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Problem definition: Motivated by an intriguing observation of a time-varying pattern in physician productivity in emer-

gency departments (EDs), we examine the contributing factors to this time-varying pattern analytically and empirically.

We then investigate the impact of incorporating time-varying service rates in ED modeling and physician staffing. Method-

ology/results: We model the behavior of individual physicians within their shifts using a continuous-time optimal control

framework and characterize the structure of the optimal policy. We find that physician multitasking and handoff (or

overtime) avoidance may drive individual physicians’ transient behavior and contribute to the time-varying pattern in

physician productivity. We also provide empirical evidence that shift hour is the most important factor in explaining the

variations in physician productivity and predicting physician productivity. We then investigate the impact of incorporating

the time-varying physician productivity in ED modeling and staffing. Validated using data from two Canadian EDs, our

simulation results demonstrate that the multi-server queuing model with shift-hour-dependent service rates can accurately

capture time-of-day-dependent patient waiting times. In contrast, the simulated waiting times under the assumption of

constant service rates deviate significantly from the data. Furthermore, a case study using data from a Canadian ED

shows that the optimized staffing plan considering the time-varying service rates can improve upon the current physician

staffing in practice. In contrast, when the time-varying service rates are ignored and a constant service rate is assumed,

the staffing plan generated using the same algorithm performs even worse than the existing one. These findings suggest

that accounting for the time-varying physician productivity in ED staffing decisions can lead to substantial cost savings.

Managerial implications: Our findings emphasize the importance and necessity of considering the time-varying nature

of physician productivity in the planning and allocation of physician resources to improve ED operations.
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1. Introduction
Emergency department (ED) overcrowding is a pressing issue facing many countries globally, significantly

impacting EDs’ ability to provide timely care (Pines et al. 2011), affecting EDs’ ability to provide timely

care. As a result, extended patient waiting times have become extremely common in many healthcare

1



Author: ED Modeling and Staffing with Time-Varying Productivity
2 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

systems around the world. Given the critical nature of this challenge, the importance of understanding the

driving factors behind ED crowding and long patient waiting times cannot be overstated. The ED patient

flow process is inherently complex, characterized by time-varying demand, staggered shift pattern, and a

network structure, rendering it nearly impossible to obtain any analytical performance measures. Despite the

difficulty in evaluating time-dependent metrics (e.g., waiting times, throughput), these metrics are crucial

for system-level decision-making, such as physician staffing optimization.

Figure 1 Patient arrival rates, average waiting times, physician staffing levels, and total new patients seen
per hour (PPH) by all physicians in the main ED area (excluding fast-track area) of our study ED
from January to July 2015. The error bars represent 95% confidence intervals.
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ED operations are naturally modeled as queueing systems, which requires a good understanding of the

arrival and service processes. Using patient visit data from an urban tertiary hospital in Alberta, Canada,

we plot the average patient arrivals per hour (demand for emergency care), physician staffing levels (ED

capacity), and average waiting times (from triage to first assessment by a physician) by the time of day in

Figure 1. We observe that the physician staffing level in our study ED is carefully designed to match the

time-varying demand. This is done by staggering shifts of different lengths; see a detailed description of the

shift structures in Section 3.2. However, the result is less than satisfactory, as the average waiting time varies

significantly over the course of the day and exceeds two hours at times.

A key determinant of the patient waiting time is physicians’ speed in picking up new patients, measured

by PPH—the number of new patients picked up by a physician per hour. Note that PPH is not the rate at

which patients complete treatment in the ED, which is usually referred to as throughput; rather, it is the rate

at which physicians pick up new patients and effectively end their waiting in the waiting room. PPH has

been used as a measure of a physician’s productivity; see, e.g., Joseph et al. (2018, 2021), Zaerpour et al.
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2022, and Niewoehner et al. (2023). Hereafter, we use physician productivity and physician service rate

interchangeably.

We add the plot of the total physician PPH, i.e., the total number of new patients seen per hour by all

physicians on duty, by the time of day to Figure 1. An intriguing observation is that the total physician

PPH varies significantly, even when the staffing level remains constant. Take the 10:00 to 21:00 period

as an example: there are five physicians on duty during this 11-hour period, except from 12:00 to 13:00.

However, the total physician PPH varies from 5.9 to 10.0, a 69% difference. Interestingly, the highest level

of PPH does not coincide with the peak staffing hour, which occurs between noon to 13:00.1 In addition, the

total physician PPH displays a relatively small degree of variability at all times of day, as evidenced by the

narrow 95% confidence intervals. This finding underscores the robustness of the PPH pattern. Moreover,

we analyzed the total physician PPH by categorizing it into weekdays and weekends. Nevertheless, our

statistical analysis shows that the differences between these two categories are statistically insignificant (at

the 5% level) for most hours of the day. Motivated by this system-level behavioral anomaly and the wisdom

from the classical queueing theory that higher variations in service times lead to longer waiting times, we

investigate this observation further by scrutinizing the PPH at the individual physician level.

Figure 2 The average number of new patients seen per hour (PPH) and the average physician workload for
all 7-hour shifts in the main ED area, using data from January to July 2015. Physician workload
refers to all patients under a physician’s care at any given time of the shift, which is also referred
to as the level of multitasking (KC 2013).
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Most shifts in our study ED are 7 or 8 hours long. Figure 2 shows the average PPH by shift hour of

all 7-hour shifts in the non-fast-track area from our data (see the PPH plot for 8-hour shifts in Figure 10,

1 One might conjecture that the variation in total physician PPH is a result of physician idling due to no patient waiting to be seen
during certain periods. However, our data show that there were always new patients waiting to be seen during the high-load period
(10:00 to 21:00) in the study ED during our study period (January to July 2015).
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Appendix A). Based on the time-varying structure of PPH observed from Figures 2 and 10, we partition a

shift into three phases, within each phase PPH exhibits distinct patterns: the start-of-shift phase (the first

two hours), the end-of-shift phase (the last hour), and the middle-of-shift phase (the remaining hours of the

shift). We observe that PPH decreases exponentially during the start-of-shift phase—from 3.6 in the first

hour to 1.94 in the third hour (a 46% drop) in Figure 2; then, it plateaus during the middle-of-shift phase;

after which, it drops to near zero in the end-of-shift phase. The pattern becomes even more significant for

7- and 8-hour shifts using half an hour as the time resolution; see Figure 11 in Appendix A. We observe a

similar pattern when we further plot the PPH for each individual physician or a specific type of shift. Similar

structures were observed by the emergency medicine community using data from U.S. hospitals (Joseph

et al. 2018, 2021). Hence, we conclude that this time-varying pattern of physician PPH is highly robust.

The physician-level PPH determines the service speed of the ED, which has a crucial impact on system-

level performance metrics such as patient waiting times and throughput. Hence, it is critical to understand the

factors driving this time-varying pattern of physician PPH. To the best of our knowledge, this time-varying

pattern of physician PPH has not been thoroughly investigated in the existing literature. Most prior studies

have focused on analyzing ED performance under the assumption of constant service rates, overlooking the

dynamic nature of physician productivity over the course of a shift; see, e.g., Ingolfsson et al. 2002, Savage

et al. 2015, Wang et al. 2022. Therefore, we aim to identify factors that influence physician productivity

and assess their respective impacts. Specifically, we focus on two questions: (i) What operational factors

contribute to the time-varying physician PPH? (ii) What is the potential impact of incorporating time-varying

service rates in ED modeling and physician staffing?

Our study makes the following contributions. First, to understand the contributing factors to the time-

varying physician PPH, we use an optimal control framework to model a physician’s decision problem

within a finite-length shift, balancing the trade-off between throughput and patient handoff (i.e., transfer of

patient care from one physician to another). We obtain closed-form expressions for the time-varying PPH

under the optimal policy, and our results reveal a structural similarity between the PPH derived from our

solution and the empirical PPH from data. This similarity motivates a plausible mechanistic explanation for

the time-varying pattern of PPH: (i) physician multitasking behavior contributes to the exponential decay

during the start-of-shift phase, and (ii) physician handoff and overtime avoidance behavior leads to the

sharp drop in the end-of-shift phase. Another insight from our analytical results is that allocating additional

resources to test centers not only enhances test turnaround times but also encourages physicians to attend to

more new patients due to reduced concerns about overtime and patient handoffs. Our results also support

setting a common cutoff time for signing up new patients approaching the end of their shift.

Second, we conduct an empirical study to investigate behavioral factors contributing to the time-varying

physician productivity, such as physician workload and system congestion, which complements mechanistic

factors identified by the optimal control framework. We find that shift hour is the most important feature in
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explaining the variation in PPH and predicting PPH. In conclusion, our results suggest that time-varying is the

nature of physician productivity and shift-hour-dependent service rates should be considered in ED modeling

and staffing. Hence, this study advances our understanding of the time-varying physician productivity.

Third, we investigate the impact of considering the time-varying physician productivity in ED modeling

and physician staffing. Building on the time-varying nature of PPH, we model the complex ED system by

a multiserver queue with nonstationary Poisson arrivals and exponential service times with time-varying

rates. The simulation results show that our model produces time-of-day-dependent performance metrics

that closely match the data from two Canadian EDs. In contrast, the outputs of the same simulation model

that ignores the time-varying physician service rates (i.e., use a constant rate) deviate significantly from the

data. Furthermore, through a case study using data from a Canadian ED, we find that the optimized staffing

plan that considers the time-varying service rates outperforms the current physician staffing. Conversely,

when the time-varying service rate is ignored and a constant service rate is assumed (which is the prevalent

practice), the staffing plan generated using the same algorithm performs even worse than the current staffing

plan in practice. Hence, our results highlight the importance of considering time-varying physician service

rates in ED modeling and staffing decisions.

The rest of this paper is organized as follows. We discuss the relevant literature in Section 2 and introduce

the study setting in Section 3. We investigate the contributing factors to physicians’ time-varying productivity

through an optimal control model in Section 4 and empirically in Section 5. We study the impact of

considering time-varying service rates in ED modeling in Section 6 and physician staffing in Section 7.

Section 8 concludes the paper and points to future research directions. All proofs and additional results are

given in the appendices.

2. Literature
Recent years have seen wide applications of operations research/management tools to improve healthcare

access and reduce costs (see Saghafian et al. 2015 and Dai and Tayur 2020 for an overview). Our work

aims to better understand the decision-making of ED physicians underlying their time-varying productivity

and thus is relevant to studies of healthcare workers’ behavioral issues. Evidence has shown that healthcare

workers adjust their service rates when faced with a heavy workload (KC and Terwiesch 2009, Powell et al.

2012, Ding et al. 2024), high level of multitasking (KC 2013), and overcrowded systems (KC and Terwiesch

2012, Armony et al. 2015, Berry Jaeker and Tucker 2016, Batt and Terwiesch 2016). Physicians may also

adapt their patient prioritization behavior (Ding et al. 2019, Li et al. 2023), admission decisions (Kim et al.

2015, 2020, Freeman et al. 2016), and routing decisions (Freeman et al. 2021, Lu and Lu 2018) to the level

of system congestion. Many studies have investigated other behavioral factors and mechanisms in healthcare

settings. Interested readers are referred to KC et al. (2020) and Cho et al. (2019) for overviews on this topic.

Among them, studies that explore physicians’ behavior related to shifts are particularly relevant to our

study. Using a parametric hazard model, Batt et al. (2019) study the rate at which physicians complete
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patient treatments in EDs and find that the rate is lowest early in the shift and highest toward the end of

shift. Moreover, handed-off patients experience a slightly higher treatment rate and 72-hour revisit rate than

non-handed-off patients. Using a simulation study, Batt et al. (2019) examine how to reduce handoffs by

adjusting shift length and new patient cutoff rules. Similarly, Chan (2018) find that ED physicians are less

likely to accept new patients and tend to speed up the treatment of existing patients near the end of shift.

Deo and Jain (2019) examine the change in system speed using data from an outpatient department, where

patient treatments must be completed before the end of the service episode (unlike EDs). They find that the

service speed of a patient is slower at the start and progressively increases toward the end of the service

episode. The differences between the studies above and our work are twofold: First, we focus on the rate

of ED physicians picking up new patients within their shift (i.e., PPH). We find that PPH is the highest at

the start of a shift, plateaus in the middle, and drops to its lowest approaching the end of shift. Our results

suggest that both physician multitasking due to the repetitive nature of emergency care and physicians’

efforts to avoid patient handoffs may be the driving force behind the changes in PPH over a shift. Second,

PPH is the rate that effectively ends a patient’s waiting in the waiting room. Through a data-calibrated

simulation model, we demonstrate that considering the time-varying PPH helps build accurate models for

ED patient flow, and models ignoring it generate outputs that deviate significantly from data, which further

differentiates our study from the literature. It is worth noting that a recent study Niewoehner et al. (2023)

find that working with familiar peers can increase ED physicians’ PPH in a shift which sheds light on the

variation in PPH from an interesting organizational perspective, and Zaerpour et al. (2022) empirically

identify factors correlated with PPH (without explaining the mechanism), and then leverage this knowledge

to assign physicians to predetermined shifts. In contrast, our study investigates the factors that contribute to

the time-varying nature of PPH using an optimal control framework and empirical data. We then demonstrate

through a data-calibrated simulation model that it is critical to incorporate the time-varying nature of PPH

in modeling ED patient flow and physician staffing. Thus, both studies are relevant to ours but different in

their research methodologies and objectives.

The insights into physicians’ time-varying PPH obtained from the optimal control framework motivate

our novel 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) model for ED patient flow. Hence, our work is also relevant to the literature

on ED modeling and patient flow management; see, e.g., Dobson et al. (2013), Huang et al. (2015). Whitt

and Zhang (2017) propose an infinite-server queueing model of the ED with a time-varying arrival process,

where the length of stay is used as the patient service time. Simulation results show the importance of

considering the time-dependent nature of the service time, which aligns with the insight from our study.

In contrast to the infinite-server model in Whitt and Zhang (2017), our model explicitly accounts for the

time-dependent physician staffing level in the model, which can support physician scheduling (as shown by

the case study in Section 7).
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Methodology-wise, we use the optimal control framework to capture the trade-off between throughput

and patient handoff to understand individual physicians’ transient behavior during a shift. Hence, works

that use fluid control models to support decision-making in healthcare systems (Hu et al. 2022, Chan et al.

2021) are most relevant to our study. Hu et al. (2022) use an optimal control framework to study decisions

on allocating resources for proactive care when considering patient condition deterioration. They obtain

optimal scheduling policies when the system is (i) in a normal state of operation and (ii) under a random

shock. Chan et al. (2021) study the dynamic assignment of nurses in EDs at the beginning of discrete shifts

by a fluid control model. They obtain insights on the structure of “good” policies and use simulation to show

that their heuristics on nurse reassignment can significantly reduce the system cost compared to without

reassignment.

Finally, we note the emergency medicine community has also observed a time-varying pattern of physician

productivity levels. Joseph et al. (2018) find that estimating physician productivity as a simple average

substantially misestimates physicians’ capacity and suggests that the time-varying pattern should be factored

into physician staffing. Joseph et al. (2021) find that a decrease in PPH does not reflect a decreasing workload.

These studies differ from ours in both the study objectives and framework.

3. ED Operations and Patient Flow
In this section, we describe the patient flow process in the main area of our study ED. The fast-track area, a

separate ED area with dedicated medical teams, is not the focus of this study. Note that our description is

based on EDs in Alberta, Canada, and the operations in EDs of other regions may be different. Nevertheless,

we believe that the key features (such as patients’ return for service) are shared among most EDs. A depiction

of the patient flow in the main ED area is provided in Figure 3.

Figure 3 A depiction of the patient flow process in the main area of an emergency department with 𝑘

physicians.
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3.1. Patient Flow
Upon arrival, patients are triaged into one of five levels, with a lower level indicating higher urgency. After

triage, patients wait in the waiting room. In our study ED, the chief nurse decides which patient to move

to the treatment room when an ED bed becomes available. When a physician becomes available, she will

choose a patient from the roomed patients for initial assessment2 based on a given prioritization rule (Ding

et al. 2019, Li et al. 2023). Physicians occasionally select patients from the waiting room directly. After the

initial assessment, some patients may leave the ED, while others may undergo diagnostic tests or medical

procedures. (For simplicity, we hereafter use tests to represent all tasks performed by non-physician staff.)

Those patients will join the queue for testing (see Figure 3) and return to the same physician for reassessment

when the test results are ready. We refer to patients waiting to be seen in the waiting room as new patients

and those waiting for reassessment as return patients. A patient may return to the same physician for service

several times during his sojourn in the ED.

In our study ED, when a physician finishes an ongoing task, she logs into the ED information system

through a terminal. The upper half of the screen shows the reassessment requests from her existing patients,

and the lower half shows all the new patients waiting to be seen. The information on the upper half is visible

to this physician only, whereas the information on the lower half is available to all physicians. In general, a

physician processes all of the reassessment requests before signing up a new patient to limit patients’ length

of stay. Physicians may also follow the shortest processing time rule because reassessment generally takes

less time than treating a new patient. This has important implications for our model in Section 4 as we

assume physicians prioritize reassessment tasks over signing up a new patient. At last, a patient departs the

ED if discharged; otherwise, the patient is admitted and becomes a boarding patient, waiting in an ED bed

until being transferred to an inpatient bed.

It is well known that ED physicians are multitasking (KC 2013, Song et al. 2018, Niewoehner et al. 2023);

i.e., at any given time, a physician is responsible for the care of multiple patients simultaneously. Some

of these patients are undergoing testing in the test queue while others are waiting for reassessment (see

Figure 3). The number of patients under a physician’s care at any given time is referred to as the physician’s

workload or this physician’s level of multitasking (KC 2013). See Figure 2 for an illustration of the physician

workload by shift hour calculated using our data.

3.2. Patient Care Handoff
EDs provide care 24 hours a day; however, no healthcare provider can work around the clock. As a result,

shift-based scheduling is a necessity. Figure 4 shows our study ED’s daily physician shifts from January to

July 2015. During this period, 15 shifts (and hence 15 physicians) were scheduled in the ED each day, two

2 Note that the mechanisms for routing patients to physicians could be different in other EDs. For example, Campello et al. (2016)
describes an ED where a dispatcher assigns patients to physicians with available caseload after triage, whereas in Song et al. (2015),
patients are routed to physicians by a round-robin policy, independent of physician speed or idle time.
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Figure 4 The daily physician shifts in our study ED from January 3 to July 31, 2015.

Shift 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

S1 1 2 3 4 5 6 7
S2 1 2 3 4 5 6 7
S3 1 2 3 4 5 6 7 8
S4 1 2 3 4 5 6
S5 1 2 3 4 5 6 7 8
S6 Fast-Track Shift 1 2 3 4 5 6 7
S7 1 2 3 4 5 6 7 8
S8 1 2 3 4 5 6 7
S9 1 2 3 4 5 6 7
S10 1 2 3 4 5 6 7 8
S11 Fast-Track Shift 1 2 3 4 5 6 7
S12 7 1 2 3 4 5 6
S13 5 6 7 1 2 3 4
S14 2 3 4 5 6 7 1
S15 1 2 3 4 5 6 7

Note. There are fifteen shifts each day, with one 6-hour shift, ten 7-hour shifts (two out of the ten are fast-track

shifts), and four 8-hour shifts. The numbers in each row represent the shift hour of the corresponding shift.

of which were fast-track shifts, and the remainder were scheduled in the main area. The shift lengths in our

study ED were 6, 7, or 8 hours. We observe that physicians started their shifts at staggered times during the

day to better match physician capacity with time-varying patient demands. Moreover, the staggered shifts

avoid the undesirable situation of too many physicians leaving work at the same time and thus make the

end-of-shift transition easier. We elaborate below.

When approaching the end of the shift, a physician must transfer the care of unfinished patients to other

physicians on duty. This practice is referred to as patient handoff, which is unsafe and undesirable because

it causes discontinuity of care and creates opportunities for medical errors. Handoff has been linked to up

to 24% of ED malpractice claims (Cheung et al. 2010), longer patient length of stay (Epstein et al. 2010),

and higher 72-hour revisit rate (Batt et al. 2019). A recent study suggests that physicians should “slack

off” approaching the end of their shift, i.e., stop signing up new patients, to avoid handoff and improve ED

efficiency (Chan 2018). This aligns with the practice in the U.S. ED studied by Song et al. (2015), where

new patients will not be assigned to physicians in the last two hours of their shifts. Physicians in another

U.S. ED stated that “they are less likely to pick up new patients in the last hour or so of their shifts” (section

6.2.2 in Batt et al. 2019). Similarly, physicians in our study ED in a Canadian hospital can choose not to see

new patients in the last hour of their shifts, even if they have to stay idle. It should not be interpreted literally

when we say physicians slack off or stay idle. Physicians may perform non-clinical duties such as student

mentoring or administration.

4. Physician Behavior Behind Time-Varying Productivity
In this section, we model the treatment process of any individual physician using an optimal control

framework. We obtain closed-form expressions for a physician’s productivity under the optimal policy.

Understanding individual-physician within-shift behavior helps explain the time-varying productivity of

physicians.
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Figure 5 A reentrant queue to describe the patient treatment process by a single physician during a shift.
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4.1. Model Description

We consider a fluid model with returns to describe the patient treatment process of a single physician during

her shift [0,𝑇], where 𝑇 > 0 denotes the shift length. A schematic depiction of the patient flow is shown in

Figure 5. We assume that there are always new patients waiting to be seen in the waiting room. Our data

analysis shows that this assumption holds for most of the time in our study period. The rate of serving new

patients (i.e., initial assessment) is denoted by 𝜇
𝑁
> 0. With probability 𝑝, a patient needs to undergo testing

after assessment. Otherwise, the treatment is completed, and the patient leaves the ED. We assume that the

test queue has infinitely many servers, and the mean testing time is 1/𝜃 > 0. This infinite-server assumption

aligns with Yom-Tov and Mandelbaum (2014) and Campello et al. (2016). When the test results are ready,

the patient returns to the same physician for reassessment. Let 𝐷 (𝑡) and 𝑅(𝑡) denote the number of patients

in the test and reassess queues at time 𝑡, respectively. Let 𝜇
𝑅

denote the rate at which return patients are

served. After reassessment, the patient may need another test with the same probability 𝑝, independent of

the number of tests that have already been performed for this patient, which implies that the total number of

tests that a patient undergoes upon leaving the ED follows a geometric distribution with success probability

1 − 𝑝. This assumption has been adopted in the literature; see, e.g., Yom-Tov and Mandelbaum (2014),

Campello et al. (2016) and Li et al. (2023). The service and reassessment times, testing times, and return

probability are assumed to be independent of the lengths of the test and reassessment queues.

Assume that a unit reward is earned when a patient’s treatment at the ED is completed. At the end of the

shift, if a physician still has patients with incomplete care, the physician either goes overtime to finish the

treatment or hands off these patients to other physicians (see Section 3.2), or both could happen. Note that

handoffs could happen before the shift is over in practice (Batt et al. 2019). We assume that handoffs do not

happen before 𝑇 to simplify our model and analysis. Let ℎ(𝑥) denote the cost when there are 𝑥 patients with

incomplete care at the end of the shift, 𝑥 ≥ 0. The cost may represent the inconvenience caused by physician

overtime, the time and effort required for handoff communication to transfer essential information from one

physician to another, and/or the compromised quality of care due to handoffs (Cheung et al. 2010, Batt et al.

2019). It is expected that ℎ(·) is a non-decreasing function. In this model, we do not account for the potential
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impact of physician fatigue on the quality of care delivered over the course of a shift. We list it as one of the

future research directions in Section 8.

We further assume that return patients are prioritized over new patients, which generally aligns with the

practices in our study hospitals (see detailed descriptions in Section 3.1). We believe that the primary goal

of a physician is to treat as many patients as possible within her shift without exceeding overtime limits or

resorting to excessive patient handoffs. Hence, we further assume that physicians do not idle when there are

patients waiting for reassessment. However, physicians can choose not to see new patients to avoid overtime

and/or handoffs, even if they have to stay idle. Let 𝛼
𝑁
(𝑡) and 𝛼

𝑅
(𝑡) denote the percentage of time that the

physician spends on processing new and return patients at time 𝑡, respectively. The physician’s objective is

to maximize the total net reward by controlling 𝛼
𝑁
(𝑡) and 𝛼

𝑅
(𝑡), 𝑡 ∈ [0,𝑇]. This problem can be formulated

using the optimal control framework as follows:

max
𝛼
𝑁
(𝑡 ) ,𝛼

𝑅
(𝑡 )

{∫ 𝑇

0
(1− 𝑝)

[
𝛼𝑁 (𝑡)𝜇𝑁 +𝛼𝑅 (𝑡)𝜇𝑅

]
d𝑡 − ℎ(𝐷 (𝑇) + 𝑅(𝑇))

}
(1)

s.t. 𝐷′(𝑡) = 𝑝
[
𝛼𝑁 (𝑡)𝜇𝑁 +𝛼𝑅 (𝑡)𝜇𝑅

]
− 𝜃𝐷 (𝑡), 𝐷 (𝑡) ≥ 0, 𝐷 (0) = 𝐷0 ≥ 0,

𝑅′(𝑡) = 𝜃𝐷 (𝑡) −𝛼𝑅 (𝑡)𝜇𝑅, 𝑅(𝑡) ≥ 0, 𝑅(0) = 𝑅0 ≥ 0,

0 ≤ 𝛼𝑁 (𝑡) +𝛼𝑅 (𝑡) ≤ 1, 𝛼𝑅 (𝑡) =min
{
1, 𝜃𝐷 (𝑡)/𝜇𝑅 + 1{𝑅 (𝑡 )>0}

}
, 𝛼𝑁 (𝑡) ≥ 0.

The constraints on 𝐷′(𝑡) and 𝑅′(𝑡) respectively describe the dynamics of the test and reassessment queues;

𝛼
𝑁
(𝑡) + 𝛼

𝑅
(𝑡) ≤ 1 implies that the total percentage of time spent on initial assessment and reassessment

should not exceed 100% at any time; 𝛼
𝑅
(𝑡) =min{1, 𝜃𝐷 (𝑡)/𝜇

𝑅
+ 1{𝑅 (𝑡 )>0}} captures that physicians do not

idle when there are return patients waiting. Specifically, 1{𝑅 (𝑡 )>0} is an indicator function which equals to 1

if 𝑅(𝑡) > 0 and 0 otherwise. This constraint further implies that when 𝑅(𝑡) > 0, i.e., there are return patients

waiting for reassessment, then 𝛼
𝑅
(𝑡) = 1, i.e., the physician should only focus on reassessing return patients.

In other words, return patients are prioritized over new patients. This assumption is not too restrictive as

it aligns with the physician workflow (See Section 3.1 for more details). Furthermore, Huang et al. (2015)

prove that it is optimal to prioritize return patients over new patients subject to adhering to their deadline

constraints in ED settings under heavy traffic. The initial conditions 𝐷 (0) = 𝐷0 and 𝑅(0) = 𝑅0 imply that a

physician who just began her shift has 𝐷0 patients in the test queue and 𝑅0 patients waiting for reassessment,

both of which are handoff patients from other physicians.

4.2. The Optimal Policy

We solve the optimal control problem (1) by applying the Pontryagin’s maximum principle. We consider

three cases: (i) 𝑅0 = 0, 𝐷0 ≤ 𝜇𝑅/𝜃; (ii) 𝑅0 = 0, 𝐷0 > 𝜇𝑅/𝜃; (iii) 𝑅0 > 0. In the main body of the paper, we

present the results for Case (i). We focus on the first case because, in general, return patients who are waiting

for reassessment will not be handed off to other physicians. The focal physician usually goes overtime to
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finish the reassessment of return patients in our study hospital. In fact, we do not observe any patients

waiting for reassessment being handed off in our data (i.e., 𝑅0 = 0). Physicians tend to avoid excessive patient

handoffs. We observe from our data that the number of handoffs taken by any physician at the beginning

of their shifts is less than or equal to 6 for 97.7% of the shifts (𝜇
𝑅
/𝜃 ≈ 6.1 in our data).3 Hence, Case (i)

is the most relevant case. Nevertheless, we study the optimal policies for Cases (ii)&(iii) for mathematical

completeness. The optimal controls for Cases (ii)&(iii) have the same threshold structure as that of Case (i)

despite the solutions being more complicated. The results for Cases (ii)&(iii) and proofs for all three cases

are deferred to Appendix B.

Theorem 1. Assume that 𝐷0 ≤ 𝜇𝑅/𝜃, 𝑅0 = 0, and ℎ(·) is an increasing differentiable function. Then, the

optimal control 𝛼∗
𝑁
(𝑡) for the optimal control problem defined in (1) is of threshold type. More specifically,

there exists an optimal switching time 𝑡∗ ∈ [0,𝑇] such that 𝛼∗
𝑁
(𝑡) = 1− 𝜃𝐷 (𝑡)/𝜇

𝑅
if 𝑡 ∈ [0, 𝑡∗]; 𝛼∗

𝑁
(𝑡) = 0 if

𝑡 ∈ (𝑡∗,𝑇] . Furthermore, under the optimal policy, 𝛼∗
𝑅
(𝑡) = 𝜃𝐷 (𝑡)/𝜇

𝑅
for all 𝑡 ∈ [0,𝑇] where

𝐷 (𝑡) =
(
𝐷0 −

𝑝𝜇
𝑁

𝜃
(
1− 𝑝 + 𝑝𝜇

𝑁
/𝜇

𝑅

) ) 𝑒−𝜃

(
1−𝑝+𝑝

𝜇
𝑁

𝜇
𝑅

)
𝑡 +

𝑝𝜇
𝑁

𝜃
(
1− 𝑝 + 𝑝𝜇

𝑁
/𝜇

𝑅

) , 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (2)

𝐷 (𝑡) = 𝐷 (𝑡∗)𝑒−(1−𝑝) 𝜃 (𝑡−𝑡∗ ) , 𝑡 ∈ (𝑡∗,𝑇] . (3)

Theorem 1 completely characterizes the optimal policy for Problem (1) under Case (i). The optimal policy

implies that there exists an optimal switching time 𝑡∗ such that (i) when the shift hour is before 𝑡∗, the

physician is always busy serving patients (𝛼∗
𝑅
(𝑡) + 𝛼∗

𝑁
(𝑡) = 1), and priority is given to return patients over

new patients; (ii) when the shift hour exceeds 𝑡∗, it is optimal for the physician to stop signing up new patients

and focus on serving return patients—even if the physician has to stay idle—so as to reduce the chance

of overtime and patient handoffs. In fact, the proof of Theorem 1 does not require ℎ(·) to be increasing.

However, if ℎ(·) is decreasing, it is easy to see from the expression of 𝑡∗ in (4) that 𝑡∗ =𝑇 . In other words, it

is optimal to serve new patients at any time in the shift if more handoffs lead to lower costs, which is trivial

but unrealistic and less interesting. A numerical illustration of the optimal controls is shown in Figure 6.

Proposition 1. Assume that 𝐷0 ≤ 𝜇𝑅/𝜃 and 𝑅0 = 0. The optimal switching time 𝑡∗ has a closed-form

expression as follows:

𝑡∗ =min
(
𝑇,max

(
0,𝑇 − ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]

(1− 𝑝)𝜃

))
. (4)

Moreover, 𝑡∗ is non-decreasing in 𝜃 and non-increasing in 𝑝 when ℎ(·) is a linear function.

3 In our data, the start time of a reassessment is available but not its end time. We use the start time of the following activity of the
same physician to approximate the end time of the reassessment, which may overestimate the reassessment time, or in other words,
underestimate 𝜇

𝑅
.
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Figure 6 A numerical illustration of 𝛼∗
𝑁
(𝑡), 𝛼∗

𝑅
(𝑡), 𝐷 (𝑡), TH(𝑡), and PPH(𝑡) under the optimal policy for Problem

(1) when 𝐷0 = 0, 𝑅0 = 0, 𝜇
𝑁

= 5, 𝜇
𝑅
= 6, 𝜃 = 0.6, 𝑝 = 0.66, ℎ(𝑥) = 𝑥, and 𝑇 = 7 (i.e., 7-hour shifts). The

optimal switching time 𝑡∗ = 5.8.

Hour of shift

When the cost function is linear, i.e., ℎ′(·) is a constant, the expression of 𝑡∗ in (4) shows that it does not

depend on 𝜇
𝑁

and 𝜇
𝑅

—measures of physicians’ speed in treating patients. This insight provides a justification

for setting a common switching time for all physicians—despite being aware of the heterogeneity in physician

speeds—when each handoff patient is perceived to contribute the same cost and the test probability 𝑝 only

depends on patient clinical requirements. The common switching time has been observed in practice; for

example, physicians can choose not to see new patients in the last hour of their shifts in our study ED, and

new patients will not be assigned to physicians in the last two hours of their shifts in the California ED

studied by Song et al. (2015). Moreover, the monotonicity of 𝑡∗ implies that the optimal switching time is

greater for bigger 𝜃 and/or smaller 𝑝. In other words, faster test turnaround times or a smaller likelihood of

requiring additional tests allow physicians to continue seeing new patients further along in their scheduled

shift, rather than having to stop earlier. A key insight for hospital management is that allocating additional

resources to test centers not only enhances test turnaround times but also encourages physicians to attend to

more new patients due to reduced concerns about overtime and/or patient handoffs.

Proposition 2. Assume that 𝐷0 ≤ 𝑝𝜇
𝑁
𝜇
𝑅

𝜃 [𝑝𝜇
𝑁
+(1−𝑝)𝜇

𝑅
] and 𝑅0 = 0. The optimal control 𝛼∗

𝑁
(𝑡) is non-

increasing in 𝜇
𝑁

and non-decreasing in 𝜇
𝑅

for 0 < 𝑡 < 𝑇. Moreover, 𝛼∗
𝑁
(𝑡) decreases with 𝜃 for 0 < 𝑡 < 𝑡∗.

Proposition 2 shows that when 𝐷0 is sufficiently small, the optimal percentage of time the physician

spent on new patients increases with 𝜇
𝑅

and decreases with 𝜇
𝑁

and 𝜃. When the chance of requiring

reassessment remains unchanged, the physician will spend less time on reassessment if the reassessment can

be performed faster. As a result, the physician will spend more time treating new patients. On the other hand,

when physicians can treat new patients faster or the test turnaround time is shorter, more time will be spent
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reassessing return patients and less time treating new patients. However, this does not necessarily mean that

the total physician time spent on new patients is less as the switching time 𝑡∗ increases with 𝜃 (shown in

Proposition 1); that is, with a shorter test turnaround time, physicians continue seeing new patients and stop

at a later stage of their shift.

4.3. Time-Varying Physician Productivity

Let PPH(𝑡) denote a physician’s productivity rate, i.e., the rate of assessing new patients. Then, we have

PPH(𝑡) = 𝛼
𝑁
(𝑡)𝜇

𝑁
. Theorem 1 gives the following results immediately.

Proposition 3. Assume that 𝐷0 ≤ 𝜇𝑅/𝜃 and 𝑅0 = 0. Under the optimal policy for Problem (1), we have

PPH(𝑡) =
(1− 𝑝)𝜇

𝑁
𝜇
𝑅

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

+ 𝜇𝑁

(
𝑝𝜇

𝑁

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

− 𝜃𝐷0

𝜇
𝑅

)
𝑒
−𝜃

(
1−𝑝+𝑝

𝜇
𝑁

𝜇
𝑅

)
𝑡
, 𝑡 ≤ 𝑡∗, (5)

PPH(𝑡) = 0, 𝑡∗ < 𝑡 ≤ 𝑇, (6)

where 𝐷 (𝑡∗) and 𝑡∗ are given in (2) and (4), respectively.

The expressions of PPH(𝑡) in (5) and (6) show that a physician’s productivity within a shift is time-varying.

A numerical illustration of PPH(𝑡) is shown in Figure 6. The fact that PPH(𝑡) is an exponential function of

the shift hour with a negative exponent explains the exponential decay of a physician’s productivity during

the start-of-shift phase observed from data (see Figure 2). Our model and results suggest that physician

multitasking may be one main contributor to the dramatic reduction in physician productivity, i.e., physicians

need to spend time processing the reassessment requests from returning patients and thus have less time

to treat new patients. The exponential term in PPH(𝑡) diminishes as 𝑡 increases. Correspondingly, the

productivity rate plateaus during the middle-of-shift phase; see Figures 2 and 6. During the end-of-shift

phase, the overtime/handoff avoidance may incentivize physicians to not sign up any new patients; as a

result, PPH(𝑡) drops to zero. This decision is also suggested by Chan (2018) and Batt et al. (2019) and has

been shown to be optimal under our model setting.

Note that the PPH observed from data in the last shift hour is small but above 0 (see, e.g., Figure 2) because

physicians occasionally sign up new patients in the last hour of their shifts. Physicians worked overtime in

90% of these shifts. We should also note that PPH(𝑡) does not always decreases with 𝑡. In fact, the expression

of PPH(𝑡) in (5) implies that when 𝐷0 >
𝑝𝜇

𝑁
𝜇
𝑅

𝜃 [𝑝𝜇𝑁
+(1−𝑝)𝜇

𝑅]
, PPH(𝑡) increases with 𝑡. The intuition is that

excessive handoff patients at the start of shift will take up physicians’ time, and thus, fewer new patients will

be attended to. However, our data shows that in over 75.6% of the shifts, the number of handoff patients

taken by any physician in the first hour of their shifts is less than two, whereas a rough estimate shows that
𝑝𝜇

𝑁
𝜇
𝑅

𝜃 [𝑝𝜇𝑁
+(1−𝑝)𝜇

𝑅]
is about 1.7 using our data.
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5. Contributing Factors to Time-Varying Productivity
Our findings in the previous section suggest that physician productivity is a function of the shift hours. In

fact, a descriptive analysis of our data reveals that approximately 48% of new patients were seen during the

start-of-shift phase (2 hours), 49% were seen during the middle-of-shift phase (4 hours for 7-hour shifts

and 5 hours for 8-hour shifts), and only 3% were seen during the end-of-shift phase (the last hour). Thus,

shift hour appears to be an important predictor of PPH. In this section, we examine other potential factors

that may contribute to the time-varying physician productivity. Note that our objective is not to establish a

causal relationship between PPH and the factors of interest. Rather, we aim to identify the factors that have

the greatest power in explaining the variations of PPH and predicting PPH.

5.1. Discussion on Existing Mechanisms

We observe the time-varying pattern of physician productivity, specifically physicians slowdown in treating

new patients as their shifts progress. Our results suggest that physician multitasking (i.e., treating both new

and return patients) and “slacking off” may contribute to time-varying physician productivity. However,

there may be other factors that impact workers’ productivity through various mechanisms. For example,

fatigue may reduce a physician’s speed and influence the behavior of hospital personnel (Dai et al. 2015),

paramedics (Brachet et al. 2012, Bavafa and Jónasson 2024), and food inspectors (Ibanez and Toffel 2020);

frequent tasking switching has a negative impact on physician productivity (Duan et al. 2020); the queue

configuration and information disclosure at EDs may lead to physician speedup due to increased ownership

(Song et al. 2015) or social pressure (Song et al. 2018); and greater average familiarity among physicians

may increase the patient pickup rate and multitasking levels (Niewoehner et al. 2023); physicians may tend to

batch admission requests approaching the end of shift, increasing physician productivity in a shift (Feizi et al.

2023). Furthermore, social loafing may dominate social pressure speedup. Specifically, nurses may work

slower intentionally to avoid being assigned new patients due to a higher expected workload (Berry Jaeker

and Tucker 2012). The impact may also be nonlinear. Physician multitasking levels have been found to have

a nonlinear effect on throughput rates (KC 2013), and waiting room census has a nonlinear effect on ED

treatment times (Batt and Terwiesch 2016). Physicians may first speed due to high workload and then slow

down after long periods of increased load (KC and Terwiesch 2009).

Hence, the time-varying PPH patterns we observe in Figures 2 and 10 may be an aggregation of several

lower-level mechanisms. Our goal is to examine other potential factors that contribute to the time-varying

productivity. Next, we compare the directions and magnitudes of their respective impacts using our dataset.

5.2. Empirical Investigation

Our dataset contains patient visit records and physician staffing data from January 3 to July 31, 2015. We

chose this period because the physician staffing remains the same during this period. Our data includes shifts

with lengths of 6 hours, 7 hours, and 8 hours. We focus on the 7-hour and 8-hour shifts because the 6-hour
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shifts are flexible shifts, and the data on 6-hour shifts are less reliable. After excluding the two fast-track

shifts each day, our dataset contains 2475 shifts, of which 1654 are 7-hour shifts and 821 are 8-hour shifts.

More details on the shifts are available in Section 3.2.

5.2.1. Choice of Variables We aim to identify the factors that contribute to physician productivity.

Hence, the response variable is the number of new patients seen by a physician during a specific hour of a

shift (that is, the PPH). As for the independent variables, both Figure 2 and our analytical results in Section

4 show that the hour of shift has a significant impact on PPH. Therefore, we include a categorical variable

ShiftHour to control the hour of shift. To account for the heterogeneity in physician characteristics such as

age, gender and experiences, we include the unique physician ID, denoted by Physician. Since shifts have

different starting times and lengths, we include a categorical variable, ShiftID, to differentiate between the

shifts.

As discussed in 5.1, the workload of the physician and the level of congestion of the system may impact the

productivity of the physician. Hence, we define the variable Workload to measure the time-averaged number

of patients under the care of the focal physician during the hour when PPH is measured. Following Zaerpour

et al. (2022) and the literature we discussed earlier, we also define WaitRoomCensus and TreatRoomCensus,

which respectively measure the time-averaged number of patients in the waiting room and ED treatment

room (excluding boarding patients). Li et al. (2023) find that ED decision-makers may alter their patient

pickup behavior due to many ED beds being occupied by boarding patients (this phenomenon is referred to

as ED blocking). Hence, it is plausible that the number of boarding patients or the ED blocking level may

impact physicians’ decisions in attending new patients. We define Boarder as the time-averaged number of

boarding patients, i.e., admitted patients waiting to be transferred to inpatient beds during the hour when

PPH is measured. This variable corresponds to the second measure of the ED blocking level in Li et al.

(2023). We also examine all results by using the first measure of the ED blocking level in Li et al. (2023).

Although the results are not included in the paper, we find all our conclusions remain unchanged.

Physicians may engage in activities other than seeing new patients, such as reassessing returning patients,

handing their patients over to receiving physicians, or taking handoff patients from other physicians. All of

these activities consume time and may affect the productivity of the physician. Therefore, we define three

variables: Reassess, Handover, and HandoverTaken. These variables measure the number of reassessments

performed by the focal physician, the number of patients handed over to other physicians, and the number

of patients taken from other physicians during the hour when PPH is measured. Additionally, we control the

day of week that the shift is scheduled on using the binary variable Weekend, which equals 1 if it is on the

weekend and 0 otherwise. Summary statistics for all variables, except physician and shift ID fixed effects,

are provided in Table 1.



Author: ED Modeling and Staffing with Time-Varying Productivity
Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!) 17

Table 1 Summary Statistics for Variables of Interest

7-hour shifts 8-hour shifts

Mean SD Min Max 95% CI Mean SD Min Max 95% CI

PPH 1.77 1.42 0.00 13.00 (1.74, 1.79) 1.52 1.31 0.00 8.00 (1.49, 1.55)
Workload 6.44 3.76 0.00 18.00 (6.37, 6.51) 5.71 3.37 0.00 17.00 (5.63, 5.80)
Reassess 0.96 1.16 0.00 7.00 (0.94, 0.98) 0.82 1.06 0.00 6.00 (0.79, 0.84)
HandoverTaken 0.62 1.52 0.00 10.00 (0.59, 0.65) 0.35 1.11 0.00 8.00 (0.32, 0.37)
Handover 0.05 0.34 0.00 5.00 (0.05, 0.06) 0.06 0.38 0.00 5.00 (0.05, 0.07)
WaitRoomCensus 13.46 6.37 0.00 37.14 (13.34, 13.57) 12.91 5.99 0.34 37.14 (12.77, 13.06)
TreatRoomCensus 37.41 7.39 10.64 65.39 (37.27, 37.54) 40.83 7.03 16.32 65.39 (40.66, 41.00)
Boarder 11.38 4.64 0.92 33.37 (11.29, 11.46) 11.93 4.74 1.29 33.37 (11.82, 12.05)
Weekend 0.29 0.45 0.00 1.00 (0.28, 0.29) 0.29 0.45 0.00 1.00 (0.28, 0.30)
Observations 11,548 6,568
Shift Counts 1,654 821
Notes. SD = standard deviation; CI = confidence interval.

5.2.2. Econometric Models and Results We start with a linear regression model with the following

model specification:

PPH = 𝛽0 + 𝛽1ShiftHour+ 𝛽2ShiftID+ 𝛽3Workload+ 𝛽4X+ 𝛽5Weekend+ 𝜖, (7)

where the vector X include (i) the physician-level activities Reassess, Handover, HandoverTaken; and (ii)

the system-level overcrowding measures WaitRoomCensus, TreatRoomCensus, and Boarder. The time of

day has a strong collinearity issue and was not included in the model. The error term 𝜖 follows a standard

normal distribution.

We estimate our first model by including all the variables described in Section 5.2.1. We then drop the

variable X, Workload, ShiftID one by one and check the goodness of fit with and without the variables

of interest. We estimate four models for 7-hour and 8-hour shifts, respectively. The estimation results are

presented in Table 2.

From Table 2, we first observe that across the models for 7-hour shifts, all variables of interest included in

the model have statistically significant effects on physician productivity (PPH), except for Weekend. Notably,

for the 8-hour shifts, Weekend is weakly significant. In terms of model fitness, we find that removing X from

the model only marginally decreases the 𝑅2 from 0.478 to 0.465, representing a 2.7% drop. This indicates

that although the ED census, including the number of patients in the waiting room, patients in the treatment

room, and boarding patients, has statistically significant effects on PPH, the magnitude of the impact is

small. Similarly, the 𝑅2 decreases from 0.465 to 0.461 (less than a 1% drop) if we remove Workload from

the model. In contrast, the two factors ShiftHour and ShiftID explain 41.4% of variations in PPH. This

significant explanatory power highlights the strong influence of these temporal and individual factors on

physician productivity. The observations for 8-hour shifts are similar, except that the model fitness is better

than that of the 7-hour shifts.
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Table 2 Estimation results for the effect of various factors on physician productivity.

7-hour-shift models 8-hour-shift models

(Intercept) 4.334∗∗∗ 3.912∗∗∗ 3.777∗∗∗ 3.471∗∗∗ 4.265∗∗∗ 4.076∗∗∗ 3.969∗∗∗ 3.411∗∗∗

(0.122) (0.11) (0.109) (0.038) (0.125) (0.104) (0.104) (0.04)
ShiftHour (base = ShiftHour1)

ShiftHour2 -1.14∗∗∗ -1.174∗∗∗ -1.319∗∗∗ -1.319∗∗∗ -0.826∗∗∗ -0.854∗∗∗ -0.991∗∗∗ -0.991∗∗∗

(0.04) (0.04) (0.036) (0.038) (0.049) (0.049) (0.047) (0.048)
ShiftHour3 -1.597∗∗∗ -1.631∗∗∗ -1.872∗∗∗ -1.872∗∗∗ -1.381∗∗∗ -1.465∗∗∗ -1.69∗∗∗ -1.691∗∗∗

(0.045) (0.045) (0.036) (0.038) (0.055) (0.054) (0.047) (0.048)
ShiftHour4 -1.732∗∗∗ -1.746∗∗∗ -2.032∗∗∗ -2.033∗∗∗ -1.616∗∗∗ -1.72∗∗∗ -2.022∗∗∗ -2.023∗∗∗

(0.048) (0.048) (0.036) (0.038) (0.061) (0.059) (0.047) (0.048)
ShiftHour5 -1.894∗∗∗ -1.87∗∗∗ -2.174∗∗∗ -2.173∗∗∗ -1.808∗∗∗ -1.853∗∗∗ -2.209∗∗∗ -2.21∗∗∗

(0.049) (0.049) (0.036) (0.038) (0.064) (0.063) (0.047) (0.048)
ShiftHour6 -2.117∗∗∗ -2.078∗∗∗ -2.381∗∗∗ -2.381∗∗∗ -1.785∗∗∗ -1.793∗∗∗ -2.16∗∗∗ -2.161∗∗∗

(0.049) (0.049) (0.037) (0.038) (0.065) (0.064) (0.047) (0.048)
ShiftHour7 -2.827∗∗∗ -2.784∗∗∗ -3.074∗∗∗ -3.074∗∗∗ -2.073∗∗∗ -2.05∗∗∗ -2.415∗∗∗ -2.415∗∗∗

(0.049) (0.048) (0.037) (0.038) (0.065) (0.064) (0.047) (0.048)
ShiftHour8 -2.736∗∗∗ -2.699∗∗∗ -3.037∗∗∗ -3.037∗∗∗

(0.064) (0.061) (0.047) (0.048)
Workload -0.036∗∗∗ -0.038∗∗∗ -0.044∗∗∗ -0.049∗∗∗

(0.004) (0.004) (0.006) (0.006)
Reassess -0.049∗∗∗ -0.066∗∗∗

(0.009) (0.012)
HandoverTaken -0.072∗∗∗ -0.059∗∗∗

(0.007) (0.011)
Handover -0.08∗∗ -0.023

(0.029) (0.032)
WaitRoomCensus 0.011∗∗∗ 0.015∗∗∗

(0.002) (0.002)
TreatRoomCensus -0.019∗∗∗ -0.008∗∗∗

(0.002) (0.002)
Boarder 0.016∗∗∗ -0.002

(0.003) (0.004)
Weekend 0.035 0.076∗

(0.023) (0.03)
Physician Y Y Y N Y Y Y N
ShiftID Y Y Y Y Y Y Y Y

𝑅2 0.478 0.465 0.461 0.414 0.506 0.495 0.49 0.45
Observations 11,548 11,548 11,548 11,548 6,568 6,568 6,568 6,568
Notes. Robust standard errors are shown in the parentheses. ∗∗∗p<0.001; ∗∗p<0.01; ∗p<0.05
The coefficients for the physician and shift ID fixed effect are not shown due to space limitation.

We conclude that the hour of shift is the most important factor in explaining the variations in PPH. The

ShiftHour captures the temporal variations in physician productivity, which may be attributed to fatigue,

task switching, and interruptions. The variable Workload seems to have a very marginal impact on PPH.

However, one may not reach such a conclusion based on our result as this is not a causal analysis. In fact, the

correlation coefficient between ShiftHour and Workload is over 0.4, suggesting that the physician’s workload
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accumulates over the course of the shift. As a result, the cognitive load of managing several patients increases,

which may prevent the physician from admitting more new patients. Furthermore, physicians need to spend

time reassessing their existing patients whose test results are ready, which also impacts PPH.

5.3. Importance of Factors in Predicting PPH
In this section, we explore the importance of these factors from a prediction perspective. By understanding

which factors most significantly affect PPH, we can better predict physician productivity and potentially

implement targeted interventions to improve efficiency. Hereafter, we use factor and feature interchangeably.

Figure 7 The feature importance of variables using four models to predict the PPH for 7-hour shifts and
their corresponding root mean squared error (RMSE). The physician, shift ID, and weekend are
controlled. The feature importance is calculated by permuting the corresponding variable 50 times.
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We employed the permutation importance method (Fisher et al. 2019) to evaluate the significance of each

factor in predicting PPH rates for different models. This method assesses feature importance by measuring

the increase in the model’s prediction error after permuting the feature values while keeping the other

features unchanged. The resulting increase in the prediction error indicates the significance of the feature in

predicting the target variable.

In our analysis, we use the rooted mean squared error (RMSE) as the model performance measure. We

experiment with several prediction models, including linear regression, Poisson regression, random forest,

and support vector machine (SVM). All variables described in Section 5.2.1 are included in the prediction
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models. We randomly divide the dataset into training (60%) and testing (40%) datasets. For each model, we

first train the model on the training dataset and then predict PPH using the testing dataset to obtain the RMSE.

We then randomly permute the feature of interest multiple times on the testing dataset and re-evaluate the

RMSE. The importance of the feature is determined by the average increase in the RMSE before and after

permuting the feature values.

Figure 7 presents the increase in RMSE when each feature is randomly permuted 50 times while keeping

others unchanged. Across all four regression models, it is evident that ShiftHour is the most important factor

in predicting PPH, while WaitRoomCensus, TreatRoomCensus, and Boarder exhibit only marginal effects.

Workload appears to be more important than the census measures but less important compared to ShiftHour.

6. Impact of Time-Varying Service Rates on ED Modeling
A main insight from Sections 4 and 5 is that a physician’s productivity rate is time-varying, and decreases

significantly over the course of a shift. Hence, it is important to account for the time-varying nature of

physician productivity in the modeling of ED operations. In this section, we study the impact of considering

the time-varying service rate in modeling ED operations by simulation.

6.1. A Queueing Model with Time-Varying Service Rates
A distinguishing feature of emergency care is that a patient may return to the same physician multiple times

for service during his sojourn in the ED (see Figure 3). With proper Markovian assumptions, the system

dynamics can be represented by a Markov chain, where the system state is a vector that includes the number

of patients waiting to be seen in the waiting room and the number of patients going through tests and waiting

for reassessment for each physician. Unfortunately, the state space grows exponentially with the number of

physicians on duty. Even with four physicians, the dimension of the state space can easily exceed 35 million

(see more details in Appendix C), which makes the model analysis both theoretically and computationally

challenging. Hence, we seek dimension reduction techniques to simplify the problem. We aim to identify

a model that can balance between details and tractability, model parameters that are easy to estimate, and

system performances that match real data.

Motivated by the insights in Sections 4 and 5, we model the ED operations as an 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡)
queue, i.e., a time-varying queueing system with heterogeneous servers and shift-hour-dependent service

rates, where 𝑡 is the time in hours. The first 𝑀 (𝑡) represents a nonstationary Poisson arrival process with

the time-dependent rate {𝜆(𝑡), 𝑡 ≥ 0}, which has been shown to be a reasonable assumption (Kim and

Whitt 2014). The number of servers (physicians) is time-varying, denoted by {𝑠(𝑡), 𝑡 ≥ 0}, where 𝑠(𝑡) is

a nonnegative integer. The 𝑀PPH(𝑡) represents exponentially distributed service times with time-varying

rates, which can be estimated by the PPH of each of the 𝑠(𝑡) physicians on duty at 𝑡. Note that the distribution

of the service times is not a standard exponential distribution, and the cumulative distribution function of

the service time for a patient picked up by physician 𝑛 at time 𝑡 is 𝐹𝑛,𝑡 (𝑥) = 1− 𝑒−
∫ 𝑡+𝑥
𝑡

𝜇𝑠 (𝑛)𝑑𝑠, where 𝜇𝑡 (𝑛)
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is the service rate of physician 𝑛 at 𝑡. We further assume that the arrival rate is periodic with a daily cycle,

and so is the physician scheduling. Hence, 𝜆(𝑡) = 𝜆(𝑡 + 24), 𝑠(𝑡) = 𝑠(𝑡 + 24),∀𝑡 ≥ 0. We chose a daily cycle

for ease of presentation. Moreover, physician shift schedules often repeat each day during a planning period

in practice, which is the case in our study ED. However, our model can be extended in a straightforward

manner to model schedules with different cyclic patterns, such as weekly cycles.

LetS = {𝑆1, 𝑆2, · · · , 𝑆𝑘} denote the physician shift schedule in an ED with 𝑘 shifts scheduled to commence

each day, where 𝑆𝑖 represents the 𝑖th shift. Due to shift-based scheduling, the number of physicians on duty

is time-varying (see, e.g., Figure 1). We assume that an exhaustive discipline is applied whenever the number

of physicians decreases, i.e., an outgoing physician will complete the service in progress before leaving

(Ingolfsson et al. 2007). This is consistent with the practice in our study ED.

We assume that patients are served in a first-come-first-served (FCFS) manner, despite being aware that

the patient prioritization process is highly complex and dependent on patients’ triage levels, waiting times,

and even ED resource availability (Ding et al. 2019, Li et al. 2023). However, we expect that the queueing

discipline has a stronger impact on metrics beyond first-moment information, such as the waiting-time-based

service levels (Ingolfsson et al. 2007), but has little impact on the average patient waiting time or queue

length, especially given that the composition of patients at each triage level does not vary significantly over

the course of the day; see Figure 12 in Appendix A.

Finally, there may be more than one physician available to serve an arriving patient. Because physicians

may be in different phases of their shifts and thus have heterogeneous service rates, we need to specify

which physician to serve the patient. We choose to route the patient to the physician with the highest service

rate at the moment, which usually is the physician who most recently started her shift. However, one would

reasonably expect that this assumption does not make much difference compared to routing the patient to

an available physician randomly because EDs usually are critically loaded in a daily cycle, i.e., the daily

arrivals—excluding patients who left without being seen (LWBS)—are approximately equal to the daily

total physician PPH. As a result, the chance that more than one physician is idling is small. Our simulation

results confirm this conjecture.

In the following, we refer to our queueing model as an 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue for simplicity. However,

note that (i) the FCFS service rule when picking up a new patient, (ii) the exhaustive discipline when

physicians become off duty, and (iii) the mechanism of routing a patient to the fastest physician when there

is more than one idle physician, are all parts of the specifications of our queueing model.

6.2. Simulation Setup

Next, we simulate the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue with parameters estimated using the data from our study

ED (referred to as ED 1). The shift schedule at ED 1 from January to July 2015 is shown in Figure 4,

including the start and end times (and thus the shift length) of each shift. We focus on the 13 shifts in the
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main ED area. The estimations of the arrival rates and the PPH for each shift are based on hourly resolution.

The inter-arrival times of the nonstationary Poisson process are generated by the thinning algorithm. In

the simulation, a physician immediately starts to serve patients at the shift start time. The service times

are exponentially distributed with rates given by the PPH of the corresponding shift hour. An exhaustive

discipline is applied at the shift end time.

Most existing studies on ED modeling and physician staffing explicitly or implicitly assume a single-stage

physician service with a constant service rate (see, e.g., Ingolfsson et al. 2002, Savage et al. 2015, Wang

et al. 2022). To examine the impact of considering the time-varying service rates in ED modeling, we re-ran

the simulation model with the same parameter setting, except that the physician service rate is a constant,

calculated using the total number of new patients seen divided by the total shift hours. Hence, the service

rate of all physicians on duty at any time is determined by the staffing level alone.

We ran the simulation for 5 replications, each with 500 weeks, and we identified the first 200 weeks as the

warm-up period. We focus on waiting room dynamics and choose three time-of-day-dependent performance

metrics: (i) the average waiting time of patients who arrived in the same hour of day; (ii) the time-averaged

number of patients in the waiting room (referred to as time-averaged queue length); and (iii) the average

number of patients in the waiting room observed at the end of each hour (referred to as snapshot queue

length). We compare the simulated time-of-day-dependent average waiting times and queue lengths with

that from the data. To further demonstrate the generality and robustness of our results, we repeat the study

using data from another ED (referred to as ED 2) in Alberta, Canada, during a different study period. We

provide the comparison results but not the details of the second dataset to avoid repetition.

6.3. Simulation Results

The results of comparing the simulated performance measures with the data are shown in Figure 8. We

observe that the average waiting times from the simulation when the time-varying service rates (i.e., PPH)

are considered nicely match those from the data from both EDs—in terms of the patterns and the magnitudes.

The time-averaged and snapshot queue lengths also match the data reasonably well for both EDs; see the

plots in the second and third rows of Figure 8. Furthermore, the aggregated average waiting time of all

patients from ED 1 (ED 2) is 106.4 (109.5) minutes, whereas the simulated counterpart is 108.3 (110.9)

minutes, which further shows the accuracy of our model.

In contrast, the simulated average waiting times and queue lengths under constant service rates deviate

significantly from the data; see the gray line with squares in Figure 7. Interestingly, the variation in the

simulated average waiting times between different hours of day is smaller than in the data. In other words,

the simulated average waiting time curve under constant service rates is smoother. A plausible explanation

is that the current physician shift schedules in both EDs were carefully designed to match the staffing level

with patient demand under the assumption of constant service rates, so that the waiting times do not vary
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Figure 8 The average waiting time, time-averaged queue length, and snapshot queue length from simulation
with PPH (red line with circles), simulation with constant service rates (gray line with squares), and
data (blue dashed line with triangles) by time of day. The plots on the left use data from our primary
study hospital (ED 1), and those on the right use data from another Canadian hospital (ED 2).
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significantly over the day. However, the outcome is less than satisfactory, potentially due to the fact that the

scheduler did not consider the time-varying physician service rates.

To summarize, our results show that individual physicians’ behavior is crucial to the modeling of system

behavior. In particular, it is important to account for the shift-hour-dependent service rate (i.e., PPH) when

modeling ED operations. Ignoring it is likely to fail to accurately capture the dynamics of patient flow.



Author: ED Modeling and Staffing with Time-Varying Productivity
24 Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!)

Finally, we comment on the parameter estimation of the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) model. In principle, one

simply needs to count the number of arrivals per hour and the number of initial assessments done during each

hour of a shift by the physician assigned to this shift, i.e., the PPH. However, one needs to be careful when

dealing with real data. For example, our data cleaning identified issues including physician shift switching,

system downtime due to maintenance and physician no-shows, all of which create noise in the estimation. In

addition, 1.65% of patients cannot be matched with a particular shift in the data from ED 2. As a result, the

total daily PPH is, on average, slightly lower than the total daily arrivals. Hence, we proportionally adjust

the arrival rates downward by multiplying by 98.35%.

7. Impact of Time-Varying Service Rates on Physician Staffing
In this section, we explore the impact of incorporating time-varying service rates in physician staffing

decisions. Using data from January to July 2015 for the study ED, we optimize the physician staffing by

adjusting the shift start times. First, we apply algorithms that consider the shift-hour-dependent service rates

(i.e., PPH). Next, we apply the same algorithm but assume that the service rates are constant over the shift

hours. Finally, we use our simulation model to compare the performance of the two approaches. This allows

us to quantify the benefits, if any, of incorporating time-varying service rates into the physician staffing

optimization.

7.1. Improving Physician Staffing: A Case Study

In our study hospital, a scheduler first determines the start and end times of each shift every six months (more

or less); then, physicians are allocated to each shift following required scheduling rules. Figure 4 shows the

15 physician shifts from January to July 2015 in our study ED. Among these, S6 and S11 are fast-track

shifts, and all others are dedicated to serving patients in the main area. Next, we adjust the start times of the

13 shifts in the main ED area (referred to as the baseline schedule hereafter) to reduce the average patient

waiting time.

The shift lengths remain the same as in Figure 4. The assignment of physicians to shifts is a second-stage

problem, which is not the focus of this study. Hence, we assume that the assignment is the same as in

the data. Interested readers are referred to Brunner and Edenharter (2011) and Zaerpour et al. (2022) for

the physician-to-shift assignment problem. In theory, the start time of each shift can be any time during

the day. However, for practical relevance, we assume that physician shifts can only start at one of the 24

hours {0,1, · · · ,23}, which significantly reduces the computational complexity. Note that the adjustments

in shift start times also affect the corresponding physicians’ work schedule, which may violate certain

scheduling rules and make the physician-to-shift assignment infeasible. Hence, we add constraints so that

the baseline schedule will not be changed dramatically. In particular, we consider three scenarios and solve

the corresponding staffing optimization problem under each scenario.
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Scenario 1: The physician shifts must satisfy the following constraints: (i) the two night shifts, S14 and

S15, remain unchanged because night shifts often complicate physician-shift assignment; (ii) the start times

of the other 11 shifts can be adjusted to be earlier or later than the baseline schedule by at most two hours;

(iii) the start times of the other 11 shifts cannot be later than 20:00 or earlier than 6:00; (iv) there must be at

least two physicians on duty at any time of day.

Scenario 2: The same as in Scenario 1, except that constraint (iv) is relaxed; more specifically, we require

the staffing level to be at least one physician on duty at any time of day.

Scenario 3: The same as in Scenario 2, except that we relax constraints (i) and (ii) so that all 13 shifts

can be adjusted to be at most three hours earlier (or later) than the start times in the baseline schedule.

Our objective is to minimize the average patient waiting time under each scenario because reducing

waiting times achieves better health outcomes for patients and cost reduction for hospitals (Woodworth and

Holmes 2020). One may apply simulation optimization techniques to solve the staffing problem, as there is

no closed-form expression for the objective function. Indeed, we have shown that our novel simulation model

can accurately capture ED waiting times. However, our attempts revealed that a commercial solver takes days

to solve the optimization due to the large solution space. Hence, we propose a method that combines a local

search algorithm (i.e., tabu search) with the uniformization method (discussed below) for the evaluation of

each candidate schedule, which takes less than two hours for each scenario.

7.2. Performance Evaluation Through Uniformization

In this section, we model the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue by a CTMC with state jumps at discrete time epochs

and apply the uniformization method (which is also referred to as randomization in the literature) for the

performance evaluation.

We consider a daily cycle and divide the 24 hours into periods of length 𝑙, where (( 𝑗 − 1)𝑙, 𝑗 𝑙] represents

the 𝑗 th period, 𝑗 = 1, · · · ,24/𝑙. For staffing purposes, 𝑙 is often chosen to be one hour or half an hour. We

assume that the staffing level changes only at the end of each period. Let S 𝑗 be the set of shifts that are

ongoing during the entire period 𝑗 , 𝑠 𝑗 be the cardinality of S 𝑗 , and 𝜇 𝑗 (𝑢) be the service rate in period 𝑗 of

shift 𝑢 ∈ S 𝑗 . We estimate 𝜇 𝑗 (𝑢) by the PPH in the corresponding shift hour of shift 𝑢. We further consider

piece-wise constant arrival rate and let 𝜆 𝑗 denote the arrival rate of period 𝑗 . The stochastic process in period

𝑗 is the same as an 𝑀/𝑀/𝑠 𝑗 queue with heterogeneous servers, except that at the end of period 𝑗 , ongoing

shifts may end, and new shifts may begin, causing instantaneous transitions of system states.

Next, we model the dynamics in the 𝑗 th period by a time-homogeneous CTMC. Assume that the system

has been running for a sufficiently long period of time such that the probability distribution of system

states at any time of day is identical for every day. Let 𝑡 be the time of day and (𝑥(𝑡),y(𝑡)) be the system

state at 𝑡, where 𝑥(𝑡) is the number of patients waiting to be seen, and y(𝑡) is a 𝑠 𝑗-dimensional vector

whose 𝑖th element 𝑦𝑖 (𝑡) represents the status of the physician working on the 𝑖th shift in S 𝑗 . Specifically,
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𝑦𝑖 (𝑡) equals 0 if the physician is idling and 1 otherwise. Assume there is no unforced idling, then we have

𝑥(𝑡) (𝑠 𝑗 −
∑𝑠 𝑗

𝑖=1 𝑦𝑖 (𝑡)) = 0 for all 𝑡. Hence, the dimension of the state space is significantly reduced. Consider

an ED with 4 physicians on duty and assume that the number of patients waiting to be seen is capped at 300.

Then, the dimension of the state space is 301 + 24 = 317, whereas that of the model that considers patient

returns explicitly exceeds 35 million, as we discussed at the beginning of Section 6.

We apply the uniformization method to the 𝑀/𝑀/𝑠 𝑗 queue with the uniformization constant Λ 𝑗 ≜

𝜆 𝑗 +
∑

𝑢∈S 𝑗 𝜇 𝑗 (𝑢). Let π(𝑡) be the vector that represents the probability distribution of system states at 𝑡.

Then, for any pair of 𝑡1, 𝑡2 such that ( 𝑗 − 1)𝑙 < 𝑡1 < 𝑡2 < 𝑗𝑙, we have

π(𝑡2) =
∞∑︁
𝑛=0

𝑝 𝑗 (𝑛)π(𝑡1)𝑃𝑛
1 𝑗 , (8)

where 𝑝 𝑗 (𝑛) is the Poisson probability mass function with mean (𝑡2 − 𝑡1)Λ 𝑗 and 𝑃1 𝑗 is the transition

probability matrix of the uniformized system. When 𝑡 = 𝑗 𝑙, an instantaneous state jump will occur when

there are shifts scheduled to begin or end at 𝑡. Assume that the instantaneous state transitions are governed

by 𝑃2 𝑗 , then π(𝑡) =π(𝑡−)𝑃2 𝑗 , where 𝑡− represents the time epoch just before 𝑡. Note that 𝑃2 𝑗 is an identity

matrix if no shift begins or ends at 𝑡. We can calculate π(𝑡) for any 𝑡 with proper truncation of the state

space and the sum of the infinite series in (8). With the availability of π(𝑡), we can compute the long-run

average ED waiting time. The waiting time calculation and the specifications of 𝑃1 𝑗 and 𝑃2 𝑗 are standard

but tedious; thus, they are deferred to Appendix D.

7.3. Results and Discussion

After solving the optimization problems under time-varying physician service rates and constant service

rates, we evaluate the average patient waiting time under the baseline shift schedule and the optimized

schedules for the three scenarios by simulation. Hence, a total of seven shift schedules are evaluated. We use

simulation instead of uniformization so that we can construct confidence intervals. Moreover, the simulated

waiting times fit the data better than that of uniformization.

We run the simulation for 500 replications. For each replication, we simulate the system for 500 weeks

and identify the first 200 weeks as the warm-up period; thus, they are removed from the output. We use the

remaining 300 weeks to compute the average patient waiting time for each of the 500 replications.

The results are shown in Table 3 and Figure 9. We first observe that when the time-varying service rates

are considered, we can achieve a better match between patient demand and ED capacity by adjusting the

shift start times. As a result, the average patient waiting time can be reduced by 5.0% to 6.8% compared

to the baseline schedule, which is equivalent to 13.8 to 19.0 hours of waiting for all patients in the ED per

day. (The calculation is based on an average of 156.4 patients arriving daily to the main ED area.) Figure 9

shows that the reductions over the baseline schedule are statistically significant at the 5% level.
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Table 3 The start times of the optimized physician shift schedules. The last two columns show the average
patient waiting time, the absolute reduction, and the percentage reduction of the optimized schedules over the

baseline schedule for the time-varying service rates and the constant service rates, respectively.

Shift Start Times Waiting Time (mins)
S1 S2 S3 S4 S5 S7 S8 S9 S10 S12 S13 S14 S15 Average Reduction (%)

Baseline (from data) 6 7 8 10 10 12 14 16 16 18 20 23 0 106.7 N/A
Time-varying service rates

Scenario 1 6 7 10 9 11 14 12 16 15 20 18 23 0 101.4 5.3 (5.0%)
Scenario 2 6 9 8 11 10 12 14 16 16 18 20 23 0 100.8 5.9 (5.5%)
Scenario 3 8 10 6 12 9 11 15 17 14 18 20 1 22 99.4 7.3 (6.8%)

Constant service rates
Scenario 1 6 8 7 10 9 11 14 16 15 18 19 23 0 110.3 -3.6 (-3.4%)†
Scenario 2 7 8 7 10 9 11 15 16 15 17 20 23 0 110.6 -3.9 (-3.7%)
Scenario 3 8 6 7 10 9 11 14 15 16 20 17 22 0 107.9 -1.2 (-1.1%)

Note. The shift start times that are different from the baseline schedule are highlighted.
† The negative reduction represents an increase in waiting time.

Figure 9 Box plots and 95% confidence intervals for the simulated average patient waiting time based on 500
replications. For each scenario, the boxplots in gray represent the waiting time for the optimized
staffing under time-varying service rates, whereas the ones in green represent the waiting time for
the optimized staffing under constant service rates.

90

100

110

120

130

Baseline Scenario 1 Scenario 2 Scenario 3

P
at

ie
nt

 w
ai

tin
g 

tim
e 

(m
in

ut
es

)

In contrast, when the time-varying service rates for physicians are not considered, more specifically, when

we assume constant service rates over a shift, the optimized schedules perform worse than the baseline

schedule. The average patient waiting time increases from 1.1% to 4.3% compared to the baseline schedule,

which is equivalent to 3.1 to 9.4 hours of waiting for all patients in the ED per day. Figure 9 shows that the

increase over the baseline schedule is statistically significant at the 5% level. Hence, we conclude that it is

essential to consider the time-varying physician productivity in physician staffing decisions. Otherwise, the

optimized schedules may lead to longer waiting times.

Next, we discuss the practical benefits of incorporating the time-varying service rates in physician staffing

compared to using constant service rates. Take Scenario 1 for example. Table 3 shows that the average
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waiting time is 110.3 minutes with constant service rates, increased by 8.9 minutes from 101.4 minutes,

which is the average waiting time under the optimized schedule when the time-varying service rates are

considered. Woodworth and Holmes (2020) find that EDs could save the total healthcare cost approximately

2% to 4% by reducing each patient’s waiting time by 10 minutes. Based on public data from a government

website,4 the average cost per ED visit in Alberta, Canada was CA$449.2 in 2015–2016. With 57,086

visits to the main ED area per year (156.4 visits/day multiplied by 365 days), this monetary value for the

difference in waiting time for our study hospital is from CA$456,446 to CA$912,892 annually. One can

calculate the cost differences for Scenarios 2 and 3 in Table 3 in a similar fashion. Hence, we conclude

that incorporating the time-varying service rates in physician staffing can generate significant cost savings

over the schedules with constant service rates. Note that these are only rough estimates, as the study by

Woodworth and Holmes (2020) is based on a U.S. hospital; moreover, the distribution of the waiting time

reductions among different triage levels is unclear in our results, which may affect the calculation. However,

we believe that these numbers can still provide insights into the benefits of accounting for the time-varying

service rates in physician staffing.

8. Conclusion and Future Research
Existing emergency department (ED) staffing models often assume that physician service rates remain

constant over time. This simplifying assumption implies that the ED’s productivity, measured by the number

of new patients that can be seen per hour, is solely determined by the number of working physicians.

Motivated by the intriguing observation of the time-varying pattern in physician productivity (measured by

PPH), we challenge this assumption by studying the contributing factors to the time-varying productivity

and its impact on ED modeling and physician staffing. Through an optimal control framework, we find that

the shift-hour-dependent structure of physician productivity is intrinsic and may be attributed to physician

multitasking and overtime/handoff avoidance. Our empirical analysis further confirms that shift hour is the

most important factor in explaining the variations in PPH and predicting PPH. Therefore, it is essential

to consider this dependency of physician productivity on shift hours when modeling ED operations and

optimizing physician staffing.

By overlooking the time-varying nature of physician service rates, the standard ED staffing models may

fail to accurately capture the nuances of physician productivity. This can lead to suboptimal physician staffing

decisions that do not fully align with the dynamic patient demands and workflow patterns in the ED. Indeed,

our study demonstrates that the ED model using a constant rate fails to accurately capture the ED’s dynamics,

which creates a discrepancy between the expected and actual performance of any staffing plan, undermining

the effectiveness of the staffing strategy. Furthermore, our study quantifies the benefit of incorporating the

time-varying service rates in physician staffing compared to using constant service rates. Our study hospital

4 Accessed via the Interactive Health Data Application at www.ahw.gov.ab.ca/IHDA_Retrieval/ on November 3, 2021.

www.ahw.gov.ab.ca/IHDA_Retrieval/
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can save close to one million dollars annually by considering the time-varying physician productivity in ED

physician staffing decisions. Hence, our findings call for immediate attention from hospital management and

healthcare planners to take the time-varying nature of physician productivity into the decision-making so as

to better match healthcare resources with patient demand.

There are a number of opportunities for future research. First, it would be of interest to extend our

approach to study the time-varying nurse productivity. Nurses in the ED play a vital role in monitoring patient

status, administering medications, coordinating with other healthcare providers, etc. Hence, increasing nurse

productivity is vital to improve the overall ED efficiency (Ding et al. 2024). Second, the decrease in the

quality of care for patients admitted in the early stage of the shift due to physician fatigue or higher cognitive

load is not captured in our model. It would be interesting to study the optimal patient pick-up strategy when

the quality of care and the risk caused by patient handoffs are considered. Third, it is well known that the

timing of patient departures in inpatient units has an impact on ED operations (Shi et al. 2015). Hence,

the stochastic fluctuations beyond the ED may also contribute to the time-varying physician productivity.

It would be interesting to extend our simulation model to account for the patient flow in inpatient units

to capture the complete patient journey. Finally, Green et al. (2007) point out that the true nature of ED

service times remains unclear because physician multitasking, i.e., serving multiple patients at a time, causes

disruptions to the service provided to a given patient. Our findings suggest that using PPH as the aggregated

service rates, which can be easily derived from data, may be adequate for ED modeling and staffing. It would

be valuable to investigate when using the aggregated service rates is sufficient and when it is not.
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Appendices
Appendix A. Further results on data analysis

Figure 10 The average new patients seen per hour (PPH) for 8-hour shifts in the main ED area with a time
resolution of 1 hour. The extra point on the curve for physician workload outside the shift duration
is due to physician overtime for one hour.

1 2 3 4 5 6 7 8 overtime

0

1

2

3

4

5

6

7

8

Hour of shift

Workload
PPH

Figure 11 The average new patients seen per hour (PPH) for 7- and 8-hour shifts with a time resolution of
30 minutes. The extra point for physician workload outside the shift duration is due to physician
overtime for one hour.
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Appendix B. Solutions for the optimal control problem (1)
In this section, we study the optimal control problem defined in (1) by considering three cases: (i) 𝑅(0) =
𝑅0 = 0, 𝐷 (0) = 𝐷0,0 ≤ 𝐷0 ≤ 𝜇𝑅/𝜃; (ii) 𝑅(0) = 𝑅0 > 0; (iii) 𝑅(0) = 𝑅0 = 0, 𝐷 (0) = 𝐷0 > 𝜇𝑅/𝜃. Theorem 1,

Propositions 1, 2, and 3 present the results for Case (i) since it is the most relevant case. The corresponding
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Figure 12 The percentage of patients from each triage level in the main ED area by the time of day.
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Figure 13 The feature importance of variables using four models to predict the PPH for 8-hour shifts, and
their corresponding root mean squared error (RMSE), The feature importance is calculated by
permuting the corresponding variable 50 times.
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proofs are provided as follows. The optimal controls for Cases (ii)&(iii) are similar despite being more

complicated, and their proofs are included in Appendix B.2 and Appendix B.3, respectively.
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Appendix B.1. Proofs of Theorem 1 , Propositions 1, 2 , and 3 (Case (i)).
In this case, we assume 𝑅(0) = 𝑅0 = 0, 𝐷 (0) = 𝐷0,0 ≤ 𝐷0 ≤ 𝜇𝑅/𝜃. The implications of these conditions are

that when the focal physician starts her shift at 𝑡 = 0, (i) there is no patient waiting for reassessment; (ii) the

number of patients who are handed off from other physicians to the focal physician and who are undergoing

test is sufficiently low so that the focal physician has capacity to sign up new patients.

We first show that 𝑅′(𝑡) = 0, ∀𝑡 ∈ [0,𝑇] . When 𝑡 = 0, because 𝐷0 ≤ 𝜃/𝜇𝑅, the constraint on 𝛼𝑅 (𝑡) in

Problem (1) implies that𝛼𝑅 (0) = 𝜃𝐷0/𝜇𝑅 .Hence, 𝑅′(0) = 𝜃𝐷0−𝛼𝑅𝜇𝑅 = 0. For any 𝑡 > 0 and 𝜃𝐷 (𝑡)/𝜇
𝑅
< 1,

we have 𝛼
𝑅
(𝑡) = 𝜃𝐷 (𝑡)/𝜇

𝑅
and hence 𝑅′(𝑡) = 𝜃𝐷 (𝑡) − 𝛼𝑅 (𝑡)𝜇𝑅 = 𝜇𝑅 (𝜃𝐷 (𝑡)/𝜇

𝑅
− 𝛼

𝑅
(𝑡)) = 0. When 𝑡 > 0

and 𝜃𝐷 (𝑡)/𝜇
𝑅
= 1, we have 𝛼

𝑅
(𝑡) = 1 and 𝛼

𝑁
(𝑡) = 0, which yields 𝑅′(𝑡) = 𝜃𝐷 (𝑡) − 𝜇𝑅 = 0. Furthermore,

𝐷′(𝑡) = 𝑝𝜇
𝑅
− 𝜃𝐷 (𝑡) = −(1 − 𝑝)𝜇

𝑅
< 0, which means that when 𝐷 (𝑡) becomes sufficiently large such

that 𝜃𝐷 (𝑡)/𝜇
𝑅
= 1, the derivative of 𝐷 (𝑡) becomes negative and 𝐷 (𝑡) starts to decrease. As a result,

𝜃𝐷 (𝑡 +𝛿𝑡)/𝜇
𝑅
< 1 for any infinitesimally 𝛿𝑡. Because 𝜃𝐷0/𝜇𝑅 ≤ 1, we conclude that 𝜃𝐷 (𝑡)/𝜇

𝑅
≤ 1, 𝛼∗

𝑅
(𝑡) =

𝜃𝐷 (𝑡)/𝜇
𝑅
, and 𝑅′(𝑡) = 0, ∀𝑡 ∈ [0,𝑇] . Combining with 𝑅(0) = 0, we conclude that 𝑅(𝑡) = 0, ∀𝑡 ∈ [0,𝑇] .

Furthermore, whenever 𝐷 (𝑡) = 0, we have 𝐷′(𝑡) = 𝑝𝛼
𝑁
(𝑡)𝜇

𝑁
≥ 0. Combining with 𝐷 (0) = 𝐷0 ≥ 0, we

conclude that the pure-state constraint 𝐷 (𝑡) ≥ 0, ∀𝑡 ∈ [0,𝑇] holds naturally, which simplifies Problem (1)

into the following:

max
𝛼
𝑁
(𝑡 )

{∫ 𝑇

0
(1− 𝑝) [𝛼𝑁 (𝑡)𝜇𝑁 + 𝜃𝐷 (𝑡)] d𝑡 − ℎ(𝐷 (𝑇))

}
(9)

s.t. 𝐷′(𝑡) = 𝑝𝛼𝑁 (𝑡)𝜇𝑁 − (1− 𝑝)𝜃𝐷 (𝑡), 𝐷 (0) = 𝐷0 ≥ 0, 0 ≤ 𝛼𝑁 (𝑡) ≤ 1− 𝜃𝐷 (𝑡)/𝜇𝑅 .

Next, we apply Pontryagin’s maximum principle to Problem (9). Denote the co-state variable of 𝐷 (𝑡) by

𝜆
𝐷
(𝑡). The Hamiltonian is

𝐻 (𝐷,𝛼𝑁 , 𝜆𝐷 (𝑡), 𝑡) = (1− 𝑝) [𝛼𝑁 (𝑡)𝜇𝑁 + 𝜃𝐷 (𝑡)] +𝜆𝐷 (𝑡)
[
𝑝𝜇𝑁𝛼𝑁 (𝑡) − (1− 𝑝)𝜃𝐷 (𝑡)

]
= (1− 𝑝)𝜃 (1−𝜆𝐷 (𝑡))𝐷 (𝑡) + 𝜇𝑁

(
𝑝𝜆𝐷 (𝑡) + 1− 𝑝

)
𝛼𝑁 (𝑡). (10)

Note that the Hamiltonian (10) is linear in 𝛼
𝑁
(𝑡). The Pontryagin’s maximum principle requires the

Hamiltonian to be maximized for all 𝑡 ∈ [0,𝑇] . Hence, the optimal policy to Problem (9) is bang-bang, i.e.,

𝛼∗
𝑁
(𝑡) is equal to either 0 or 1− 𝜃𝐷 (𝑡)/𝜇

𝑅
. Due to the existence of the mixed inequality constraint, we need

to define a Lagrangian by appending the Hamiltonian with the mixed constraints (see Chapter 3 in Sethi

2019). Let 𝜇
𝐿

and 𝜇
𝑈

be the Lagrange multipliers for the lower and upper constraints on the control 𝛼
𝑁
(𝑡),

respectively. The Lagrangian is

𝐿 (𝐷,𝛼𝑁 , 𝜆𝐷 (𝑡), 𝜇𝐿 , 𝜇𝑈 , 𝑡) = 𝐻 (𝐷,𝛼𝑁 , 𝜆𝐷 (𝑡), 𝑡) + 𝜇𝐿𝛼𝑁 (𝑡) + 𝜇𝑈

[
1− 𝜃𝐷 (𝑡)/𝜇𝑅 −𝛼𝑁 (𝑡)

]
=

[
(1− 𝑝)𝜃 (1−𝜆𝐷 (𝑡)) − 𝜃𝜇𝑈/𝜇𝑅

]
𝐷 (𝑡) +

[
𝜇𝑁

(
𝑝𝜆𝐷 (𝑡) + 1− 𝑝

)
+ 𝜇𝐿 − 𝜇𝑈

]
𝛼𝑁 (𝑡) + 𝜇𝑈 . (11)

The optimal policy to Problem (9) needs to satisfy the conditions below by Pontryagin’s maximum principle:
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(i) Maximum Conditions:

𝛼𝑁 (𝑡) = 0⇔ 𝑝𝜆𝐷 (𝑡) + 1− 𝑝 < 0, 𝛼𝑁 (𝑡) = 1− 𝜃𝐷 (𝑡)/𝜇𝑅 ⇔ 𝑝𝜆𝐷 (𝑡) + 1− 𝑝 > 0.

(ii) First-Order Conditions: 𝜇
𝑁

(
𝑝𝜆

𝐷
(𝑡) + 1− 𝑝

)
+ 𝜇

𝐿
− 𝜇

𝑈
= 0.

(iii) Complementary Slackness: 𝜇
𝐿
𝛼
𝑁
(𝑡) = 𝜇

𝑈

[
1− 𝜃𝐷 (𝑡)/𝜇

𝑅
−𝛼

𝑁
(𝑡)

]
= 0, 𝜇

𝐿
≥ 0, 𝜇

𝑈
≥ 0.

(iv) Adjoint Conditions: 𝜆
′
𝐷
(𝑡) = 𝜃𝜇

𝑈
/𝜇

𝑅
− (1− 𝑝)𝜃 (1−𝜆

𝐷
(𝑡)), 𝜆

𝐷
(𝑇) = −ℎ′(𝐷 (𝑇)).

Because Problem (9) does not contain pure-state constraints, the co-state variable 𝜆
𝐷
(𝑡) is continuous in

𝑡 under optimality. Consider 𝑡 at which 1− 𝜃𝐷 (𝑡)/𝜇
𝑅
> 0 and 𝛼

𝑁
(𝑡) = 0. Next, we prove that 𝛼

𝑁
(𝑡) = 0 for

any 𝑡 ≥ 𝑡 under the optimal policy, which imply the optimal control 𝛼∗
𝑁
(𝑡) is of threshold type.

Because of the complementary slackness and the constraint that 1 − 𝜃𝐷 (𝑡)/𝜇
𝑅
− 𝛼

𝑁
(𝑡) > 0, we have

𝜇
𝑈
= 0. The adjoint equation for 𝜆′

𝐷
(𝑡) becomes

𝜆
′
𝐷 (𝑡) = −(1− 𝑝)𝜃 (1−𝜆𝐷 (𝑡)) = (1− 𝑝)𝜃𝜆𝐷 (𝑡) − (1− 𝑝)𝜃. (12)

Solving the ordinary differential equation in (12) yields

𝜆𝐷 (𝑡) =𝐶𝑒 (1−𝑝) 𝜃𝑡 + 1, (13)

where 𝐶 is a constant. If 𝐶 ≥ 0, then 𝜆
𝐷
(𝑡) ≥ 1, and hence 𝑝𝜆

𝐷
+ 1− 𝑝 = 𝑝(𝜆

𝐷
− 1) + 1 > 0. As a result, the

maximum conditions imply that 𝛼
𝑁
(𝑡) = 1 − 𝜃𝐷 (𝑡)/𝜇

𝑅
, which contradicts with 𝛼

𝑁
(𝑡) = 0. Hence, 𝐶 < 0.

Plugging in the expression of 𝜆
𝐷
(𝑡) in (13) into (12) yields

𝜆
′
𝐷 (𝑡) = (1− 𝑝)𝜃𝐶𝑒 (1−𝑝) 𝜃𝑡 < 0,

whenever 𝛼
𝑁
(𝑡) = 0. This implies that once 𝛼

𝑁
(𝑡) = 0, then

𝑝𝜆𝐷 (𝑡) + 1− 𝑝 < 𝑝𝜆𝐷 (𝑡) + 1− 𝑝 < 0,∀𝑡 ∈ [𝑡,𝑇]

and thus 𝛼
𝑁
(𝑡) = 0, ∀𝑡 ∈ [𝑡,𝑇] . In other words, once it is optimal for the physician to choose idling at 𝑡, i.e.,

𝛼
𝑁
(𝑡) = 0, then it is optimal to stay idle during the remaining time of her shift.

Assume that the physician starts idling at 𝑡∗ ∈ [0,𝑇] . Then, 𝛼∗
𝑁
(𝑡) = 1 − 𝜃𝐷 (𝑡)/𝜇

𝑅
when 𝑡 ∈ [0, 𝑡∗] and

𝛼∗
𝑁
(𝑡) = 0 when 𝑡 ∈ (𝑡∗,𝑇]. The system dynamics can be described as follows:

d𝐷 (𝑡)
d𝑡

= 𝑝

(
𝜇𝑁 −

𝜇
𝑁

𝜇
𝑅

𝜃𝐷 (𝑡)
)
− (1− 𝑝)𝜃𝐷 (𝑡), 𝐷 (0) = 𝐷0, 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (14)

d𝐷 (𝑡)
d𝑡

= −(1− 𝑝)𝜃𝐷 (𝑡), 𝑡 ∈ (𝑡∗,𝑇] . (15)

Solving the ordinary differential equations in (14) and (15) yields:

𝐷 (𝑡) =
(
𝐷0 −

𝑝𝜇
𝑁

𝜃
(
1− 𝑝 + 𝑝𝜇

𝑁
/𝜇

𝑅

) ) 𝑒−𝜃

(
1−𝑝+𝑝

𝜇
𝑁

𝜇
𝑅

)
𝑡 +

𝑝𝜇
𝑁

𝜃
(
1− 𝑝 + 𝑝𝜇

𝑁
/𝜇

𝑅

) , 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (16)
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𝐷 (𝑡) = 𝐷 (𝑡∗)𝑒−(1−𝑝) 𝜃 (𝑡−𝑡∗ ) , 𝑡 ∈ (𝑡∗,𝑇], (17)

which completes the proof for Theorem 1. □

Proof of Proposition 1. Solving (13) together with the boundary condition in the adjoint conditions yields

𝜆𝐷 (𝑡) = 1− [1+ ℎ′(𝐷 (𝑇))] 𝑒 (1−𝑝) 𝜃 (𝑡−𝑇 ) , 𝑡 ∈ [0,𝑇] . (18)

Let 𝑡∗ denote the optimal threshold under the optimal control policy. The maximum conditions imply that

𝑝𝜆
𝐷
(𝑡∗) + 1− 𝑝 = 0. Plugging (18) into this equation and solving it yield

𝑡∗ =𝑇 − ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]
(1− 𝑝)𝜃 . (19)

Note that the right-hand side of (19) is not necessarily between 0 and 𝑇 . Specifically, when 𝑝 ≤
[1+ ℎ′(𝐷 (𝑇))]−1, we have ln [𝑝(1+ ℎ′(𝐷 (𝑇)))] ≤ 0. Hence,

𝑇 − ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]
(1− 𝑝)𝜃 ≥ 𝑇.

On the other hand, when ℎ′(𝐷 (𝑇) ≥ 𝑒𝑇 (1−𝑝) 𝜃/𝑝 − 1, we have

𝑇 − ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]
(1− 𝑝)𝜃 ≤ 0.

Hence, we let 𝑡∗ = 0 if the right-hand side of (19) is less than 0, and let 𝑡∗ = 𝑇 if the right-hand side of (19)

is greater than 𝑇. Hence, we get the expression of 𝑡∗. Next, we prove the monotonicity of 𝑡∗ with respect to

𝜃 and 𝑝.

When 𝑡∗ = 0 or 𝑡∗ = 𝑇, it is obvious that 𝑡∗ does not change with 𝜃 or 𝑝. Next, we consider the case

0 < 𝑡∗ < 𝑇 , which implies that 𝑝 > [1+ ℎ′(𝐷 (𝑇))]−1. Take the derivatives of 𝑡∗ with respect to 𝜃 and 𝑝,

respectively, we get

𝑑𝑡∗

𝑑𝜃
=

ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]
(1− 𝑝)𝜃2 > 0,

𝑑𝑡∗

𝑑𝑝
= − (1− 𝑝)/𝑝 + ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]

(1− 𝑝)2𝜃
< 0.

which completes the proof for Proposition 1. □

Proof of Proposition 2. We first take the derivatives of 𝛼
𝑁

with respect to 𝜇
𝑁

and 𝜇
𝑁

:

𝑑𝛼
𝑁

𝑑𝜇
𝑁

= −
𝑝(1− 𝑝)𝜇

𝑅

[𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅
]2

(
1− 𝑒−𝜃 (1−𝑝+𝑝𝜇

𝑁
/𝜇

𝑅
)𝑡
)
− 𝜃𝑝𝑡

𝜇
𝑅

(
𝑝𝜇

𝑁
𝜇
𝑅

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

− 𝜃𝐷0

)
𝑒−𝜃 (1−𝑝+𝑝𝜇

𝑁
/𝜇

𝑅
)𝑡 < 0,

𝑑𝛼
𝑁

𝑑𝜇
𝑅

=
𝜃

𝜇
𝑅

(
𝐷 (𝑡)
𝜇
𝑅

− 𝑑𝐷 (𝑡)
𝑑𝜇

𝑅

)
=
𝐷0

𝜇
𝑅

𝑒−𝜃 (1−𝑝+𝑝𝜇
𝑁
/𝜇

𝑅
)𝑡 +

𝑝(1− 𝑝)𝜇
𝑁
𝜇
𝑅

𝜃 [𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅
]2

(
1− 𝑒−𝜃 (1−𝑝+𝑝𝜇

𝑁
/𝜇

𝑅
)𝑡
)

+
𝑝𝜇

𝑁
𝑡

𝜇2
𝑅

(
𝑝𝜇

𝑁
𝜇
𝑅

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

− 𝜃𝐷0

)
𝑒−𝜃 (1−𝑝+𝑝𝜇

𝑁
/𝜇

𝑅
)𝑡 > 0,
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and both inequalities hold because of 𝐷0 ≤
𝑝𝜇

𝑁
𝜇
𝑅

𝜃 [𝑝𝜇
𝑁
+(1−𝑝)𝜇

𝑅
] . Next, taking the derivatives of 𝛼

𝑁
with respect

to 𝜃 yields

𝑑𝛼
𝑁

𝑑𝜃
= −𝐷0

𝜇
𝑅

𝑒−𝜃 (1−𝑝+𝑝𝜇
𝑁
/𝜇

𝑅
)𝑡 +

(
𝜃𝐷0

𝜇
𝑅

−
𝑝𝜇

𝑁
𝜇
𝑅

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

)
(1− 𝑝 + 𝑝𝜇𝑁/𝜇𝑅)𝑡𝑒−𝜃 (1−𝑝+𝑝𝜇

𝑁
/𝜇

𝑅
)𝑡

= − 1
𝜇
𝑅

𝑒−𝜃 (1−𝑝+𝑝𝜇
𝑁
/𝜇

𝑅
)𝑡

[
𝐷0 +

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

𝜇
𝑅

(
𝑝𝜇

𝑁
𝜇
𝑅

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

− 𝜃𝐷0

)
𝑡

]
< 0,

and the inequality holds because of 𝐷0 ≤
𝑝𝜇

𝑁
𝜇
𝑅

𝜃 [𝑝𝜇
𝑁
+(1−𝑝)𝜇

𝑅
] . □

Proof of Proposition 3. Because PPH(𝑡) = 𝛼
𝑁
(𝑡)𝜇

𝑁
, we get

PPH(𝑡) =
(1− 𝑝)𝜇

𝑁
𝜇
𝑅

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

+ 𝜇𝑁

(
𝑝𝜇

𝑁

𝑝𝜇
𝑁
+ (1− 𝑝)𝜇

𝑅

− 𝜃𝐷0

𝜇
𝑅

)
𝑒
−𝜃

(
1−𝑝+𝑝

𝜇
𝑁

𝜇
𝑅

)
𝑡
, ∀𝑡 ∈ [0, 𝑡∗] .

It is obvious that PPH(𝑡) = 0, ∀𝑡 ∈ (𝑡∗,𝑇], which completes the proof. □

Appendix B.2. The structure of the optimal policy under Case (ii).

In this case, we assume 𝑅(0) = 𝑅0 > 0, 𝐷 (0) = 𝐷0 ≥ 0. The implication is that when the focal physician starts

her shift at 𝑡 = 0, there are return patients waiting for reassessment. The system dynamics can be described

by the ordinary differential equation as follows:

𝑅′(𝑡) = −𝛼𝑅𝜇𝑅 + 𝜃𝐷 (𝑡), 𝑅(0) = 𝑅0 > 0, (20)

𝐷′(𝑡) = 𝑝
[
𝛼𝑁 𝜇𝑁 +𝛼𝑅𝜇𝑅

]
− 𝜃𝐷 (𝑡), 𝐷 (0) = 𝐷0. (21)

Since we assume that return patients are prioritized over new patients, the physician will spend 100% of her

efforts to return patients, i.e., 𝛼
𝑅
(𝑡) = 1 and 𝛼

𝑁
(𝑡) = 0, until 𝐷 (𝑡) = 𝜇

𝑅
/𝜃. Solving (20) and (21) jointly, we

obtain the following:

𝐷 (𝑡) =
(
𝐷0 −

𝑝𝜇
𝑅

𝜃

)
𝑒−𝜃𝑡 +

𝑝𝜇
𝑅

𝜃
, 𝐷 (𝑡) ≥ 0, (22)

𝑅(𝑡) = 𝑅0 − (1− 𝑝)𝜇𝑅𝑡 +
(
𝐷0 −

𝑝𝜇
𝑅

𝜃

) (
1− 𝑒−𝜃𝑡

)
, 𝑅(𝑡) ≥ 0. (23)

The next lemma shows that 𝑅(𝑡) = 0 has a unique solution.

Lemma 1. There exists 𝑡
𝑅
> 0 such that 𝑅(𝑡

𝑅
) = 0 and 𝐷 (𝑡

𝑅
) ≤ 𝜇

𝑅
/𝜃.

Proof of Lemma 1. We first re-write 𝑅(𝑡) as

𝑅(𝑡) = 𝐷0 + 𝑅0 − (1− 𝑝)𝜇𝑅𝑡 −
𝑝𝜇

𝑅

𝜃
−

(
𝐷0 −

𝑝𝜇
𝑅

𝜃

)
𝑒−𝜃𝑡 ≡ 𝑅1(𝑡) −𝐷 (𝑡), (24)

where 𝑅1(𝑡) = 𝐷0 + 𝑅0 − (1 − 𝑝)𝜇
𝑅
𝑡. It is clear that (i) 𝑅1(𝑡) is a decreasing function in 𝑡; (ii) 𝑅1(0) =

𝐷0 + 𝑅0 > 𝐷 (0) = 𝐷0; and (iii) lim𝑡→∞ 𝑅1(𝑡) = −∞ < lim𝑡→∞ 𝐷 (𝑡) = 𝑝𝜇
𝑅
/𝜃. Both 𝑅1(𝑡) and 𝐷 (𝑡) are

monotonic functions of 𝑡. Hence, they have a unique intersection, i.e., 𝑅(𝑡) = 0 has a unique solution.
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Let 𝑡
𝑅

denote the solution to 𝑅(𝑡) = 0, i.e., 𝑅1(𝑡𝑅) = 𝐷 (𝑡
𝑅
). Next, we consider the following three cases

separately to prove that 𝐷 (𝑡
𝑅
) < 𝜇

𝑅
/𝜃: (i) 𝐷0 < 𝑝𝜇

𝑅
/𝜃, (ii) 𝑝𝜇

𝑅
/𝜃 ≤ 𝐷0 < 𝜇

𝑅
/𝜃, and (iii) 𝐷0 ≥ 𝜇

𝑅
/𝜃.

When 𝐷0 < 𝑝𝜇
𝑅
/𝜃, it is obvious that 𝐷 (𝑡) < 𝑝𝜇

𝑅
/𝜃 ≤ 𝜇

𝑅
/𝜃 holds for any 𝑡 > 0. Hence, 𝐷 (𝑡

𝑅
) < 𝜇

𝑅
/𝜃.

When 𝑝𝜇
𝑅
/𝜃 ≤ 𝐷0 < 𝜇

𝑅
/𝜃, it is clear that 𝐷 (𝑡) decreases in 𝑡 and 𝐷 (𝑡) ≤ 𝐷 (0) = 𝐷0 < 𝜇

𝑅
/𝜃. At last,

we consider the case 𝐷0 ≥ 𝜇
𝑅
/𝜃. Since 𝐷 (𝑡) is a continuous function on the closed interval [0, 𝑡

𝑅
] and

differentiable on (0, 𝑡
𝑅
), the Lagrange mean value theorem implies that there exists 𝑡𝑐 ∈ (0, 𝑡

𝑅
) such that

𝐷′(𝑡𝑐) =
𝐷 (𝑡

𝑅
) −𝐷 (0)

𝑡
𝑅
− 0

=
𝐷 (𝑡

𝑅
) −𝐷0

𝑡
𝑅

. (25)

Hence, we have

𝑅′
1(𝑡𝑅) =

𝑅1(𝑡𝑅) − 𝑅1(0)
𝑡
𝑅
− 0

=
𝐷 (𝑡

𝑅
) −𝐷0 − 𝑅0

𝑡
𝑅

≤ 𝐷′(𝑡𝑐) ≤ 𝐷′(𝑡𝑅), (26)

where the first equality holds because 𝑅1(𝑡) is a linear function of 𝑡, the second equality holds because

𝑅1(𝑡𝑅) = 𝐷 (𝑡
𝑅
), the first inequality holds because 𝑅0 > 0, and the second inequality holds because 𝐷′(𝑡)

increases in 𝑡 due to 𝐷′′(𝑡) = (𝐷0 − 𝑝𝜇
𝑅
/𝜃)𝜃2𝑒−𝜃𝑡 ≥ 0. As a result, 𝑅′(𝑡

𝑅
) = 𝑅′

1(𝑡𝑅) − 𝐷′(𝑡
𝑅
) ≤ 0. We

know from (22) that 𝑅′(𝑡) = −𝜇
𝑅
+ 𝜃𝐷 (𝑡). Hence, −𝜇

𝑅
+ 𝜃𝐷 (𝑡

𝑅
) ≤ 0, and we have 𝐷 (𝑡

𝑅
) ≤ 𝜇

𝑅
/𝜃, which

completes the proof. □

Lemma 1 implies that when the return patients handed off to the focal physician is exhausted at 𝑡
𝑅

, the

number of patients in the test queue, i.e., 𝐷 (𝑡
𝑅
), is less than 𝜇

𝑅
/𝜃. Hence, the system dynamics after 𝑡

𝑅
is

again the same as that under Case (i) in Appendix B.1. Therefore, the structure of the optimal policy is again

of threshold type. Since the analysis is the same as that in Case (i), the details are omitted.

Appendix B.3. The structure of the optimal policy under Case (iii).
In this case, we assume 𝑅(0) = 𝑅0 = 0, 𝐷 (0) = 𝐷0 > 𝜇

𝑅
/𝜃. The implications of these conditions are that

when the focal physician starts her shift at 𝑡 = 0, (i) there is no patient waiting for reassessment; (ii) the

number of patients who are handed off from other physicians to the focal physician and who are undergoing

test is sufficiently high so that the focal physician has no capacity to sign up new patients.

Because 𝑅(0) = 0 and 𝐷0 > 𝜇
𝑅
/𝜃, we have 𝛼

𝑅
(0) = min{1, 𝜃𝐷0/𝜇𝑅

} = 1 and 𝛼
𝑁
(0) = 0. In fact, as long

as 𝐷 (𝑡) > 𝜇
𝑅
/𝜃, we have 𝛼

𝑅
(𝑡) = 1 and 𝛼𝑁 (𝑡) = 0. Hence, the system dynamics when 𝐷 (𝑡) > 𝜇

𝑅
/𝜃 can be

described by the ordinary differential equation as follows:

𝐷′(𝑡) = 𝑝𝜇𝑅 − 𝜃𝐷 (𝑡) = 𝜇𝑅 (𝑝 − 𝜃𝐷 (𝑡)/𝜇𝑅) < 0, (27)

𝑅′(𝑡) = −𝜇𝑅 + 𝜃𝐷 (𝑡), 𝑅(0) = 0, (28)

which implies that 𝐷 (𝑡) decreases until 𝐷 (𝑡) = 𝜇
𝑅
/𝜃. Solving (27) together with the initial condition

𝐷 (0) = 𝐷0, we have

𝐷 (𝑡) =
(
𝐷0 −

𝑝𝜇
𝑅

𝜃

)
𝑒−𝜃𝑡 +

𝑝𝜇
𝑅

𝜃
. (29)
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Let 𝐷 (𝑡) = 𝜇
𝑅
/𝜃, we have

𝑡0 =
1
𝜃

ln
𝜃𝐷0 − 𝑝𝜇

𝑅

(1− 𝑝)𝜇
𝑅

, (30)

where 𝑡0 is the time it takes for 𝐷 (𝑡) to decrease to 𝜇
𝑅
/𝜃. Because 𝐷 (𝑡) ≥ 𝜇

𝑅
/𝜃 for 𝑡 ∈ [0, 𝑡0], we know

from (28) that 𝑅(𝑡0) > 0. The dynamic of the system after 𝑡0 will be the same as that under Case (ii) with

the initial system state 𝐷0 = 𝜇
𝑅
/𝜃, 𝑅0 = 𝑅(𝑡0) > 0. Therefore, the structure of the optimal policy is again of

threshold type. Since the analysis is the same as that in Case (ii), the details are omitted.

Appendix C. Dimensionality of a Markovian ED Model
In this section, we use a CTMC to model the system dynamics of ED patient flow, and the system state

is represented by a vector (𝑥𝑤 , 𝑥 (1)𝑇
, 𝑥

(1)
𝑅

, 𝑥
(2)
𝑇

, 𝑥
(2)
𝑅

, . . . , 𝑥
(𝑘 )
𝑇

, 𝑥
(𝑘 )
𝑅

), where 𝑘 is the number of physicians on

duty, 𝑥𝑤 is the number of patients waiting to be seen in the waiting room, 𝑥 (𝑖)
𝑇

is the number of patients

going through tests, and 𝑥
(𝑖)
𝑅

is the number of patients waiting for reassessment for Physician 𝑖, 𝑖 = 1, · · · , 𝑘 .

Assume that there are at most 𝑁𝑤 patients in the waiting room, and at most 𝑀 (𝑖) patients in the test and

reassess queues of Physician 𝑖. Hence, the state space is{
(𝑥𝑤 , 𝑥 (1)𝑇

, 𝑥
(1)
𝑅

, 𝑥
(2)
𝑇

, 𝑥
(2)
𝑅

, . . . , 𝑥
(𝑘 )
𝑇

, 𝑥
(𝑘 )
𝑅

) : 0 ≤ 𝑥𝑤 ≤ 𝑁𝑤 , 𝑥
(𝑖)
𝑇

≥ 0, 𝑥 (𝑖)
𝑅

≥ 0, 𝑥 (𝑖)
𝑇

+ 𝑥 (𝑖)
𝑅

≤ 𝑀 (𝑖) , 𝑖 = 1, · · · , 𝑘
}
.

Hence, the state space has a dimension (𝑁𝑤 + 1)Π𝑘
𝑖=1 [(𝑀

(𝑖) + 1) (𝑀 (𝑖) + 2)/2]. Assuming 𝑘 = 4, 𝑁𝑤 = 20,

and 𝑀 (𝑖) = 7 for all 𝑖, then the dimension of the state space is 21× [(7 + 1) (7 + 2)/2]4 = 35,271,936. The

modeling and computation are similar to that of model 𝒮 in Campello et al. (2016) despite the differences

in the patient pick-up mechanism.

Appendix D. Specifications of 𝑃1 𝑗 , 𝑃2 𝑗 , and the average ED waiting time
We first specify the transition probability matrix 𝑃1 𝑗 . The transition probability of 𝑃1 𝑗 from (𝑥1,y1) to

(𝑥2,y2), denoted by 𝑝 (𝑥1,y1 ) (𝑥2,y2 ) , is defined as follows:

𝑝 (𝑥1,y1 ) (𝑥2,y2 ) =



𝜆 𝑗

Λ 𝑗
if 𝑥1 ≥ 0, 𝑥2 = 𝑥1 + 1,y1 = y2 = 1𝑠 𝑗 ; or 𝑥1 = 𝑥2 = 0,y1 ≠ 1𝑠 𝑗 ,

y2 = y1 + e𝑖 , where 𝑖 = argmax1≤𝑚≤𝑠 𝑗 {𝜇 𝑗 (𝑆𝑚) (1− y(𝑚)
1 )},∑𝑠 𝑗

𝑚=1 𝜇 𝑗 (𝑆𝑚 )
Λ 𝑗

if 𝑥1 ≥ 1, 𝑥2 = 𝑥1 − 1,y1 = y2 = 1𝑠 𝑗 ,
𝜇 𝑗 (𝑆𝑚 )

Λ 𝑗
if 𝑥1 = 𝑥2 = 0,y(𝑚)

1 = 1,y2 = y1 − e𝑚,1 ≤ 𝑚 ≤ 𝑠 𝑗 ,

1− 𝜆 𝑗+
∑𝑠 𝑗

𝑚=1 y(𝑚)
1 𝜇 𝑗 (𝑆𝑚 )
Λ 𝑗

if 𝑥1 = 𝑥2 = 0,y1 = y2 ≠ 1𝑠 𝑗 ,
0 otherwise,

where e𝑖 is the 𝑖th row of 𝑠 𝑗-dimensional identity matrix, 1𝑠 𝑗 is a 𝑠 𝑗-dimensional vector with all elements

equal to 1, y(𝑚)
1 is the 𝑚th element of y1, and 𝑆𝑚 is the 𝑚th shift in S 𝑗 .

Next, we specify 𝑃2 𝑗 to describe the instantaneous transition of system states at the end of the 𝑗 th period

due to that physicians may go off-duty or begin new shifts. Let 𝜉 𝑗 and 𝜂 𝑗 be the numbers of physicians who
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go off-duty and begin new shifts at the end of period 𝑗 , respectively. Note that 𝜉 𝑗 and 𝜂 𝑗 are known for any

given schedule. If 𝜉 𝑗 = 𝜂 𝑗 = 0, then 𝑃2 𝑗 is an identity matrix of the same dimension as π𝑇π; otherwise, let

𝑝 (𝑥1,y1 ) (𝑥2,y2 ) denote the transition probability from (𝑥1,y1) to (𝑥2,y2) of 𝑃2 𝑗 , and let 𝑄 be an 𝑠 𝑗 × (𝑠 𝑗 − 𝜉 𝑗)
matrix whose column corresponds to one of the (𝑠 𝑗 − 𝜉 𝑗) physicians who continue working in period 𝑗 + 1.

Each column of 𝑄 is a 𝑠 𝑗-dimensional vector whose elements are all 0 except that the 𝑔th element is 1 where

𝑔 is the index of the corresponding physician in y1. Then, when 𝜂 𝑗 ≥ 1,

𝑝 (𝑥1,y1 ) (𝑥2,y2 ) =


1, if 𝑥1 ≥ 𝜂 𝑗 , 𝑥2 = 𝑥1 − 𝜂 𝑗 ,y1 = 1𝑠 𝑗 ,y2 = (y1𝑄,1𝜂 𝑗

); or 𝑥1 ≤ 𝜂 𝑗 − 1, 𝑥2 = 0,
y2 = (y1𝑄,1𝑥1 ,0𝜂 𝑗−𝑥1); or 𝑥1 = 𝑥2 = 0,y2 = (y1𝑄,0𝜂 𝑗

),
0, otherwise,

where 1𝑔 and 0𝑔 are 𝑔-dimensional vectors with all elements equal to 1 and 0, respectively. Note that when

𝑥1 < 𝜂 𝑗 , i.e., the number of waiting patients is less than the number of physicians who begin their shifts,

we assign the patients in waiting to newly-arrived physicians with the highest service rates, following the

same rule described in Section 6.1. This is achieved by ranking the newly-arrived physicians by their current

service rates. Specifically, in y2 = (y1𝑄,1𝑥1 ,0𝜂 𝑗−𝑥1), 1𝑥1 represents the 𝑥1 physicians with the highest service

rates among the 𝜂 𝑗 newly-arrived physicians and 0𝜂 𝑗−𝑥1 represents the remaining 𝜂 𝑗 − 𝑥1 slower physicians.

When 𝜂 𝑗 = 0, then

𝑝 (𝑥1,y1 ) (𝑥2,y2 ) =

{
1, if 𝑥1 = 𝑥2,y2 = y1𝑄,

0, otherwise,

Finally, we follow Liu and Xie (2021) to compute the average patient waiting time. The total expected

patient waiting time in the 𝑗 th period (( 𝑗 − 1)𝑙, 𝑗 𝑙], denoted by 𝑊 𝑗 , can be expressed as

𝑊 𝑗 =

∞∑︁
𝑛=0

(
(Λ 𝑗 𝑙)𝑛

𝑛!
𝑒−Λ 𝑗 𝑙

𝑛∑︁
𝑚=0

∞∑︁
𝑖=1

π𝑖 (( 𝑗 − 1)𝑙 +𝑚𝑙/(𝑛 + 1)) 𝑖𝑙

𝑛 + 1

)
,

where π𝑖 (( 𝑗 − 1)𝑙 +𝑚𝑙/(𝑛 + 1)) is the probability at state (𝑖,1𝑠 𝑗 ) at 𝑡 = ( 𝑗 − 1)𝑙 +𝑚𝑙/(𝑛 + 1). Hence, the

average ED waiting time is
∑24/𝑙

𝑗=1 𝑊 𝑗/
∑24/𝑙

𝑗=1 𝜆 𝑗 . Interested readers are referred to the appendix of Liu and Xie

(2021) for detailed derivation and explanation.
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