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ABSTRACT
Emergency department (ED) crowding is a universal health issue that affects the efficiency of hospital
management and patient care quality. ED crowding frequently occurs when a request for a ward-bed
for a patient is delayed until a doctor makes an admission decision. In this case study, we build a clas-
sifier to predict the disposition of patients using manually typed nurse notes collected during triage as
provided by the Alberta Medical Center. These predictions can potentially be incorporated to early bed
coordination and fast track streaming strategies to alleviate overcrowding and waiting times in the ED.
However, these triage notes involve high dimensional, noisy, and sparse text data, which make model-
fitting and interpretation difficult. To address this issue, we propose a novel semiorthogonal nonneg-
ative matrix factorization for both continuous and binary predictors to reduce the dimensionality and
derive word topics. The triage notes can then be interpreted as a non-subtractive linear combination
of orthogonal basis topic vectors. Our real data analysis shows that the triage notes contain strong
predictive information toward classifying the disposition of patients for certain medical complaints, such
as altered consciousness or stroke. Additionally, we show that the document-topic vectors generated
by our method can be used as features to further improve classification accuracy by up to 1% across
different medical complaints, for example, 74.3%–75.3% accuracy for patients with stroke symptoms. This
improvement could be clinically impactful for certain patients, especially when the scale of hospital patients
is large. Furthermore, the generated word-topic vectors provide a bi-clustering interpretation under each
topic due to the orthogonal formulation, which can be beneficial for hospitals in better understanding
the symptoms and reasons behind patients’ visits. Supplementary materials for this article are available
online.
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1. Introduction

Emergency department (ED) crowding is an international phe-
nomenon frequently faced by emergency physicians, nurses,
and patients. Typically, a request for an admit ward-bed and
preparations to receive the patient may be delayed until a doctor
makes an admission decision (Morley et al. 2018). Studies have
shown that ED crowding is associated with an increased risk
of mortality, longer wait time and length of stay, and patient
dissatisfaction (Chalfin et al. 2007; Sun et al. 2013). Existing
literature suggests that if the hospital admissions of ED patients
can be predicted early, or even before triage, then necessary
steps can be taken to reduce the overcrowding and wait time
of ED (Peck et al. 2012; Qiao 2015; Morley et al. 2018). The
predicted information can be passed on to the target inpatient
ward departments, where staff can begin their preparations
early on and consequently reduce patient transfer delays and
boarding.

Studies have been done to investigate potential solutions
to reduce ED crowding (Morley et al. 2018), including modi-
fying existing hospital administrative policies (Anantharaman
2008), declaring nurse-initiated protocols (Douma et al. 2016),
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and proposing alternative bed-management strategies (Barrett,
Ford, and Ward-Smith 2012). Alternatively, machine learning
approaches have begun to attract the interest of researchers
within this field (Sun et al. 2011; Zhang et al. 2017; Hong,
Haimovich, and Taylor 2018). In particular, Zhang et al. (2017)
predicted ED admission outcomes by considering the effects
of triage notes. These triage notes are manually typed into
a computer by nurses, according to the patient’s description
during an ED visit. Zhang et al. (2017) applied a bag-of-words
approach and showed the potential of using triage notes in
predicting disposition. However, this simplistic approach failed
to capture the underlying patterns and interactions between
words. Additionally, the bag-of-words representation of text
data is usually noisy, high dimensional, and sparse. This is due
to the small number of words contained in each document
compared to the large number of possible unique words (Salton,
Wong, and Yang 1975). Hence, we consider a topic modeling
approach for the text data collected from patients to improve the
interpretation of the notes and the prediction performance of
subsequent supervised learning methods (Aggarwal and Reddy
2013; Yaram 2016). Furthermore, our work is applicable for the
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current COVID-19 pandemic as ED crowding could be fatal for
patients who were delayed from proper treatments (Mareiniss
2020).

The nonnegative matrix factorization (NMF) has drawn
much attention due to its simplicity and interpretability. Its
applications include image analysis (Lee and Seung 1999), clus-
ter analysis (Kim and Park 2008), and text mining (Shahnaz et al.
2006). The purpose of the NMF is to uncover nonnegative latent
factors and relationships to provide meaningful interpretations
for practical applications, such as this triage data. The NMF was
first studied by Paatero and Tapper (1994) as positive matrix
factorization, and was widely adopted due to Lee and Seung’s
(1999, 2001) work. Specifically, the NMF seeks to approximate a
matrix X as a product of two lower-rank nonnegative matrices,
F and G. For the text mining application in this article, X refers
to the word-by-document matrix (bag-of-words), F refers to the
word-topic matrix, and G refers to the document-topic matrix.

In this article, we aim to classify patients’ disposition using
a triage notes dataset provided by the Alberta Health Services,
the largest integrated provincial health care system in Canada.
Additionally, we aim to understand the main reasons behind
patients’ visits and eventual dispositions, which is also essential
for the hospital. This dataset contains around 500,000 anony-
mous patient records collected from September 2014 to August
2016, each with a medical complaint, their disposition at the
ED, and text information regarding the reason for the visit. Each
record was input by the nurse according to the description by the
patient. Additional information, including the demographic and
vital signs of the patients, were also provided. However, these
features are not within the scope of this study, and would not be
considered in this analysis.

To analyze the triage dataset via a topic modeling approach,
we propose a novel semiorthogonal nonnegative matrix factor-
ization (SONMF) under the framework of both continuous and
binary matrices. Our model factorizes a target matrix into the
product of an orthogonal matrix F and a nonnegative matrix
G. As opposed to the existing orthogonal NMF methods (Ding
et al. 2006; Yoo and Choi 2008), our model does not enforce
nonnegativity on F. This formulation provides an alternative
and meaningful interpretation of the word-topic vectors while
retaining the by-parts interpretation of the document-topic vec-
tors. We show that this formulation yields basis topic vectors
with uncorrelated loadings, which subsequently generates inter-
pretable topics with distinct meanings. The mixed signs within
the word-topic matrix introduce further sub-clusters within
each word-topic vector, which are negatively correlated and have
opposite meanings.

Numerically, our model can achieve strict orthogonality due
to the removal of nonnegativity on F, as opposed to the approx-
imate solutions in existing literature (Ding et al. 2006; Yoo and
Choi 2008; Kimura, Tanaka, and Kudo 2015). The enforcement
of exact orthogonality also serves as a regularization by shrink-
ing the model space. It eliminates multicollinearity between the
basis vectors, and subsequently reduces the risk of overfitting
(Abdi and Williams 2010; Wang et al. 2019). This has advantages
for both increasing the classification performance of subsequent
supervised learning approaches by using the generated topic
vectors as new features, and the interpretation of these topic
vectors themselves.

The article is organized as follows. Section 2 discusses the
motivation of this study while Section 3 briefly reviews the NMF.
The proposed method for both the continuous and binary cases
are presented in Section 4. Section 5 provides a set of numerical
experiments on simulated datasets, and Section 6 focuses on
the in-depth analysis and discussion of the triage dataset. The
conclusions of this study are presented in Section 7.

2. Motivation

To improve the management of ED patients, existing studies
(Powell et al. 2012; Qiu et al. 2015) have considered initiating
early bed requests at the triage stage or soon after based on
predicted admissions. The goal is to start the bed coordination
of the intensive unit (IU) when a patient is still waiting or
being treated in the ED. This can significantly reduce the overall
waiting and length of stay (LoS) of admitted patients. Such early
bed coordination strategies rely on the admission predictions
with data collected from the triage stage. Some studies (Ieraci
et al. 2008; Saghafian et al. 2012) explore the advantages of
streaming patients based on the acuity or predicted disposition
of patients. A fast track may be created as a separate stream from
the ED main waiting queue, with designated doctors treating
the less acute patients. This can reduce the waiting time before
treatment for all ED patients, and thus mitigate ED crowding.
Predicting patient discharges at the triage stage can contribute
to improve the designs of ED streaming strategies.

Early bed coordination and fast track streaming strategies are
illustrated in Figure 1. The two flow charts illustrate the impacts
of the aforementioned strategies to improve ED operations on
patient waiting and LoS. In particular, the LoS of discharged
patients may be reduced from T2 to T1 with a fast track. The LoS
of admitted patients may be reduced from T4 to T3 with early
bed coordination. Reductions of the LoS can also shorten the
waiting time before treatment. For these operational strategies
to successfully improve ED patient flow, accurately predicting
patient admission/discharge at the triage stage is an essential
step. This motivates our research to implement new methods to
utilize the rich text data in the triage notes to achieve our goal.

Besides building a classifier for predicting the disposition,
we also want to understand the main complaints and symp-
toms of the patients visiting the ED. Solely using the words
from the triage notes as features can achieve the first goal, but
is insufficient to address the second objective, as important
information may be overlooked if the underlying interactions
between words are ignored. Thus, it is natural for us to consider
word clustering/topic modeling as a feature extraction method
to uncover latent semantic information.

The NMF has been shown to be effective in document clus-
tering and topic modeling applications (Shahnaz et al. 2006;
Aggarwal and Reddy 2013). The nonnegative enforcement of
the NMF naturally captures the structure of a word-document
matrix (Salton, Wong, and Yang 1975) with a by-parts inter-
pretation. Given a nonnegative word-document matrix Xp×n,
the NMF factorizes Xp×n into two lower rank-k nonnegative
matrices Fp×k and Gn×k (i.e., Xp×n ≈ Fp×kGT

n×k), where k
is the rank and serves as the number of topics/clusters. F can
be interpreted as the word-topic matrix, where the words with
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Figure 1. ED patient flow with and without streaming using predictions at triage.

the largest weights within each topic approximately define the
topic’s meaning. G is regarded as the document-topic matrix,
where each document points in the direction of the topics with
various magnitudes.

However, most NMF methods do not consider the redun-
dancy of features due to the absence of orthogonal constraints.
This leads to correlated topic vectors, which could impair the
classification performances of subsequent model fitting and
make the topic vectors less interpretable. This problem is more
prevalent in the semi-NMF (Ding, Li, and Jordan 2010), where
the nonnegativity constraint on the F matrix is no longer
imposed. This results in the potential cancellation of terms
across different word-topics due to different signs, and could
increase the risk of overfitting. Therefore, in this article, we
enforce the F matrix to be strictly orthogonal to address this
issue, which subsequently yields orthogonal word-topic vectors.
Generally, any constraint added to the model would result in a
smaller model space. In our case, the solution set that satisfies
FTF = I is smaller than that of the unconstrained formulation,
which naturally serves as an regularization to prevent overfitting
(Hastie, Tibshirani, and Friedman 2009).

Orthogonal topic vectors have been previously considered
by Ding et al. (2006). They enforce both nonnegativity and
orthogonality on the word-topic matrix F, implying that each
word can only belong to a single topic as each row can only
have 1 nonzero element. However, this assumption could be too
restrictive, as most words naturally have multiple or ambigu-
ous meanings, and possibly belong to multiple topics. This
is also supported by checking the distribution of the num-
ber of topics each word belongs to (see Section A.5 of the
Appendix). Thus, removing nonnegativity from the orthogonal
matrix can preserve the interpretation of uncorrelated topic vec-
tors, while retaining the flexibility of words falling into multiple
topics.

In addition, representing the topics as a linear combination
of positive and negative terms (words) also leads to a different
interpretation compared to the conventional by-parts repre-
sentation of the NMF. The positive loading of a word indi-
cates that the word belongs to a topic with positive strength,
while a negative loading represents the deviation of the word
from the topic. The words with large positive weights under
a topic not only indicate that they are the most representative
of this topic but also imply that these words tend to appear

together and are highly correlated with each other. On the
other hand, the words with negative weights indicate that these
words are negatively correlated with this topic and can be
viewed as separate clusters, effectively serving as the acronyms
of the positive words within the same topic. This naturally
creates a bi-clustering structure within a topic, in contrast to
the zero representation of words in the nonnegative case. This
enables us to identify the main reasons for patients’ visits, and
potentially understand the factors that the patient is discharged
upon by looking at the words with the largest negative loadings
under a topic. This can be beneficial for providing additional
insights to the management plans of a hospital for patient
admission.

From a computational perspective, existing algorithms are
either based on multiplicative updates (Lee and Seung 1999; Lin
2007; Ding, Li, and Jordan 2010), least squares update (Cichocki,
Zdunek, and Amari 2007; Kimura, Tanaka, and Kudo 2015),
or through approximate separability (Recht et al. 2012; Gillis
and Vavasis 2013). Multiplicative updates typically run into the
zero-lock problem (Cichocki, Zdunek, and Amari 2007) when
forcing nonnegativity. This occurs when zero elements in either
F and G remain zero throughout the entire optimization pro-
cess, which causes these elements to be locked at zero and thus
prevents updating to an optimal solution. On the other hand,
the assumption of separability may not be suitable under our
orthogonal formulation. The hierarchical based alternating least
squares update scheme (Cichocki, Zdunek, and Amari 2007;
Cichocki and Phan 2009) is not affected by the above limitations
and is thus incorporated into our model.

The current orthogonal NMF algorithms do not yield strict
orthogonal solutions due to the nonnegative constraint as algo-
rithms need to sacrifice orthogonality to conserve the nonneg-
ativity (Ding et al. 2006; Yoo and Choi 2008; Kimura, Tanaka,
and Kudo 2015). By removing the nonnegative constraint on
the orthogonal matrix, our model can achieve a strictly orthog-
onal solution (FTF = I) for F rather than an approximated
solution (FTF ≈ I). This can be achieved with an SVD-based
initialization and a novel implementation of an orthogonal pre-
serving update scheme (Wen and Yin 2013) through the Stiefel
manifold. The orthogonal preserving update scheme (Wen and
Yin 2013) was effective in other applications, but so far has not
been implemented in solving NMF-related problems. On the
other hand, Yoo and Choi (2008) derived their multiplicative
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update rules for the orthogonal-NMF with consideration of
the Stiefel manifold, but their solution still deviates from exact
orthogonality due to the additional constraint of nonnegativity.

We then implement the second-order least squares update
(Cichocki and Phan 2009) for G with nonnegative projection
to avoid zero-locking. Interestingly, this update can be reduced
to a simple form due to the strict orthogonality of F. This also
ensures our algorithm converges quickly and leads to numeric
stability consistently.

3. Notations and Background of the NMF

In this section, we provide the notations and background of the
NMF. Let X be an p × n real matrix, and xj be the jth column,
that is, X = [x1, . . . , xj]. Nonnegative matrix factorization (Lee
and Seung 1999) aims to factorize a nonnegative matrix X into
the product of two nonnegative matrices, F and G:

argminF,G ||X − FGT ||2F , (1)
subject to F ≥ 0, G ≥ 0,

where || · ||F is the Frobenius norm. Typically, F and G are
lower ranks, for example, F ∈ R

p×k and G ∈ R
n×k, where

k � min(n, p). More specifically, the columns of X can be
rewritten as xp×1 ≈ Fp×kgT

k×1, where x and g are the corre-
sponding columns for X and G. Thus, each column vector x
is approximated as a linear combination of F, weighted by the
rows of G, or equivalently, F can be regarded as the matrix that
consists of the basis vectors for the linear approximation of X.

The above problem in (1) can be solved by alternating the
updates between F and G while fixing the other via an matrix-
wise alternating block coordinate descent scheme (Lee and
Seung 1999, 2001; Ding et al. 2006; Yoo and Choi 2008; Ding,
Li, and Jordan 2010). In Lee and Seung (1999, 2001), F and G
are updated by multiplying the current value with an adaptive
factor that depends on the rescaling of the gradient of (1):

Fik ← Fik
(XG)ik

(FGTG)ik
and Gik ← Gik

(XTF)ik
(GFTF)ik

. (2)

The NMF can easily be extended by incorporating additional
constraints on the factor matrices, such as the sparse NMF
(Hoyer 2004), orthogonal-NMF (Ding et al. 2006), and semi-
NMF (Ding, Li, and Jordan 2010). On the other hand, compu-
tational efficient factorization algorithms also play a major role
in current NMF research (Cichocki, Zdunek, and Amari 2007;
Cichocki and Phan 2009; Hsieh and Dhillon 2011; Gillis and
Vavasis 2013).

4. Methodology

In this section, we present the derivation and implementation of
the proposed method in both continuous and binary settings.
Although both settings serve the same purpose in reducing a
matrix into a lower rank representation, the inherent structure
of a binary matrix requires a different optimization approach.
We first present the continuous case in Section 4.1, and then
the binary case in Section 4.2. The initialization, convergence
criterion and proposed algorithms are presented in Section 4.3.

4.1. The SONMF for Continuous Matrix

Consider the following matrix factorization problem with a cost
function denoted as C(F, G),

argminF,G C(F, G) = argminF,G||X − FGT ||2F ,

subject to FTF = I, G ≥ 0,

where X ∈ R
p×n, F ∈ R

p×k, and G ∈ R
n×k. We solve

this problem by alternatively updating the matrices F and G.
However, the uniqueness of the proposed method is to take
advantage of the Stiefel manifold Mp

n, where Mp
n is the feasible

set {F ∈ R
p×k : FTF = I}. Following the formulation in Wen

and Yin (2013), we initialize F as a column-wise orthonormal
matrix, then enforces the solution path of F to be exactly on this
manifold, thereby preserving strict orthogonality throughout
the entire optimization process.

The update scheme is an adaptation of the gradient descent,
but preserves the orthogonality at a reasonable computational
cost. Under the matrix representation, the gradient of F is ∇F =
∂C
∂F = 2FGTG − 2XG, derived directly from the objective
function without any constraints. However, the new update
Fn+1 = Fn−τ∇Fn may not satisfy Fn+1 ∈ Mp

n, where τ is a step
size for the line search. Instead, we need to first project (−∇F)

onto the tangent space of Mp
n at F. To do so, we first use F and

∇F to define a skew-symmetric matrix S = (∇F)FT − F(∇F)T .
Next, we apply the Cayley transformation to yield an orthogonal
matrix Q = (I + τ

2 S)−1(I − τ
2 S). The F matrix can then be

updated via Fn+1 = QFn. Since Q is an orthogonal matrix, we
have FT

n+1Fn+1 = (QFn)
T(QFn) = FT

n QTQFn = FT
n Fn = I,

which preserves orthogonality throughout the entire solution
path.

The inversion of (I + τ
2 S) is computationally expensive

due to its n × n dimension. To address this, we apply the
Sherman–Morrison–Woodbury (SMW) formula, given as (B +
αUVT)−1 = B−1−αB−1U(I+αVTB−1U)−1VTB−1, to reduce
this inversion process down to a 2k × 2k matrix by rewriting S
as a product of two low-rank matrices. Let U = [∇F|F] and
V = [F| − ∇F] (where [A|B] is a block matrix), then we can
rewrite S as S = UVT . Substituting B with I, α with τ

2 , and S
with UVT yields (I + τ

2 S)−1 = I− τ
2 U(I+ τ

2 VTU)−1VT . Along
with (I − τ

2 S) = (I − τ
2 UVT), the final update rule for F is

Fn+1 = (I + τ

2
S)−1(I − τ

2
S)Fn

= (I − τ

2
U(I + τ

2
VTU)−1VT)(I − τ

2
UVT)Fn

= Fn − τU(I + τ

2
VTU)−1VTFn. (3)

The enforcement of FTF = I throughout provides a direct
computational benefit in updating G. We use the idea of the
hierarchical alternating least squares (HALS) updating scheme
(Cichocki, Zdunek, and Amari 2007; Kimura, Tanaka, and Kudo
2015) to update G, since they show that updating each column
sequentially is more efficient than a matrix-wise update. By
fixing F, the objective function given in Cichocki, Zdunek, and
Amari (2007) is: argmingj

||X(j) − fjgT
j ||2F , where X(j) = X −∑

k�=j fkgT
k = X − FGT + fjgT

j is the residual matrix without
the jth component. The column-wise update for G is gj ←
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{(XTF)j − [G(FTF)]j + gjf
T
j fj}+. Since F is constrained to be

strictly orthogonal in our formulation, we have G(FTF)j =
gjf

T
j fj. Hence, the update rule is simply gj ← [(XTF)j]+, which

is essentially a simplified matrix-wise ALS update scheme,

G = [XTF(FTF)−1]+ = [XTF]+. (4)

The proposed updating method for G is thus extremely efficient,
and it is noteworthy to acknowledge that the matrix-wise and
column-wise updating schemes are equivalent under our for-
mulation.

Details of the mathematical derivations of the updates are
given in Section A.1 of the Appendix.

4.2. The SONMF for Binary Matrix

In this subsection, we illustrate our proposed method for factor-
izing a binary matrix, as it requires a different strategy (Schein,
Saul, and Ungar 2003; Zhang et al. 2007; Schachtner, Poppel, and
Lang 2010; Slawski, Hein, and Lutsik 2013; Tomé et al. 2015).
The NMF methods for binary data structures can be formulated
using either a logistic regression approach (Schachtner, Poppel,
and Lang 2010; Tomé et al. 2015) or a box constrained approach
(Slawski, Hein, and Lutsik 2013; Zhang et al. 2014). For our
method, we consider the logistic formulation due to its flexibility
and ease of optimization. This allows us to have a similar inter-
pretation of the topic vectors as in the continuous case, where
each document is represented as a linear combination of orthog-
onal basis vectors. Furthermore, the objective of enforcing strict
orthogonality is much simpler under this formulation since we
can follow a similar optimization strategy as in the continuous
case.

Analogous to the logistic regression, we utilize the Bernoulli
likelihood to capture the underlying probabilistic structure of
the binary matrix. In this formulation, we assume that each Xij
follows an independent Bernoulli distribution with parameter

pij, where each pij = σ([FGT]ij) = e[FGT ]ij

1+e[FGT ]ij
. The likelihood

function is then

P(Xij|F, G) = σ([FGT]ij)
Xij(1 − σ([FGT]ij))

1−Xij . (5)

The objective is to find F and G such that they maximize the log-
likelihood function in Equation (5), or equivalently, minimize
the negative log-likelihood,

argminF,GC(F, G) = argminF,G − L(X|F, G)

= −
∑

i,j
log

{(
e[FGT ]ij

1 + e[FGT ]ij

)Xij( 1
1 + e[FGT ]ij

)1−Xij }

=
∑

i,j

{
Xij[FGT]ij − log(1 + e[FGT ]ij )

}
. (6)

We update F in a similar fashion as in the continuous case, but
consider a coordinate-wise Newton’s method for G. We do not
implement the full Newton’s method here as the Hessian matrix
for G has a dimension of nk × nk and is inefficient to compute.
Note that the second derivative of the cost function is well-
defined, and the first and second derivatives of the cost function

with respect to G are given as

∂C(F,G)

∂Gjk
=

∑
i

e[FGT ]ij

1 + e[FGT ]ij
Fik − XijFik

=
∑

i

(
1

1 + e−[FGT ]ij
− Xij

)
Fik

and

∂2C(F, G)

∂G2
jk

=
∑

i

(
e[FGT ]ij

(1 + e[FGT ]ij)2

)
F2

ik.

Following Newton’s method, the updating rule for G in matrix
notation is given by

G ← G − η

( 1
1+e−(FGT )

− X
)TF

( e(FGT )

(1+e(FGT ))2

)TF2
,

where η is a step size and 1 is the matrix of all 1’s. The quo-
tient and exponential function here are element-wise opera-
tions for matrices. In the updating step of F, the only differ-
ence from the continuous case is the gradient, whereas the
orthogonal-preserving scheme remains the same. Following a
similar derivation for G, the gradient of F is

�F = ∂C(F,G)

∂Fik
=

(
1

1 + e−(FGT)
− X

)
G.

However, an over-fitting problem may arise since the algo-
rithm seeks to maximize the probability that Xij is either 0 or 1
by approximating the corresponding entries of the probability
matrix close to 0 or 1. Since F is constrained to be orthonormal,
the approximation scale is solely dependent on G. Thus, larger
values in G increase the risk of over-fitting. To avoid this issue,
the step size for updating G needs to be relatively small. We
recommend either 0.05 or 0.01 as a good step size for our
algorithm.

4.3. Implementation

In this section, we discuss the implementation of the proposed
model, including the initialization, convergence criterion, and
algorithms.

The initialization of NMF methods is crucial and has been
extensively studied for better numerical stability and conver-
gence (Xue et al. 2008; Langville et al. 2014). In particular,
the SVD-based initialization has been studied to work well in
practice (Boutsidis and Gallopoulos 2008; Qiao 2015) for the
NMF. This is because the truncated SVD provides the best rank-
K approximation of any given matrix (Eckart and Young 1936;
Wall, Rechtsteiner, and Rocha 2003; Qiao 2015). Our formula-
tion further benefits from the SVD-based initialization because
we can simply use the left singular matrix U directly. In contrast,
a nonnegative projection of the SVD solution is required for the
existing NMF methods (Langville et al. 2006). We apply the SVD
to decompose X to its best rank-K factorization, that is,

Xk ≈ Up×kDk×kVT
k×n,
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where k is the rank of the target factorization. Our formulation
does not require the initialization of G, since the update rule for
G given in (4) is only dependent on X and F. We apply the same
initialization for both the continuous case and the binary case.
For more discussion on the initialization, we have conducted a
numerical analysis using three different initialization methods,
given in Section A.2 of the Appendix.

The convergence criterion is either a predefined number
of iterations that is reached, or the difference of the objective
function values between two iterations is less than a certain
threshold.

f (F((i−1), G(i−1)) − f (F((i), G(i)) ≤ ε,
where any sufficiently small value ε could be a feasible choice,
such as 10−4.

In the following, we provide the proposed algorithm for
continuous and binary design matrices.

Algorithm 1 The semiorthogonal NMF for continuous X
Input: Arbitrary matrix X, number of basis vectors K
Output: Mixed-sign matrix F and nonnegative matrix G such that X ≈ FGT

and FT F = I.
Initialization: Initialize F with orthonormal columns and τ = 0.5.

repeat
G = [XT F]+
R = 2FGT G − 2XG
U = [R, F]
V = [F, -R]
repeat

Y(τ ) ← F − τU(I + τ
2 VT U)−1VT F

if E > 0 then
τ = τ × 2
F = Y(τ )

else if E ≤ 0 then
τ = τ

2
end if

until E > 0
until Convergence criterion is satisfied.

Algorithm 2 The semiorthogonal NMF for binary X
Input: Arbitrary matrix X with binary elements, number of basis vectors K
Output: Mixed sign matrix F and nonnegative matrix G such that Xij ∼
Bern

(
e(FGT )ij

1+e(FGT )ij

)

Initialization: Initialize F with orthonormal columns, G arbitrary, η = 0.05,
and τ = 2.

repeat
D1 = ( 1

1+e−FGT − X)T F

D2 = ( eFGT

(1+eFGT
)2

)T F2

G ← [G − η
D1
D2

]+
R = ( 1

1+e−FGT − X)G
U = [R, F]
V = [F, -R]
repeat

Y(τ ) ← F − τU(I + τ
2 VT U)−1VT F

if E > 0 then
τ = τ × 2
F = Y(τ )

else if E ≤ 0 then
τ = τ

2
end if

until E > 0
until Convergence criterion is satisfied.

The R package “MatrixFact” (Li, Zhu, and Qu 2019) is avail-
able at “cralo31/MatrixFact” on Github which implements the
proposed method for both continuous and binary cases, along
with the original NMF (Lee and Seung 2001), ONMF (Kimura,
Tanaka, and Kudo 2015), semi-NMF (Ding, Li, and Jordan
2010), and logNMF (Tomé et al. 2015). The existing R packages
only include various algorithms for the NMF (Lee and Seung
2001), but lack access to other methods, while our package
bridges this gap.

5. Simulated Data Experiments

In this section, we evaluate the performance of our model
through various simulated data experiments. We first compare
the performance of our model with several well-established
variants of the NMF for the continuous case under different
simulation settings. For the binary version, we show that both
the cost function and difference between the true and estimated
probability matrices monotonically converge under the algo-
rithm, along with a comparison with another state of the art
model.

5.1. Simulation for the Continuous Case

For the continuous case, we evaluate the average residual and
orthogonal residual, where

Average residual = ||X − FGT ||2F
n × p

= 1
n × p

∑
i,j

(X − [FGT])2
ij,

(7)
and

Orthogonal residual = ||FTF − I||2F . (8)

We simulate the true F and G matrices and evaluate how the
algorithms perform on recovering them. Thus, we also calculate
the difference between the column space of F, G and F̂, Ĝ in
which F and G are the true underlying matrices, and F̂ and Ĝ
are the approximated matrices from the factorization. That is,

εF = ||HF − HF̂||2F and εG = ||HG − HĜ||2F , (9)

where HF, HG, HF̂, and HĜ are the projection matrices of
their respective counterparts, that is, HF = F(FTF)−1FT . In
addition, we evaluate the sparsity of the solutions by measuring
the proportion of 0’s within F and G after shrinking elements to
0 with 10−10 as a cutoff.

We compare our method with three other popular NMF
methods, that is, NMF with multiplicative updates (Lee and
Seung 2001), semi-NMF (Ding, Li, and Jordan 2010), and
ONMF (Kimura, Tanaka, and Kudo 2015). The simulations are
conducted under an i7-7700HQ with eight cores at 3.8 GHz.
Three different scenarios are considered:

1. Fp×k where Fik ∼ Unif(0, 1) and Gn×k where Gjk ∼
Unif(0, 2).

2. Nonnegative and orthogonal Fp×k and Gn×k where Gjk ∼
Unif(0, 2).

3. Orthonormal Fp×k and Gn×k where Gjk ∼ Unif(0, 2).
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Based on the generated true F and G matrices, we construct
the observed X = FGT + E, where E is a matrix of random
error such that Eij ∼ N(0, 0.3). We then further truncate all
negative values in the observed X to 0 to enforce nonnegativity
to implement NMF and ONMF. In this simulation experiment,
we consider n = p = 500 and k = 10, 30, 50.

We implement the K-means initialization for the semi-NMF
(Ding, Li, and Jordan 2010). Lee and Seung (2001) and Kimura,
Tanaka, and Kudo (2015) proposed using random initialization
for the NMF and ONMF, respectively. For a fair comparison,
we initialize F and G using a slightly modified SVD approach,
where we truncate all the negative values in U to a small positive
constant δ = 10−10 to enforce nonnegativity and avoid the

zero-locking problem for the NMF. We then apply our update
rule for G as the initialization for G, that is,

F0 = [U]δ , G0 = [XTF0]δ ,

where [x]δ = max(x, δ). The average values of the above four
criterion over 100 simulation trials with different underlying
true F and G are reported under three scenarios in Tables 1–
3, respectively, where each trial is set to run 500 iterations.
We display the convergence plot of the objective function in
Figure 2–4 for all four methods, where the convergence criterion
under consideration is

0 ≤ f (F((i−1), G(i−1)) − f (F((i), G(i)) ≤ 0.0001.

Table 1. Comparisons of the proposed method with the other NMF methods on factorization accuracy, sparsity of the solutions, computation time, and convergence speed
under simulation scenario (1).

Average Orthogonal F G Time Iterations until
K residual residual εF εG sparsity sparsity (sec) threshold

SONMF

10 0.0874 3.47 × 10−29 0.345 0.409 0 1.64 0.59 12.6
30 0.0809 1.07 × 10−28 0.634 0.699 0 1.02 0.98 15.5
50 0.0749 2.19 × 10−28 0.839 0.913 0 0.91 1.21 11.3

ONMF

10 0.2912 0.475 3.808 1.040 83.13 0.01 0.52 14.4
30 0.7620 3.367 6.988 3.181 85.90 0.14 1.00 31.4
50 1.1925 9.625 8.972 4.168 83.83 0.35 2.07 50.5

NMF

10 0.1742 N/A 1.894 1.893 26.87 27.35 1.20 121.7
30 0.3498 N/A 3.326 3.330 28.37 28.76 7.03 364.3
50 0.5291 N/A 4.337 4.335 29.63 30.15 16.21+ 500+

Semi-NMF

10 0.1217 N/A 0.880 1.756 0 0 2.89 413.0
30 0.1862 N/A 1.858 3.479 0 0 10.34+ 500+
50 0.2751 N/A 2.611 5.049 0 0 17.26+ 500+

NOTE: The sparsity measures are given in percentages. The plus sign in columns 8 and 9 indicates that the convergence threshold has not been satisfied after 500 iterations.

Table 2. Comparisons of the proposed method with the other NMF methods on factorization accuracy, sparsity of the solutions, computation time, and convergence speed
under simulation scenario (2).

Average Orthogonal F G Time Iterations until
K residual residual εF εG sparsity sparsity (sec) threshold

SONMF

10 0.0774 1.95 × 10−24 0.274 0.486 0 4.80 0.55 11.0
30 0.0728 3.84 × 10−24 0.840 1.169 0 4.96 0.83 10.8
50 0.0664 2.57 × 10−24 1.400 1.765 0 4.87 1.16 11.1

ONMF

10 0.0827 0.447 0.420 0.535 62.5 1.35 0.59 26.0
30 0.0711 0.669 0.536 1.007 72.8 2.28 1.26 42.6
50 0.0671 1.775 0.806 1.660 75.6 4.71 2.32 58.0

NMF

10 0.1026 N/A 0.207 1.162 30.1 21.4 2.44 307.2
30 0.1233 N/A 0.669 2.886 40.3 28.3 7.55 379.4
50 0.1374 N/A 1.412 4.312 44.8 32.2 13.03 399.8

Semi-NMF

10 0.0746 N/A 0.274 0.373 0 0 0.27 30.0
30 0.0673 N/A 0.849 0.941 0 0 0.88 40.1
50 0.0628 N/A 1.509 1.747 0 0 1.73 49.7
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Table 3. Comparisons of the proposed method with the other NMF methods on factorization accuracy, sparsity of the solutions, computation time, and convergence speed
under simulation scenario (3).

Average Orthogonal F G Time Iterations until
K residual residual εF εG sparsity sparsity (sec) threshold

SONMF

10 0.0859 3.1 × 10−27 3.717 3.725 0 19.55 0.50 6.6
30 0.0771 2.4 × 10−25 6.348 6.376 0 17.26 0.69 8.0
50 0.0693 1.7 × 10−24 8.039 8.070 0 16.13 0.96 8.7

Semi-NMF

10 0.0854 N/A 3.741 3.732 0 0 0.16 8.2
30 0.0759 N/A 6.342 6.340 0 0 0.40 14.6
50 0.0671 N/A 8.007 8.008 0 0 0.76 18.6

Figure 2. Convergence plots for the average residual in (7) under scenario (1) for 4 the NMF variants. The SONMF is the only method to have converged to the true error.

Figure 3. Convergence plots for the average residual in (7) under scenario (2) for all 4 of the NMF variants. Only the first 100 iterations are shown as all methods apart from
the NMF have converged to the true error.

For better visibility between the convergence trends, we plot
log(residuals + 1) instead of the original scale. The last two
columns of Tables 1–3 indicate the time and the number of
iterations for each algorithm to reach this criterion.

5.1.1. Simulation Results for the Continuous Case
Tables 1–3 show that the SONMF has several advantages over
the other NMF methods. First, our model converges quickly
and consistently regardless of the structure of the true matrices,
reaching the convergence criterion and true error in only 10
iterations, greatly surpassing the rate of convergence of the other
models (Figures 2–4).

For scenario (1), our model is significantly better in terms
of the factorization accuracy and recreating the true matrices,
as shown by the smallest average residual, εF and εG values,
especially for larger K’s. For the semi-NMF and NMF, the mean
value over 100 trials fails to converge to the true error. We

believe this is due to the large number of saddle points that the
true F possesses, as shown by the large εF values. The semi-
NMF has the least constraints among these four models, and
converges to the true error eventually, but has a much slower
rate of convergence.

When the underlying structure of F is more well-defined as
in scenario (2), all four models converge to the true error. For
factorization accuracy, our model outperforms the NMF, but
performs slightly worse than the ONMF and semi-NMF. This is
expected as scenario (2) is tailored toward the ONMF’s formu-
lation, evident in the low εF. The semi-NMF has the lowest error
because it has the least amount of constraints. For scenario (3),
our model and the semi-NMF have similar performances, but
our model has a faster convergence rate. Note that the estimated
error is lower than the true error for some models in the above
scenarios. This is due to over-fitting in factorizing X̃, where
X̃ = X + E, in the sense that we also factorize the error matrix
E along with the true X. This issue becomes even more evident
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Figure 4. Convergence plots for the average residual in (7) under scenario (3) for all 4 of the NMF variants. Only the first 50 iterations are shown, as both models have
already converged to the true error and reached the convergence criteria.

when the true rank of F and G is less than the specified target
rank, especially for the nonconstrained semi-NMF. We refer to
Section A.3 of the Appendix for additional discussion.

Our algorithm successfully preserves strict orthogonality
throughout. This is contrasted with the increasing orthogonal-
ity residual that the ONMF yields as K increases. The strict
nonnegative versions yield sparser solutions compared to the
mixed variants, which aligns with previous studies (Lee and
Seung 2001; Guan and Dy 2009; Ding, Li, and Jordan 2010).
The semi-NMF returns little to no sparse elements at all in its
solution for all scenarios, which is consistent with Ding, Li,
and Jordan’s (2010) finding. Our model has a slight advantage
in this criteria over the semi-NMF, with a moderate degree of
sparsity in the third scenario. However, our analyses of the triage
datasets provided in Section 6.1 show that our algorithm yields
a moderate degree of sparsity in G (document-topic matrix),
which is beneficial for interpretation.

5.2. Simulation for the Binary Case

For the binary response, we use the mean value of the cost
function C(F, G) in Equation (6) as our evaluation criterion
instead of the normalized residual. That is,

C(F, G) = 1
N

∑
i,j

Xij(FGT)ij − log(1 + e[FGT ]ij), (10)

where N is the total number of elements in X. We also con-
sider the orthogonal residual, εF and εG given in Equations (8)
and (9), respectively. Additionally, we evaluate the difference
between the true and estimated probability matrices, εP = ||P−
P̂||2F .

For the binary simulation setting, we generate mixed-sign
F and nonnegative G such that Fij ∼ N(0, 1) and Gij ∼
Unif(0, 1). We then construct the true probability matrix P using
the logistic sigmoid function, P = e[FGT ]

1+e[FGT ] . We then add a
matrix of random error E to P where Eij ∼ N(0, 0.1). Finally,
we generate the true X where each Xij ∼ Bernoulli([P + E]ij)
and has dimension 500-by-500.

Similar to the continuous case, we consider K =
10, 30, 50.The average values of the above five criterion over
100 simulation trials are reported. For our method, we use a
step size of 0.01 for Newton’s update of G. We compare the
performance of our method with logNMF (Tomé et al. 2015),
where they set their step size for the gradient ascent to be 0.001.

For our model, the initialization for F and G are the same as
in the continuous case. However, this initialization resulted
in severe numerical issues for logNMF in our experiments.
Therefore, we initialize F and G with each Fij ∼ Unif(0, 1) and
Gij ∼ N(0, 1). We compare the results of both models after
running 500 iterations.

5.2.1. Simulation Results for the Binary Case
The result above shows that our model has a faster convergence
rate toward the true cost and, ultimately, a lower mean cost
than the logNMF (Figure 5). Additionally, our model has a
lower error for εP, εF, and εG, respectively, when both algo-
rithms reach the convergence criteria (Table 4). Due to the
implementation of a line search and Newton’s method in our
update scheme, the computation cost is higher, as reflected by
the time required to run 500 iterations. However, our model
reaches the true error in about half the iterations compared to
the logNMF, which compensates for the longer computation
time. Furthermore, our model yields a sparser solution, which
is beneficial for interpretation.

Unlike the continuous case, the SVD-based initialization
does not provide a rapid convergence to the true error for our
model. The reason here is because the SVD is applied on X,
but F and G are estimating the underlying probability matrix
of X and not X itself. For εP, the difference between P and P̂
converges once the average cost for the factorization reaches the
true cost. An important caveat to note here is that the rate of
convergence of our model is very sensitive to the step size of G.
In our numerical experiment, we discovered that the degree of
over-fitting increases as the number of basis vectors increases,
and thus the step size should be adjusted accordingly. For larger
K’s, it is recommended to use a smaller step size. We refer the
readers to Section A.4 in the Appendix for additional discussion
on the step size of G.

6. Triage Notes Case Study

In this section, we focus on the analyses of the triage notes
dataset. The vocabulary used in the notes is relatively different
across different medical complaints. Thus, it is necessary to
consider each complaint separately. For this study, we consider
the analyses of the triage notes under seven different medical
complaints. Our main objective is a binary classification prob-
lem where we aim to classify whether a patient is either (a)
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Figure 5. Comparison of the mean cost (top) and recovery of the probability matrix (bot) between our method and the logNMF.

Table 4. Comparisons between the proposed method and the logNMF on factorization accuracy, sparsity of solutions, and computation time.

Average Orthogonal F G Time
K cost residual εP εF εG sparsity sparsity (sec)

SONMF (binary)

10 0.4792 2.177 × 10−25 47.61 1.876 2.030 0 18.06 67.11
30 0.3124 1.577 × 10−23 72.74 4.394 4.249 0 21.22 81.06
50 0.2246 5.284 × 10−23 86.32 6.462 6.110 0 23.19 99.15

logNMF

10 0.4938 N/A 63.03 2.789 2.938 8.14 0 39.75
30 0.3385 N/A 90.41 5.649 5.639 7.56 0 46.21
50 0.2536 N/A 101.65 7.606 7.499 8.67 0 53.38

admitted or (b) discharged. To do so, we first fit a supervised
learning model on the bag-of-words after preprocessing the text
information. Then, we show that the classification error can
be improved by performing a linear transformation of basis
with our model and using the topics as features instead. In
addition, we also present the interpretation for both the word-
topic matrix F and document-topic matrix G identified by our
model for selected datasets.

We perform standard text preprocessing methods to clean
the triage notes. Specifically, we first convert the data into a
vector-space model (Salton, Wong, and Yang 1975), after remov-
ing numbers, punctuation, stop words, and stemming words
to their root form. Given n documents, we construct a word-
document matrix X ∈ R

p×n, where Xij corresponds to the
occurrence or significance of word wi in document dj, depend-
ing on the weighting scheme. We then consider the TF-IDF and
binary weighing (Gupta and Lehal 2009) for the continuous and
binary cases, respectively.

For classification, we denote the training and testing bag-
of-words as Xtrain and Xtest, respectively. Applying the matrix

factorization method yields a word-topic matrix Ftrain and
document-topic matrix Gtrain, such that the mixed and orthog-
onal constraint is imposed on the word-topic vectors in Ftrain.
After obtaining the factorized solution, we project both Xtrain
and Xtest onto the column space of Ftrain. Let Gproj = XT

trainFtrain
and Gtest = XT

testFtrain, then Gproj and Gtest are reduced dimen-
sion representations of Xtrain and Xtest, respectively, and replace
Xtrain and Xtest as the new features. Intuitively, we can regard
Ftrain as a summary device, where each topic consists of a linear
combination of different words. After applying the projection,
Gproj can be viewed as a summary of the original bag-of-word
matrix, where each document is now a linear combination of the
topics from Ftrain.

We apply a 5-fold cross-validation (Hastie, Tibshirani, and
Friedman 2009) for classification, and the results are averaged
over 20 different runs, where the observations in each run are
randomly assigned to different folds with stratified sampling
using the caret package (Kuhn 2008). On a side note, we also
consider both the 2-fold and 10-fold cross-validation. The for-
mer led to worse performance due to the smaller sample size
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Table 5. Datasets considered in this study.

Dimension
Datasets (Docs × Words) Baseline Linear KNN RF SVM

Altered Level of 5220 × 5128 51.15 75.01 53.26 75.06 75.32
Consciousness (ALC) (75.02) (54.79) (75.06) (75.40)

Cough 13084 × 5876 87.21 87.65 84.55 87.51 87.63
(87.21) (85.61) (87.57) (87.54)

Fever 7302 × 4770 77.20 81.52 77.31 82.07 82.61
(81.69) (77.43) (82.20) (82.79)

General Weakness 7442 × 5455 52.21 69.31 53.97 69.40 69.47
(69.52) (62.02) (69.48) (69.51)

Lower Extremity Injury 12377 × 5180 82.50 88.60 83.11 88.87 88.96
(88.67) (84.26) (88.75) (89.01)

Shortness of Breath 9322 × 4659 55.04 74.29 55.20 74.31 74.40
(74.17) (57.22) (74.32) (74.43)

Symptoms of Stroke 5036 × 3869 54.83 74.21 55.54 74.27 74.33
(74.20) (56.58) (74.21) (74.38)

NOTE: The dimension of the document-word matrix, the proportion of the majority class (baseline for classification accuracy) and classification accuracy on the bag-of-
words using the considered models are shown. For each dataset, the classification accuracy for both the continuous and binary case (in parenthesis) are provided.

of the training set in each fold, while the latter yielded similar
results as the 5-fold. Thus, we only report the results for the 5-
fold cross-validation.

We compare our model with four other NMF methods. For
TF-IDF weighting, we apply our continuous model and compare
it with the NMF (Lee and Seung 2001), ONMF (Kimura, Tanaka,
and Kudo 2015), and semi-NMF (Ding, Li, and Jordan 2010).
For binary weighting, we consider the comparison with the
logNMF (Tomé et al. 2015). The stopping criteria of the NMF
algorithms are set to 100 iterations. During our experiments,
we noticed that the default step size η = 0.001 used in Tomé
et al. (2015) was too large for the logNMF on these datasets and
caused unstable performances. Thus, we use η = 0.0005 for the
logNMF in the following experiments.

We implement 4 different supervised learning models, the
penalized linear regression (Tibshirani 1996), random forest
(Breiman 2001), K-nearest neighbor (Dudani 1976), and sup-
port vector machine (Suykens and Vandewalle 1999). We con-
sider different tuning parameters for each model (alpha for
linear models, nodesize for random forests, number of nearest
neighbors for KNN, and kernel/gamma/cost for SVM), and
report the best result for each model. These models are imple-
mented using the R packages glmnet (Friedman, Hastie, and
Tibshirani 2010), randomforest (RColorBrewer and Liaw 2018),
class (Ripley, Venables, and Ripley 2015), and e1071 (Meyer et al.
2014), respectively. We show that our method of factorization
is able to improve the classification performance over the naive
bag-of-words, while also outperforming other matrix factoriza-
tion methods. In addition, we present the average residual of the
factorization and the sparsity of the solutions. Note that these
two measurements are computed from the full bag-of-words,
and not the training sets from cross-validation.

6.1. Results for the Classification of Triage Notes

The seven triage datasets we consider in this study are given in
the table below. The dimensions of each dataset, the baseline
accuracy of classifying all observations as the majority class, and
the classification accuracy using different supervised learning
models on the document-word matrix are also presented.

Table 5 shows that the triage notes contain predictive sig-
nals toward the disposition of patients to varying degrees. The
penalized linear regression, random forest, and SVM share
similar performances. The KNN performs considerably worse
than the others, likely due to the ineffectiveness of a distance-
based classification approach on such a large feature space. On
the other hand, there is no clear advantage between either the
continuous or the binary formulations. From our observation,
the medical complaints that consist of more severe symptoms
(i.e., ALC, stroke) have a much more significant improvement
from baseline compared to those that are relatively common
(cough, fever). This may be because the underlying causes for
these common symptoms are much more diverse, and may
require further examinations (i.e., x-ray) by the doctors to assess
the severity of these patients. Meanwhile, the causes for the
severe symptoms may be easier to identify and evaluate (e.g.,
ALC due to alcohol consumption vs. ALC due to head trauma).
Thus, the verbal description from patients themselves may be
sufficient for a doctor to make a diagnosis.

Next, we present the classification performance after trans-
forming the basis with the various NMF methods. We present
the results for the ALC dataset in Table 6, while the results for
the remaining datasets are given in Section A.5 of the Appendix.

We observe that applying factorization and basis projection
improves the classification performances by up to 1% compared
to the bag-of-words model across different datasets. Our pro-
posed model achieves the best performance under the radial
kernel SVM, which outperforms the best result of any other
NMF models. The penalized linear regression also yields com-
parable performances. Additionally, our method has a slight
advantage in terms of precision, recall, and F1 compared to
other models (Table 7). This shows that a strict orthogonal basis
is beneficial for improving prediction by reducing the potential
multicollinearity among the features. The classification perfor-
mance for the continuous case is better than the binary case,
with the logNMF having a significantly worse performance than
the other methods. Thus, we recommend using the continuous
formulation in practice. Our model yields an increasingly sparse
solution in the G matrix as the number of topics increases.
This is advantageous for interpretation compared to the dense
solutions obtained by the semi-NMF, despite both methods



1620 Y. LI ET AL.

Table 6. Classification results for the “Altered Level of Consciousness” dataset.

Altered Level of Consciousness

K Cost Sparsity (F,G) Linear KNN RF SVM

SONMF

10 0.1370 (0, 24.08) 74.03 73.61 74.08 74.29
25 0.1315 (0, 34.16) 74.40 72.23 74.29 74.47
50 0.1247 (0, 42.06) 74.96 71.40 74.23 75.10
100 0.1145 (0, 47.70) 75.39 67.56 74.22 75.73
150 0.1071 (0, 49.27) 75.72 63.71 74.10 75.89

NMF

10 0.1375 (61.89, 42.31) 72.54 72.00 72.91 73.06
25 0.1324 (75.14, 53.99) 73.21 71.29 73.81 73.29
50 0.1258 (81.82, 62.67) 74.12 71.39 74.25 73.96
100 0.1152 (86.65, 72.35) 74.76 70.24 74.24 74.70
150 0.1069 (88.87, 77.66) 75.13 68.01 74.02 74.91

ONMF

10 0.1374 (66.12, 41.03) 72.92 72.19 73.15 73.23
25 0.1322 (75.95, 57.85) 73.49 71.56 73.83 73.33
50 0.1256 (80.99, 70.31) 74.23 71.65 74.23 74.19
100 0.1153 (83.70, 83.61) 74.89 71.30 74.28 74.93
150 0.1073 (84.64, 89.38) 75.32 70.45 74.22 75.11

Semi

10 0.1368 (0, 0) 73.68 73.07 74.06 74.35
25 0.1311 (0, 0) 74.37 71.56 74.15 74.59
50 0.1235 (0, 0) 74.69 69.55 73.86 74.93
100 0.1115 (0, 0) 75.08 65.16 73.91 75.47
150 0.1018 (0, 0) 75.30 62.24 73.55 75.62

SONMF (bin)

10 0.0273 (0, 0) 69.10 68.72 69.78 70.18
25 0.0259 (0, 0) 70.18 67.95 70.39 71.01
50 0.0207 (0, 0.10) 72.19 67.40 71.54 72.70
100 0.0137 (0, 1.40) 73.65 65.56 72.34 74.32
150 0.0110 (0, 2.26) 74.29 63.91 72.56 74.68

logNMF (bin)

10 0.0179 (0.01, 0) 56.75 54.75 55.74 57.16
25 0.0182 (0.04, 0) 59.41 57.12 58.65 59.92
50 0.0229 (0.97, 0) 60.45 58.01 59.92 61.10
100 0.0347 (8.85, 0) 63.28 60.98 62.26 64.17
150 0.049 (16.70, 0) 65.31 62.37 63.76 66.18

NOTE: The highest classification accuracy for each supervised learning method is
marked in bold, and the highest accuracy overall is marked in bold and italics.
The first four methods are applied using the continuous bag-of-words, while the
last two methods are applied using the binary bag-of-words. The final cost and
sparsity of the factorized solutions are also provided.

Table 7. Accuracy, Precision, Recall, and F1 for the best supervised model after
clustering using different NMF approaches.

Altered Level of Consciousness

Method Accuracy Precision Recall F1

SONMF 75.89 76.53 73.10 74.75
NMF 75.13 76.11 71.60 73.76
ONMF 75.32 76.40 71.66 73.93
Semi 75.62 76.49 72.35 74.33

SONMF (bin) 74.68 75.16 71.98 73.51
logNMF (bin) 66.18 66.07 63.37 64.66

allowing mixed values in F. On the other hand, neither binary
methods yield sparse solutions (Table 6).

Another direct benefit of removing the correlations between
features with the SONMF is the topic features in our model is

much more efficient at representing the main information of the
data. Our model effectively reaches the classification accuracy
of the bag-of-words model with only 25–50 topics, whereas
other methods require somewhere between 50–100 topics or
even more. The classification accuracy also increases with more
topics at a diminishing rate, but has a larger increase in other
methods, especially under the nonnegative approaches. From
our experiment, having more than 150 basis vectors does not
provide a noticeable improvement in performance. Aside from
over-fitting, the computation cost for factorizing a large dimen-
sion bag-of-words matrix increases sharply as K increases, and
thus the trade-off is not warranted.

The above results suggest that choosing the appropriate num-
ber of topics is a challenging problem. To select the appropriate
rank k from a data driven perspective, we have considered the
elbow plot (Abdi and Williams 2010) as a metric. However, as
shown in Appendix A.5, there were no evident cutoff point,
and thus it seems that the elbow plot is ineffective for our
application. Regardless, many supervised learning methods in
the next stage of the modeling may effectively reduce the impact
of over-selecting the rank. Therefore, the selection of the appro-
priate rank should be considered jointly from both the matrix
factorization and supervised learning model perspectives. Nev-
ertheless, a consensus from our numerical studies, including
the other 6 datasets, shows that 100 topics are sufficient for
classification. For additional discussion on this problem, please
refer to Section A.5 of the Appendix.

Although the improvement using topic modeling on top of
bag-of-words may not be significant, it is nevertheless numer-
ically consistent and clinically important. Since this study is
directly related to people’s health, even a small increase in clas-
sification accuracy may be clinically significant and critical to
some patients. From the medical perspective, improved predic-
tions of disposition at the early phase of triage can lead to better
patient streaming strategies in ED. Specifically, more accurate
predictions means that more patients are sent to the “right”
queue, which can improve operational efficiency and reduce the
overall waiting and length of stay (LoS) in ED. In addition, more
accurate predictions of admissions can help Intensive Care Units
(ICU) coordinate beds in advance to meet the true demands
better. This can significantly reduce the boarding time and save
crucial ED resources to serve more patients and, consequently,
improve clinical outcomes, healthcare efficiency, and revenue.
Specifically, less ED crowding has been shown to be associated
with lower mortality (Sprivulis et al. 2006; Sun et al. 2013).
In addition, each hour of reduction in boarding time would
increase daily revenue by $9.693 to $13,298 from patients who
left hospitals or are diverted due to overcrowding (Pines et al.
2011).

6.2. Interpretation of the Word-Topic Matrix

In this subsection, we present examples of the word-topic vec-
tors (F matrix) illustrated by our method from the “Lower
Extremity Injury” and “Symptoms of Stroke” datasets. The
uncorrelated word-topic vectors provide us with an immediate
interpretation of the main reasons and causes for the hospi-
tal visits. The meaning of each topic can be interpreted by



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1621

Figure 6. Correlation heatmap of 10 generated word-topic vectors from the SONMF (left) and NMF (right) for Lower Extremity Injury dataset. The “T” stands for “Topic.”

Table 8. Words with the largest magnitude under the first five topics generated by the SONMF for the Lower Extremity Injury and Stroke datasets.

(SONMF) Lower Extremity Injury (SONMF) Symptoms of Stroke

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Positive Positive

hip foot knee xray play left team right equal episode
rotate ankle fall fracture roll side stroke side grip min
glf bruise twist sent soccer leg see eye strong last
break swell bend told pop arm aware facial steady resolve
morphin ago left done heard weak place face strength approx

Negative Negative

ankle toe play weight ago deny deny left gait day
knee cap pop able knee note resolve leg left note
foot alright soccer bear week right symptom weak unsteady onset
swell drop day note fall episode home state arm side
calf big ago aspect increase state week confuse weak place

Abbreviations: glf (ground-level fall), ubl (Ubiquitin-like protein), gcs (glasgow coma scale).

examining the words with the largest positive weight calculated
by the proposed model. On the other hand, the words with the
largest negative weight under the same topic indicate that they
are negatively correlated with the topic. This implies that words
with negative weights tend not to appear together with words
with positive weights. Consequently, this provides an insight
into identifying and isolating the main causes of admission or
discharge for hospital management. In addition, the generated
topics also inform us on what symptoms or complaints tend to
happen simultaneously, and what complaints tend not to co-
exist. To illustrate the above points, we present the heatmap of
the correlations among the word-topics in F, along with the top 5
words with the largest weights (positive or negative) under each
topic vector. For reference, we compare the heatmap and topic
vectors generated by our model with the NMF (Figure 6).

Figure 6 shows that the correlation between each word-topic
generated by the SONMF is 0, as opposed to the correlated
features generated by the NMF. Based on Table 8, each topic
specifically points out the location and cause of the injury. We
can interpret Topic 1 as on injury from falling (falling at ground-
level leads to breaking/over-rotation of the hips), Topic 2 on
ankle injury, Topic 3 on knee injury, Topic 4 on x-rays, and Topic
5 on soccer by looking at the words with positive weights. Each
topic has its distinct interpretation, and the words with negative
weights under the same topic refer to a completely different
location and cause. For instance, Topic 3 and Topic 5 are almost
mirrors to each other. The interpretations of these topics are
also sensible, as it is unlikely that patients who injured their
knees would also twist their ankles during soccer since people

are likely to restrain themselves from further physical activities if
any of these conditions happen. The contrast in meaning is more
evident in the Symptoms of Stroke dataset. For Topics 1 and 3,
we see that our model correctly identifies “left” from “right.” For
Topic 4, we also observe that “steady” and “unsteady” have been
placed in the opposite signs under the same topic. This further
exhibits our model’s ability to cluster correlated terms while also
differentiate between word clusters.

The SONMF and NMF both identified and captured the
main topics of the Lower Extremity Injury dataset, and agrees
with each other to a certain extent. Tables 8 and 9 show that
three pairs of topics generated by the SONMF and NMF have
a high degree of overlap. However, we observe that the topics
generated by the SONMF are more distinct than the NMF. For
instance, Topics 2, 4, and 5 generated by the NMF are related
to fall-induced injuries, while Topics 1, 4, and 5 are related to
leg-injury. In addition, the SONMF provides more information,
both semantically and numerically compared to the NMF due to
the additional sub-clustering property that the negative weights
provide.

6.3. Interpretation of the Document-Topic Matrix

In this subsection, we present the interpretation of the generated
document-topic vectors in G. The interpretation of the G matrix
is the same for all the NMF methods, where each column
(patient/document) in X is represented as a purely additive
linear combination of the columns (topic vectors) generated in
F. We can thus interpret a patient’s record by examining the
weights of each topic. Here we first present the violin plot of
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Table 9. Words with the largest magnitude under the first five topics generated by the NMF for the Lower Extremity Injury and Stroke datasets.

(NMF) Lower Extremity Injury (NMF) Symptoms of Stroke

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

leg hip xray fall day right stroke episode found left
state rotate fracture knee leg numb team resolve staff gait
right glf sent twist fall arm see min family unsteady
numb morphin told bend drop leg page symptom command arm
tingle leg done bruise twist side stat last lsn grip

Abbreviations: glf (ground-level fall), ubl (Ubiquitin-like protein), gcs (glasgow coma scale).

Figure 7. Violin plot of the normalized word loadings generated by the SONMF
grouped by dispositions for the Lower Extremity Injury dataset. Blue represents the
discharged patients, while red represents the admitted patients.

the loadings on the first five topics in G for patients who were
in the Lower Extremity Injury dataset in Figure 7. Figure 7
indicates that Topics 1 and 2 are significantly different in their
distributions of loadings. This suggests that patients weighted
toward Topic 1 (injury due to ground-level falls) are more likely
to be admitted, while patients weighted toward Topic 2 (ankle
bruising/swelling) are more likely to be discharged. The remain-
ing three topics are less clear to distinguish between these two
dispositions, but Topic 4 (x-ray) has a higher rate of admittance,
while Topic 5 (soccer) has a higher rate of discharge, which are
intuitively sensible.

Lastly, we present the generated document-topic vectors
by the SONMF for two representative notes from the Lower
Extremity Injury dataset in Table 10, one for “admitted” and one
for “discharged.”

Table 10 shows that our model has captured the main senti-
ment of these notes according to the weights of these 5 topics.
The above findings indicate our model is able to identify the
main reasons behind patients’ visits and their disposition status.

7. Conclusion

In this case study, we aim to build a classifier to predict patients’
disposition from a triage notes dataset provided by the Alberta

Medical Center, and show the potential advantages of using
machine learning approaches on triage notes in addressing
ED crowding. Additionally, we also intend to understand the
main causes of the patients’ visits and dispositions. The triage
text data is challenging to model and interpret due to its
high-dimensional and noisy structures. To address these data
challenges, we proposed a SONMF as a topic model to bi-
cluster the patients and words jointly into a lower dimension
of topics. Our proposed method produces an orthogonal word-
topic basis matrix, where each patient can be rerepresented
as a strictly additive linear combination of these topics. The
benefits of our method over the existing NMF methods are 2-
fold. First, our method generates uncorrelated projection bases,
which alleviate multicollinearity and over-fitting problems. This
provides numerical stability and enhances classification perfor-
mances using reduced latent features. Second, the generated
topics themselves provide a meaningful interpretation, which
helps the hospital understand patients’ needs for each medical
complaint.

We show that the text information contains significant pre-
dictive signals toward the final disposition of each patient by
performing topic modeling and classification. These predictions
can be directly implemented to a streamlined queue process to
improve operational efficiency and reduce the overall waiting
time and length of stay in ED, which consequently improves
clinical outcomes, healthcare efficiency, and revenues. However,
extra caution needs to take when implementing a machine
learning model. Since most of the patients in an ED are in
relatively vulnerable conditions, thus a poor assignment can be
extremely dangerous and costly. Therefore, it is recommended
that the implementation of these models should be consid-
ered cautiously and separately for each medical complaint, and
should only be used when there is a high degree of confidence.
Nevertheless, regardless of the classification performance of
these models, the generated topic vectors are still beneficial
in most situations, which can guide hospital administrators,
doctors, and nurses in making better decisions for patients from
a data-driven perspective.

We believe that this article potentially simulates new interests
for further investigation to better aid the quality of emergency
health care for hospital patients.

Table 10. Topic representation of selected triage notes (top: discharged, bottom: admitted) from the Lower Extremity Injury dataset.

Notes Topic 1 Topic 2 Topic 3 Topic 4 Topic 5

Tried to jump over fence and hit left knee, heard a pop, today pain increasing
behind knee. Swollen since yesterday.

0 3.29 1.04 0.51 0.68

Glf on hardwood floor, landing on left hip, now c/o pain to left groin, non
radiating, sharp, worse on movement. Given morphine by EMS.

9.14 1.13 1.87 0 0.75



JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 1623

Supplementary Materials

The supplementary material contains detailed derivation of the orthogonal
preserving algorithm and additional numerical results. In addition, the
details of how to reproduce the results in the manuscript is also provided.
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