focus on the most fundamental
insights of self-replicating goods, we only considered
the self-replication production constraint. Indeed, a
corporate giant such as Monsanto producing an in-
novative agricultural good through self-replication
faces few other production constraints. Yet, for a
startup with limited financial resources such as Prusa
Research, the firm faces the liquidity constraint—
namely, that it need to carefully manage their cash
flows to stay solvent at all times.
In this section, we modify the Base Model (1) to

incorporate the liquidity constraint as follows. Sup-
pose at time zero, the firm has an initial cash level
(or a line of credit) L0. Production and inventory costs
deplete the cash deposit, whereas sales replenish it,

Figure 10. (Color online) Optimal Policies of Problem (5)
Under Strong Replicability

Notes. This example is generatedwithm � 100,π � 2.5, c � 2, h � 0.2,
b � 0.5, r � 2, α � 0.1, β � 1, ρ � 0.1, γ � 0.8, w � 0.25, and T � 10
(discretized into 1,000 periods). Strong Replicability holds: (r − ρ)π �
4.75 > cr + h + γb � 4.6.

Hu and Sun: Managing Self-Replicating Innovative Goods
12 Management Science, Articles in Advance, pp. 1–21, © 2021 INFORMS



leading to cash level L(t) at time t. We require that at
any time, the cash level cannot be negative.3 The
problem formulation is

max
p t( ),s t( )

∫ T

0
πs t( ) − cp t( ) − hI t( )[ ]

e−ρt dt

s.t. D′ t( ) � d t( ) �. α + βS t( )/m[ ]
m −D t( )[ ],

S′ t( ) � s t( ) − wS t( ), I′ t( ) � p t( ) − s t( ),
L′ t( ) � πs t( ) − cp t( ) − hI t( ),
0 ≤ p t( ) ≤ rI t( ), 0 ≤ s t( ) ≤ d t( ),
L t( ) ≥ 0, I T( ) ≥ 0,D 0( ) � S 0( ) � 0,
I 0( ) � IL > 0,L 0( ) � L0 ≥ 0. (7)

The liquidity constraint is irrelevant in most cases
under Weak Replicability because sales take priority
over production. Unless there is a huge launch in-
ventory, such that the inventory cost drains cash
faster than sales revenue replenishes it, the liquidity
constraint will never become binding. Henceforth,
we focus on Strong Replicability, where replication
takes priority over sales, and the cash level may dip
significantly during the early production ramp-up
stage. Figure 11 illustrates the optimal policies un-
der Strong Replicability and the liquidity constraint.
The two cases in Figure 11, respectively, correspond
to those of Figure 3, between which a comparison can
be drawn.

One can see that the basic patterns of Figure 3 are
preserved in Figure 11: In case (a), with a low launch
inventory, sales are initially held back to maximize
production; in case (b), with a higher launch inven-
tory, sales are always on, and production does not
need to be switched on initially; and in both cases,

the inventory is depleted at T. This shows that the
liquidity constraint does not alter the fundamental
Strong Replicability insight and the basic structural
result of Theorem 1.
There is, however, an astonishing observation from

Figure 11: When the liquidity constraint is binding
(the firm runs dry of cash), the optimal policy is to
scale back sales to a level that provides just enough
revenue to cover the cost of inventory and produc-
tion; as such, the cash position remains at zero for a
period. This observation is counterintuitive. When a
firm runs out of cash, common sense may dictate that
sales be maximized, so as to resolve the cash crisis.
Nonetheless, this observation can actually be explained
with the Strong Replicability insight.
Recall that Strong Replicability requires produc-

tion and inventory-building to be maximized until
enough inventory is built. When a firm runs out of
cash, production is constrained and needs to be fi-
nanced by sales. However, sales also drain inventory,
which tightens the replication constraint on pro-
duction. The optimal policy to maximize production,
therefore, should be to relieve the cash shortage
without limiting replication—in other words, to sell
just enough inventory to finance production and keep
the cash level at zero, until enough inventory is built
for the remainder of the product life cycle, when
sales can be thereafter maximized, as is observed in
Figure 11. This insight may prove instructive for in-
novative startups, such as Prusa Research.

5.3. Stochastic Innovation Diffusion
The majority of the capacitated innovation-diffusion
literature, as well as our base model, assume no

Figure 11. (Color online) Optimal Policies of Problem (7) Under Strong Replicability

Notes. These examples are generated with m � 100, π � 2.3, c � 2, h � 0.2, r � 2, α � 0.1, β � 1, ρ � 0.1, w � 0.25, and T � 10 a(discretized
into 1,000 periods). Strong Replicability holds: (r − ρ)π � 4.37 > cr + h � 4.2. (a) IL = 1, L0 = 12. (b) IL = 10, L0 = 0.
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uncertainty for analytical tractability. However, real-
life markets can be highly uncertain, especially those
for innovative goods, which motivate this paper.
Among the three market parameters in our models,
arguably, the market size m and the coefficient of
innovation α are relatively easy to estimate through
established marketing techniques, whereas the coef-
ficient of imitation β, which is deeply rooted in human
behavior, may be the most elusive parameter to es-
timate. In this section, we investigate amodel where β
is a random variable.

We adopt the approach of Kanniainen et al. (2011)
and Shen et al. (2014) and multiply β by a random
noise X(t) ∼ Uniform[0, 2], which is independently
and identically distributed over time. In other words,
the realized coefficient of imitation may be as low as
zero or as high as 2β, with the average being β. The
modified problem formulation is

max
p t( ),s t( )

∫ T

0
πs t( ) − cp t( ) − hI t( )[ ]

e−ρt dt

s.t. D′ t( ) � d t( ) �. α + βX t( )S t( )/m[ ]
m −D t( )[ ],

S′ t( ) � s t( ) − wS t( ), I′ t( ) � p t( ) − s t( ),
0 ≤ p t( ) ≤ rI t( ), 0 ≤ s t( ) ≤ d t( ), I T( ) ≥ 0,
X t( ) ∼ Uniform 0, 2[ ],
D 0( ) � S 0( ) � 0, I 0( ) � IL > 0.

Wenote that this formulation is, in fact, technically ill-
defined. The demand rate d(t) cannot be adapted
to a finite-variation process and, thus, is not a semi-
martingale. This means that d(t) is nonintegrable in
common (e.g., Itô or Stratonovich) stochastic calcu-
lus variations. However, once we discretize the de-
cision horizon to numerically evaluate the model, the
problem disappears. Because of the model’s non-
integrality, its behavior and the heuristics’ perfor-
mances do not converge as the interval approaches
zero. As such, we fix the discretization period to be
1,000 and make horizontal comparisons of differ-
ent heuristics.

We will focus on the most relevant case—Strong
Replicability with a small launch inventory—namely,
case (a) of Theorem 1 and Figure 3, where the key
decision is when to switch on sales. We will re-
strict our numerical considerations among bang-bang
policies—namely, to satisfy either all or no demand.
Under stochastic innovation diffusion, finding the
optimal policy requires solving a complex stochastic
dynamic program (SDP), which is computationally
challenging. Instead, we consider an oracle—who
knows the entire realized coefficient of imitation tra-
jectory and chooses the optimal policy based on a
deterministic model—as a benchmark, which is much
easier to compute. Clearly, such an oracle will always

outperform the optimal SDP solution, and a heuristic’s
performance loss against the oracle (known as the
regret) is an upper bound of its performance loss
against the optimal SDP solution. Note that the oracle
does not exist in real life and is only conceived for
benchmarking purposes.
We propose two heuristics. Thefirst, whichwe refer

to as the deterministic heuristic, or H1, is that the
firm simply ignores all uncertainty (replacing all X(t)
with one) at time zero, finds the “optimal” time to
switch on sales based on the deterministic model,
and executes the policy in the uncertain environment.
The computational complexity of H1 is the same as
Theorem 1—namely, linear. A potential issuewithH1
is that it does not dynamically readjust the strategy.
Therefore, we propose another heuristic, which we
refer to as the rolling deterministic heuristic, or H2.
The heuristic is such that in every period, the firm
takes the realized cumulative demand and sales as
given, ignores all future uncertainty (replacing all
future X(t)with one), finds the optimal time to switch
on sales based on the deterministic model for the
remaining periods, and executes the policy for the
current period. In other words, H2 involves running
H1 in every period for all remaining periods. As such,
H2 has a quadratic computational complexity. We
extensively evaluate the average performance losses
(regrets) of H1 and H2 against the oracle over 1,000
simulation trials for a wide range of parameter com-
binations and have observed highly consistent pat-
terns. The percentage regrets range from insignificant
(e.g., 3%) to very significant (e.g., 50%) depending on
parameters. Percentage regrets tend to be high when
the profit margin is low (e.g., with a smaller π), which
is understandable because the oracle’s profit, the
basis for the percentage regret, becomes smaller. By
comparison, the absolute regret varies much less
when the profit margin varies. Some representative
examples are provided in Table 1.
The most surprising observation, however, is that

H2 consistently performs worse than H1 with at least
20% larger regrets. Why does the static heuristic H1
outperform the dynamic heuristic H2? Recall that H1
makes a single decision in the first period, ignoring all
future uncertainty.H2 seemingly remediesH1’s static
nature by repeatedly performing H1 in each period
based on the realized cumulative demand and sales.
However, despite being apparently dynamic, H2 is
not forward-looking, in the sense that the decision
at each period fails to account for future decisions.
For example, H2’s first-period decision is identical to
H1—thus, also as bad as H1. In future periods, H2
continues to introduce noises based on the realized
uncertainty and past decisions. As a result, the dy-
namic H2 is actually noisier than the static H1 and is
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consistently outperformed by the latter. The numer-
ical experiments show that practitioners can simply
use the static deterministic heuristic H1 to address
uncertainty, which performs particularly well for
high-margin goods, whereas dynamically adjusting
the heuristic without being forward-looking actually
backfires and worsens the performance. The useful-
ness of the deterministic heuristic is consistent with
the findings of Shen et al. (2014).

5.4. Launch Inventory Decision
The base model assumes an exogenous launch in-
ventory IL. This assumption is equivalent to assuming
that demand diffusion begins at product launch (time
zero)—an appropriate assumption when the firm is
not the only player in themarket, such as in the case of
Prusa Research. To see the equivalence, consider the
following scenario. Assume the firm has inventory IL
at time zero, and recall that the only way to increase
inventory is by self-replication. Should the firm want
to have more launch inventory, it needs to postpone
the product launch to allow replication. However, if
the firm is not the only player in the market, its po-
tential customers will still be gradually lost to com-
peting firms, and the product will still be obsolete at
time T, despite the postponed launch. Such a scenario
is no different from the firm holding back sales and
maximizing production after a product launch at time
zero as in Theorem 1’s case (a). In this sense, the firm
has no real ability to choose the product launch time
or, equivalently, the launch inventory.

However, if the innovative product faces no com-
petition, and demand diffusion does not begin until
the firm launches the product, such as the case of the
Glass Gem corn, the firm will have the option to
postpone the product launch and produce enough
launch inventory, and the product’s life cycle can still
last for T. The cost of doing so is that revenue will
be postponed and discounted. Because of the self-
replicating nature of the good, we still need to assume
an initial “seed” inventory I0 > 0 from the research

and development process. Let tL denote the product
launch time. The problem formulation is

max
tL≥0

−I0 cr + h( )
∫ tL

0
e r−ρ( )t dt + e−ρtL

[

× max
p t( ),s t( )

∫ T

0
πs t( ) − cp t( ) − hI t( )[ ]

e−ρt dt
]

s.t. D′ t( ) � d t( )�. α + βS t( )/m[ ]
m −D t( )[ ],

S′ t( ) � s t( ) − wS t( ), I′ t( ) � p t( ) − s t( ),
0 ≤ p t( ) ≤ rI t( ), 0 ≤ s t( ) ≤ d t( ), I T( ) ≥ 0,

D 0( ) � S 0( ) � 0, I 0( ) � I0ertL > 0.

In this formulation, the term −I0(cr + h) ∫ tL
0 e(r−ρ)t dt is

the production and inventory cost of the launch-
inventory preparation period tL. The subsequent
life-cycle value is discounted by e−ρtL due to the
postponement. In exchange, the launch inventory is
increased to I0ertL .
It is clear that under Weak Replicability, where

replication is not a priority, or under Strong Repli-
cability, butwith a sufficiently large seed inventory I0,
the firm should immediately launch the product.
Let us focus on the case of Strong Replicability and a
small seed inventory I0; more specifically, Theorem 1’s
case (a), shouldwe force tL � 0. In this case, should the
firm postpone the product launch to build more
launch inventory, and, if yes, by how long? The an-
swer is provided by the following proposition and
illustrated in Figure 12.

Proposition 3 (Launch Inventory). Assume (r − ρ)π >
cr + h, and I0 < I, which is defined as such a level of IL that
always keeping production and sales on leads to inventory
depletion at exactly T after the product launch. It is optimal
to postpone the product launch by tL � (ln I − ln I0)/r until
the launch inventory is IL � I and keep both production
and sales on after launch until inventory depletion at ex-
actly tL + T.

The proposition states that under Strong Replica-
bility and with a small seed inventory, it is optimal to

Table 1. Average Percentage Regrets of H1 and H2 Against the Oracle for Varying r and π

π

r � 2 r � 3

2.3 4.3 6.3 8.3 10.3 12.3 2.3 4.3 6.3 8.3 10.3 12.3

H1 (%) 13.87 4.88 3.87 3.49 3.29 3.17 17.26 9.39 6.91 6.02 5.57 5.29
H2 (%) 19.98 6.97 5.52 4.96 4.66 4.49 47.10 11.92 8.65 7.48 6.85 6.46
H2/H1 1.44 1.43 1.43 1.42 1.42 1.42 2.73 1.27 1.25 1.24 1.23 1.22

Notes. These examples are generated with m � 100, c � 2, h � 0.2, α � 0.1, β � 5, ρ � 0.1, T � 1
(discretized into 1, 000 periods), w � 0.25, and IL � 1 over 1,000 simulation trials. The horizon is
discretized into 100 periods. Strong Replicability holds for all cases.
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postpone the product launch so that sales are on right
after the launch and no demand is lost. Although it is
intuitive to avoid losing demand, it is nontrivial that
doing so is justified despite delayed and, thus, dis-
counted revenue. The explanation is, again, tied to
Strong Replicability, which states that the benefit of
growing inventory outweighs the production, in-
ventory holding, and discounting cost. This result is
potentially helpful for firms determining product
launch times for their exclusive innovations, such as

Native Seeds/SEARCH, which regretted that they
“did not grow out enough [Glass Gem corns]” before
launching the product (Lutz 2012).

5.5. Exogenous Demand
Our research problem is inspired by self-replicating
innovative goods, such as the Original Prusa i3 3D
printers and the Glass Gem corns. The challenge of
growing a small launch inventory to meet future
demand is particularly relevant in the early stages of
innovative goods; for mature self-replicating goods
with stable demands, such as regular wheat, there is
typically already sufficient inventory to sustain rep-
lication to meet the demands. This is why we adopt a
demand-diffusion model appropriate for early stages
of innovative goods. However, our key finding of
the Strong Replicability Condition (2) contains no
demand-model parameters, suggesting that the self-
replicating insights technically also apply to exoge-
nous (nondiffusion) demands. In this section, we
analyze self-replicating goods facing exogenous de-
mands, the simplest of which is stable demand. Con-
sider the following formulation with a stable demand
stream d:

max
p t( ),s t( )

∫ T

0
πs t( ) − cp t( ) − hI t( )[ ]

e−ρt dt

s.t. I′ t( ) � p t( ) − s t( ), 0 ≤ p t( ) ≤ rI t( ),
0 ≤ s t( ) ≤ d, I T( ) ≥ 0,
I 0( ) � IL > 0.

We focus on the most interesting case of Strong
Replicability with insufficient launch inventory to

Figure 12. (Color online) Optimal Launch Inventory Under
Strong Replicability

Notes. This example is generatedwith I0 � 1, m � 100, π � 2.3, c � 2,
h � 0.2, r � 2, α � 0.1, β � 1, ρ � 0.1, w � 0.25, and T � 10 (dis-
cretized into 1,000 periods). Strong Replicability holds: (r − ρ)π �
4.37 > cr + h � 4.2. The optimal launch time and inventory are tL �
1.0 and IL � 7.39, respectively.

Figure 13. (Color online) Optimal Policies with Exogenous Demands Under Strong Replicability

Notes. This example is generatedwith I0 � 1, m � 100, π � 2.3, c � 2, h � 0.2, r � 2, α � 0.1, β � 1, ρ � 0.1, w � 0.25, and T � 10 (discretized
into 1,000 periods). Strong Replicability holds: (r − ρ)π � 4.37 > cr + h � 4.2. (a) Stable demand d(t) = 10. (b) Seasonal demand d(t) = 5 + 10 ×
1{t≤ 2.5}∪ {5 < t≤ 7.5}.
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meet the stable demand through self-replication (the
insights for other cases similarly carry over). The next
proposition presents the optimal policies.

Proposition 4 (Stable Demand). Assume (r−ρ)π> cr+h
and rIL < d. It is optimal to always keep production on,
and switch and keep sales on at such a time ts < (ln d −
ln IL − ln r)/r that the inventory is depleted exactly at T;
limT→∞ ts � (ln d − ln IL − ln r)/r, limT→∞ I(ts) � d/r.

Figure 13(a) illustrates Proposition 4. Facing stable
demands, the firm should build (nearly) enough in-
ventory to meet all demand through replication,
while sustaining the inventory level, until the end-
of-life-cycle sell-off. In Figure 13(b), we numerically
evaluate the optimal policies for a highly seasonal
exogenous demand pattern. One can see that the basic
Strong Replicability insights still apply: Production
is always on; sales are initially held back and then
switched and kept on; and the inventory runs out
exactly at the end of the product life cycle. Admit-
tedly, it is less likely in practice that an innovative
self-replicating good with a small launch inventory
would already face a stable or exogenous demand
pattern. Nevertheless, the fact that our main insights
carry over and help characterize optimal policies
with exogenous demands speaks to their robustness
and usefulness.

6. Conclusion
Inspired by self-replicating 3D printers and innova-
tive agricultural and husbandry goods, we study
optimal production and sales policies for a manu-
facturer of self-replicating innovative goods. Such a
production system is operationally fascinating: The
inventory serves as the production facility and limits
the production capacity, and the firm faces the unique
keep-or-sell trade-off for each newly produced unit—
should it be sold to satisfy demand and stimulate
future demand, or should it be added to inventory to
increase production capacity?

We adopt the continuous-time optimal-control
framework and marry a self-replication model on the
production side to the canonical innovation-diffusion
model on the demand side. By analyzing the model,
we identify two regimes: the Strong Replicability re-
gime, where production takes priority over sales as
long as the produced goods will eventually be sold;
and the Weak Replicability regime, where sales have
priority over production and are never held back.
Following these insights, we fully characterize their
distinct optimal production and sales policies. Gen-
erally speaking, under Strong Replicability, sales are
initially held back to maximize production, and the
inventory is depleted exactly at the end of the product
life cycle, whereas under Weak Replicability, sales are
never held back, the inventorymay be depletedwithin

the product life cycle, and production only takes place
near inventory depletion.
These insights prove robust and helpful in several

extensions, including backlogged demand, liquidity
constraints, launch inventory decisions, and exoge-
nous demand. We also numerically evaluate the per-
formance of deterministic heuristics under stochastic
demand diffusion and under a seasonal exogenous
demand pattern. The insights and policies derived in
this paper are potentially instructive for manufac-
turers of innovative self-replicating goods. A firm
should first evaluate whether it resides in the Strong
or Weak Replicability regime and then apply the re-
spective priorities (production or sales) to derive ap-
propriate policies. The models can provide further
quantitative support. We also show that social mar-
keting strategies are particularly well-suited for self-
replicating innovative goods under Strong Replicability.
Our model assumes a fixed retail price. The as-

sumption is partly motivated by the fact that the
Prusa 3D printers are sold at fixed retail prices during
their primary life cycles. In general, pricing can be a
powerful lever to balance demand and supply in
innovation diffusion, as shown by Shen et al. (2011,
2014). On the other hand, dynamic pricing could
lead to strategic consumer behavior (e.g., speculative
waiting) and actually worsen supply–demand im-
balance, which may explain Prusa Research’s pricing
policy. A promising future research direction is to
allow dynamic pricing and account for resulting
strategic customer behavior. It would require a sub-
stantial development of the model and methodology,
but will likely also reveal substantial insights.

Acknowledgments
The authors thank Professors Wenjing Shen and Yue Zhang
for early discussions about the model; Suresh Sethi and
Jianfeng Lu for technical advices; Christopher Tang for
suggesting the liquidity constraints; and the Department
Editor Professor Victor Martı́nez-de-Albéniz, the anonymous
Associate Editor, and three Reviewers for their guidance and
suggestions, which greatly helped us improve this paper
during the two revisions.

Appendix. Pontryagin’s Maximum Principle
for Problem (1).
We apply Pontryagin’s maximum principle for the current-
value formulation (Sethi 2019) to Problem (1). For state vari-
ablesD, S and I, respectively, denote their co-state variables
by λD, λS, and λI . The current-value Hamiltonian is

H D, S, I, p, s, λD, λS, λI , t
( )
�. πs t( ) − cp t( ) − hI t( ) + λD t( )d t( ) + λS t( ) s t( ) − wS t( )[ ]

+ λI t( ) p t( ) − s t( )[ ]
� λD t( ) α + βS t( )/m[ ]

m −D t( )[ ] − hI t( )−λS t( )wS t( )
+ λI t( ) − c[ ]p t( ) + π + λS t( ) − λI t( )[ ]s t( ). (A.1)
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Note that the Hamiltonian (A.1) is linear in p(t) and s(t).
Because Pontryagin’s maximum principle requires that the
Hamiltonianmust bemaximized at any time by the optimal
controls, we immediately come to the conclusion that the
optimal control for Problem (1) is bang-bang.

Because Problem (1) contains constraints on control
variables p(t) and s(t), we also need to define a Lagrangian
for the Hamiltonian. Let μpL (μpU) and μsL (μsU) be the
Lagrange multipliers for the lower (upper) constraints of
p(t) and s(t), respectively. Let ν be the Lagrange multiplier
for the transversality constraint I(T) ≥ 0. The current-value
Lagrangian is

L D,S, I, p, s, λD, λS, λI , μpL, μpU, μsL, μsU, t
( )
�. H D, S, I, p, s, λD, λS, λI , t

( ) + μpL t( )p t( )
+ μpU t( ) rI t( ) − p t( )[ ] + μsL t( )s t( ) + μsU t( ) d t( ) − s t( )[ ]

� λD t( ) + μsU t( )[ ]
α + βS t( )/m[ ]

m −D t( )[ ]
+ rμpU t( ) − h
[ ]

I t( )−λS t( )wS t( )
+ λI t( ) + μpL t( ) − μpU t( ) − c
[ ]

p t( )
+ π + λS t( ) − λI t( ) + μsL t( ) − μsU t( )[ ]

s t( ).
Pontryagin’s maximum principle requires the following
conditions for any t for optimality:

A.1. Maximum Conditions

p t( ) � rI t( ) ⇔ λI t( ) > c, p t( ) � 0 ⇔ λI t( ) < c,

s t( ) � d t( ) ⇔ π + λS t( ) > λI t( ),
s t( ) � 0 ⇔ π + λS t( ) < λI t( ).

A.2. First-Order Conditions

λI t( ) + μpL t( ) − μpU t( ) − c � π + λS t( ) − λI t( )
+ μsL t( ) − μsU t( ) � 0.

A.3. Complementary Slackness

μpL t( ), μpU t( ), μsL t( ), μsU t( ) ≥ 0,

μpL t( )p t( ) � μpU t( ) rI t( ) − p t( )[ ] � μsL t( )s t( )
� μsU t( ) d t( ) − s t( )[ ] � 0,

A.4. Adjoint Conditions

λ′
I t( ) � ρλI t( ) + h − rμpU t( ),

λ′
D t( ) � ρλD t( ) + λD t( ) + μsU t( )[ ]

α + βS t( )/m[ ]
,

λ′
S t( ) � ρ + w

( )
λS t( ) − λD t( ) + μsU t( )[ ]

β − βD t( )/m[ ]
.

A.5. Transversality Conditions

λD T( ) � λS T( ) � 0, λI T( ) � ν ≥ 0, νI T( ) � 0. □

Proof of Proposition 1. Because Problem (1) does not con-
tain pure state constraints, all co-state variables are con-
tinuous in t under optimality. Consider any time t, where
I(t) > 0 and p(t) � 0, such that p(t) < rI(t). Because of the
complementary slackness, μpU(t) � 0. The adjoint condition
for λI becomes

λ′
I t( ) � ρλI t( ) + h ⇒ λI t( ) � Ceρt − h/ρ,

where C is a constant. We argue that in a nontrivial setting,
C > 0; otherwise, λI would always be negative, and pro-
duction can never take place (recall the maximum condi-
tion that p(t) > 0 ⇔ λI(t) > c). Therefore, λ′

I(t) > 0 whenever
p(t) � 0. This implies that p(t) can never be switched off as
long as there is inventory—thus the proposition. □

Proof of Proposition 2. If at optimality p(t) ≡ 0, then the
optimal sales policy is clearly s(t) ≡ d(t) (selling off IL), and,
thus, the inventorywill run out beforeT for sufficiently large T.
Now, consider p(t) > 0 for some t at optimality.

When production is on, because of the complementary
slackness, μpL(t) � 0. Because of the first-order condition,
μpU(t) � λI(t) − c. The adjoint condition for λI becomes

λ′
I t( ) � ρλI t( ) + h − r λI t( ) − c[ ] ⇒ λI t( ) � C′e− r−ρ( )t + cr + h

r − ρ
,

where C′ is a constant.
When T → ∞, λI(T) → (cr + h)/(r − ρ). Because of the

transversality condition, λS(t) → 0. If (r − ρ)π > cr + h, we
know π + λS(t) > λI(t) for sufficiently large t. Because of the
optimality condition, s(t) � d(t) for sufficiently large t. This
implies that I(t) is never depleted before T, and production
and sales are maximized until T. If (r − ρ)π < cr + h, we
have π + λS(t) < λI(t) for sufficiently large t. Because of the
optimality condition, s(t) � 0 for sufficiently large t. It is,
however, clearly suboptimal to stop sales before the in-
ventory is depleted, implying that the inventory cannot
be positive—namely, I(t) � 0, τ ≤ t ≤ T, ∃τ < T—for suf-
ficiently large T. □

Proof of Theorem 1. First, note that it is clearly not optimal
to keep both production and sales off. Consider the optimal
trajectory. Suppose at time t, I(t) > 0 and production and sales
are both off for an interval δ. The discounted-profit-to-go at
t + δ must be positive; otherwise, I(t) > 0 would not have
been possible (it would have been optimal to cut the product
life cycle short). We argue that bringing all future production
and sales controls forward by δ has three effects: (1) It saves
inventory cost I(t)hδ; (2) it saves discount cost by bringing
forward a positive discounted-profit-to-go; and (3) it effec-
tively increases the remaining market size from m −D(t + δ)
to m −D(t), which means that all future production and sales
controls remain admissible. Effects 1 and 2 have positive
impacts on the total discounted profit, and Effect 3 has a
nonnegative impact on the total discounted profit; thus, the
overall value is improved. Therefore, any control policies
with production and sales both off can be improved.

When IL > I, it is clearly optimal to never produce and
maximize sales—thus, the policy.

When I < IL < I, consider the policy to always keep sales
and production on, which would lead to leftover inventory
at T. Now, consider shutting off production over certain time
periods, while still having leftover inventory at T. Because of
Proposition 1, it is never optimal to switch production back
on, which implies that shutting off production can only take
place in an initial time interval (namely, postponing switching
on production). Doing so does not affect sales because in-
ventory is never depleted, but, clearly, saves production cost

Hu and Sun: Managing Self-Replicating Innovative Goods
18 Management Science, Articles in Advance, pp. 1–21, © 2021 INFORMS



and inventory cost. Therefore, one can improve the policy by
shutting off production in such an initial time interval, such
that the inventory is depleted exactly at T, while always
keeping sales on.

We then argue that this is the optimal policy. The afore-
mentioned analysis reveals that at any time there are only
three possible optimal controls: production-on-only, sales-on-
only, and production-and-sales-on. Additionally, it reveals
that production should never be switched off until the
inventory becomes depleted. Therefore, the only changes
allowed on the policy without violating optimality are
(1) shut off production for a longer initial period; and (2)
shut off sales for some interval during production. Change 2
is clearly not optimal because doing so causes reduced
revenue during this interval and future time (through re-
duced demand). Change 1 would cause inventory depletion
before T. To see why this is not optimal, consider the short
time interval prior to when production is switched on. In this
time interval, sales is on and production is off. Because of
Strong Replicability, we know that it would increase the
total discounted profit to postpone sales and use the in-
ventory for replication and sell the good in the immediate
future. The problem is that the immediate future demand is
being satisfied already. However, by the same argument, the
immediate future sales can be pushed further for replication
to increase the total discounted profit. By making the same
argument recursively, the inventory depletion time will be
pushed back, which is feasible, given that it happens before
T. Therefore, as long as the inventory is depleted before T,
we can use this argument to switch production on earlier
and push back inventory depletion while increasing the total
discounted profit, until the inventory is depleted exactly at T.

When IL < I, consider the policy to always keep sales and
production on, which would lead to inventory depletion
before T. Consider a small time interval after time zero,
during which sales is on. Because of Strong Replicability, we
know that it would increase the total discounted profit to
postpone sales and use the inventory for replication and sell
the good in the immediate future. The problem is that the
immediate future demand is being satisfied already. How-
ever, our earlier reasoning shows that all future sales can be
postponed, leading to inventory depletion being pushed
back, while increasing the total discounted profit. Therefore,
as long as the inventory is depleted before T, the time to
switch on sales can be postponed until the inventory is de-
pleted exact at T. We argue that this is the optimal policy
following the same reasoning as above. □

Proof of Corollary 1. Denote the optimal production switch-
on time by t∗p(r) and the optimal sales switch on time by t∗s (r)
when the replication rate is r. Theorem 1(a) implies that
t∗p(r) � 0 when the launch inventory IL is lower than I. When
t < t∗s (r), because of the bang-bang nature of the optimal
policy, we have p(t) � rI(t), s(t) � 0, I′(t) � rI(t), and I(t) �
ILert. With a larger replication rate r′ > r, the inventory level
at t∗s (r) is ILer

′t∗s(r) > ILert
∗
s(r). Because the inventory is always

depleted at T, sales must be switched on earlier—that is,
t∗s (r′) < t∗s (r).

Theorem 1(b) implies that t∗s (r) � 0 when I < IL < I. When
t < t∗p(r), because of the bang-bang nature of the optimal

policy, we have p(t) � 0, s(t) � d(t), and I′(t) � −d(t). Because
the demand diffusion process does not depend on produc-
tion, neither does the inventory, given p(t) � 0. Therefore, I(t)
does not depend on rwhen t < t∗p(r). With a larger replication
rate r′ > r, the total production from t∗p(r) to T is larger. Be-
cause the inventory is always depleted at T, production must
be switched on later—that is, t∗p(r′) > t∗p(r). □

Proof of Theorem 2. Weak Replicability implies that it is
never optimal to postpone sales for replication, and the proof
of Theorem 1 shows that it is never optimal to keep both
production and sales off; thus, it is optimal to always keep
sales on.

When IL > I, it is clearly optimal to never produce—thus,
the policy.

When IL < I, the inventory would be depleted at some τ
before Twithout production. Consider a small time interval δ
before τ. Consider switching production on at τ − δ. Doing so
increases the revenue by rπδ while incurring production
cost rcδ, plus other higher-order terms of δ. Because π > c,
production should be switched onwhen it is sufficiently close
to τ (at the same time pushing back τ). The question is how far
back should production be switched on. When production
lasts for a nontrivial time interval, there are three additional
effects to be accounted for. First, the produced units will incur
additional inventory costs. Second, because production takes
place before sales, revenue and inventory costs need to be
discounted. Third, the exponential growth due to production
during this period needs to be considered.

We first consider effects 1 and 2. A unit of the good should
be produced no longer than a maximum production interval
Δ̄ prior to being sold, where Δ̄ is such that effects 1 and 2
exactly offset the profit margin π − c—namely,

c + h
∫

Δ̄

0
e−ρt dt � e−Δ̄ρπ

⇒ Δ̄ � π − c( )/h if ρ � 0,
ln ρπ + h
( ) − ln ρc + h

( )[ ]
/ρ if ρ > 0.

{

We call Δ̄ the effective maximum production interval be-
cause it is solved assuming a fixed unit of the good being
held in inventory during the interval without consider-
ing effect 3, the exponential growth of self-replication. In
reality, a unit of the good to be sold at τwas only e−rt units at
τ − t. Therefore, the actual maximum production interval Δ
for which production should take place is longer than the
effective maximumproduction interval Δ̄, with the per-unit
average maximum production interval being equal to the
latter—namely,
∫ Δ

0
e−rt dt � Δ̄

⇒ Δ � − ln 1 − r π − c( )/h[ ]/r if ρ � 0,
− ln 1 − r ln ρπ + h

( ) − ln ρc + h
( )[ ]

/ρ
{ }

/r if ρ > 0.

{

The meaning of Δ is the maximum production period
prior to inventory depletion. Producing longer than Δ and
the revenue cannot justify the production and inventory
costs. In other words, the optimal policy for Weak Repli-
cability with IL < I can be generally stated as to always keep
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sales on and switch production on at such a time that
production lasts for exactly Δ, and the inventory will be
depleted before T. This outcome will occur in case (b). On
the other hand, several reasons may cause production to be
unable to last for Δ. If IL is sufficiently small in case (a), even
if production is always kept on, it may not last for Δ. If IL is
sufficiently large in case (c), production lasting for Δ will
lead to leftover inventory at T, which is clearly suboptimal,
and, thus, production lasts shorter thanΔ. These arguments
are formalized as Theorem 2. □

Proof of Corollary 2. By Theorem 2, we have Δ � − ln(1−
rθ)/r, r ∈ (0, 1/θ), where θ � (π − c)/h if ρ � 0, and θ �
[ln(ρπ + h) − ln(ρc + h)]/ρ if ρ > 0. It is easy to verify that
limr→0 Δ � θ > 0. Taking the derivative of Δ with respect to
r yields

dΔ
dr

� 1
r2

ln 1 − θr( ) + θr
1 − θr

[ ]
, lim

r→0

dΔ
dr

� θ2

2
> 0.

Let f (r)�. ln(1 − θr) + θr
1−θr, and we have

lim
r→0

f r( ) � 0, and f ′ r( ) � r
θ

1 − θr

( )2
> 0, ∀r ∈ 0, 1/θ( ),

Hence, f (r) > 0 and dΔ
dr > 0, ∀r ∈ (0, 1/θ).

Taking the derivatives of θwith respect to π, c, and h yields

dθ
dπ

� 1
ρπ + h

> 0,
dθ
dc

� − 1
ρc + h

< 0,

dθ
dh

� − π − c( )
ρπ + h
( )

ρc + h
( ) < 0, ∀ρ ≥ 0.

Because dΔ
dθ � (1 − rθ)−1 > 0, we have

dΔ
dπ

� dΔ
dθ

dθ
dπ

> 0,
dΔ
dc

� dΔ
dθ

dθ
dc

< 0,
dΔ
dh

� dΔ
dθ

dθ
dh

< 0,

Hence, the corollary. □

Proof of Proposition 3. Note that the proof of Theorem 1
does not depend on the demand process. Therefore, we know
that it is optimal to keep production on (both pre- and post-
launch) and switch and keep sales on at such a time that the
inventory is depleted at the end of the product’s life cycle.
Clearly, the optimal tL should not be past (ln I − ln I0)/r;
otherwise, there will be leftover inventory at tL + T. What
remains is to show that the optimal tL should not be before
(ln I − ln I0)/r either.

Suppose the optimal t′L < (ln I − ln I0)/r, and sales are
switched on sometime t′ > 0 after the product launch. The
firm’s profit, in this case, is the same as the optimal profit if
the total market size m is increased to m′ � meαt

′
L (calculated

from the demand diffusion equation with S(t) ≡ 0) and the
product’s life cycle T is increased by t′L, but demand diffu-
sion began at time zero. On the other hand, consider
t′′L � (ln I − ln I0)/r. The firm’s profit in this case is the same as
the optimal profit if the total market size m is increased to
m′′ � meαt

′′
L > m′, and the product’s life cycle T is increased by

t′′L > t′L, but demand diffusion began at time zero. We argue
that the latter optimal profit is strictly larger than the former.

First, Theorem 1 states that under Strong Replicability, the
optimal policies must ensure that the product is sold through
the entire life cycle T. Therefore, an optimal policy for T can be
implemented to generate the same profit for a longer T, which
cannot be optimal because production does not last for the
entire T, implying that a longer T strictly increases the op-
timal profit. Similarly, an optimal policy for m can be imple-
mented to generate the same profit for a larger m, implying
that a larger m cannot decrease the optimal profit. As a result,
we know that the optimal tL � (ln I − ln I0)/r. □

Proof of Proposition 4. Note that the proof of Theorem 1
does not depend on the demand process. Therefore, we know
that it is optimal to keep production on and switch and keep
sales on at such a time that the inventory is depleted at the
end of the product’s life cycle.With T � ∞, the inventory level
to meet stable demand d through replication is d/r, and
ILetsr � d/r yields the optimal time to switch on sales (ln d−
ln IL − ln r)/r. For finite T, because the inventory will be grad-
ually sold off to meet some demand, there is no need to build the
inventory up to d/r, and, thus, ts < (ln d − ln IL − ln r)/r. □

Endnotes
1Derivation and commercialization of open-source products are
allowed as long as the sold products remain open-source.
2Although 3D printers are not infinitely divisible, with sufficiently
large inventory and sales, a continuous-quantity model is a rea-
sonably accurate approximation of the discrete operations. For ref-
erence, by July 2019, Prusa Research had shipped 130,000 3D printers
produced in its print farm that had grown to have 500 printers (Prusa
Research 2020). The same argument applies to animal herds. Crop
grains are nearly infinitely divisible. On the other hand, when the
replication cycle is relatively short compared with the product’s
life cycle and replication is not necessarily in batches, a continuous-
time model is a reasonably accurate approximation of the dis-
crete adjustments.
3More generally, the liquidity constraint should be modeled as a
terminating condition—namely, the product life cycle is cut short
whenever the cash position reaches zero; however, note that if, at this
time, there is remaining inventory, the firm can always cease pro-
duction and sell off the inventory to improve the objective while
staying solvent, meaning that it is never optimal to cut short the
product life cycle because of the liquidity constraint. Therefore, our
constraint of requiring the cash level to be nonnegative is without loss
of generality.
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