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Abstract. Problem definition:Motivated by an intriguing observation of a time-varying pattern in physician productivity

(measured by the number of new patients seen per hour, or PPH), we study a continuous-time optimal control problem to

understand the transient behavior of individual physicians within their shifts in emergency departments (EDs). Method-

ology/results: By applying Pontryagin’s maximum principle, we characterize the optimal policy and provide insights into

physician capacity, productivity, and throughput. We conclude that individual physicians’ transient behavior is intrinsic

and mainly induced by shift-based scheduling. We leverage the insights from time-varying PPH to model a complex

ED system as a time-varying multi-server queue with shift-hour-dependent service rates. Validated using data from two

Canadian EDs, our simulation results show that our queueing model can accurately capture time-of-day-dependent patient

waiting times with a simple parameter estimation procedure. In contrast, the simulated waiting times under constant ser-

vice rates deviate significantly from the data.Managerial implications: Our results show that it is important to explicitly

consider time-varying service rates to obtain accurate models of ED operations. The essence of our model is dimension

reduction by state aggregation. As a result, the model allows for performance evaluation through the uniformization of

a continuous-time Markov chain, which can be integrated with off-the-shelf algorithms for physician staffing. Our case

study using data from a Canadian ED shows that the new shift schedules generated using our method can improve the

current schedule in practice and result in substantial annual cost savings.
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1. Introduction
Emergency department (ED) overcrowding is a pressing issue for many countries around the world (Pines

et al. 2011), impairing EDs’ ability to provide timely care. Hence, the importance of modeling ED oper-

ations to reduce overcrowding cannot be overstated. ED is a complex network with time-varying demand

and endogenous service rates, rendering it close to impossible to obtain any analytical results for system

performance. Even numerical evaluation becomes a difficult task. For example, Campello et al. (2016)

consider EDs as case-manager type systems, where patients returning to physicians for reassessment is
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explicitly modeled. With proper Markovian assumptions, the system can be modeled by a continuous-time

Markov chain. However, the system dimension grows exponentially fast and numerical evaluation of system

performance becomes challenging, even for a small number of physicians under a stationary demand process.

Figure 1 Patient arrival rates, average waiting time, physician staffing level, and total new patients seen per hour (PPH)

by all physicians on duty in the main treatment area (excluding fast-track area) of our study ED from January 3

to July 31, 2015. This period was chosen because physician staffing remained unchanged during this period.
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Despite the difficulty of evaluating time-dependent metrics (e.g., waiting times, throughput), they are

crucial for system-level decision making, such as physician staffing. ED operations are naturally modeled as

queueing systems, which requires a good understanding of the arrival and service processes. Using patient

visit data from an urban tertiary hospital in Alberta, Canada, we obtain the average patient arrivals per hour

(demand for emergency care), physician staffing levels (ED capacity), and average waiting times (from triage

to first examination by a physician) by the time of day, shown in Figure 1. An immediate observation is that

the physician staffing level in our study ED is carefully designed to match with the time-varying demand.

This is done by staggering shifts of different lengths; see a detailed description of the shift patterns in Section

3.3. However, the outcome is less than satisfactory, as the average waiting time varies significantly over the

course of the day and exceeds two hours at times.

A key determinant of the patient waiting time is physicians’ speed in picking up new patients, measured

by PPH—the number of new patients picked up by a physician per hour. Note that PPH is not the rate at

which patients complete treatment in the ED, which shall be referred to as throughput later in the paper;

rather, it is the rate at which patients’ waiting in the waiting room comes to an end. We add the plot of the

total physician PPH, i.e., the total number of new patients seen per hour by all physicians on duty, by the time

of day to Figure 1. An intriguing observation is that the total physician PPH varies significantly, even when

the staffing level remains constant. Take the 10:00 to 21:00 period as an example: there are 5 physicians
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on duty during this 11-hour period, except from 12:00 to 13:00. However, the total physician PPH varies

from 5.9 to 10.0, a 69% difference. Interestingly, the highest total PPH level does not coincide with the peak

staffing hour, which occurs between 12:00 to 13:00.1Motivated by this system-level behavioral anomaly and

the wisdom from the classical queueing theory that higher variations in service times lead to longer waiting

times, we investigate this observation further by scrutinizing the PPH at the individual physician level.

Figure 2 The average number of new patients seen per hour (PPH) and the average number of active patients for all

7-hour shifts in the main ED area, estimated using data from January to July 2015. Active patients refer to all

patients under a physician’s care at any given time of the shift (see more details in Section 3.2). The number of

active patients is also referred to as the level of multitasking (KC 2013).
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Most shifts in our study ED have a length of 7 or 8 hours. Figure 2 shows the average PPH by shift hour

of all 7-hour shifts in the non-fast-track area from our data (see the PPH plot for 8-hour shifts in Figure 9,

Appendix A). Based on the time-varying structure of PPH observed from Figures 2 and 9, we partition a

shift into three phases, within each phase PPH exhibits distinct patterns: the start-of-shift phase (the first two

hours), the end-of-shift phase (the last hour), and themiddle-of-shift phase (the remaining hours of the shift).

We observe that PPH decreases exponentially during the start-of-shift phase—from 3.6 in the first hour to

1.94 in the third hour (a 46% drop) in Figure 2; then, it plateaus during the middle-of-shift phase; after

which, it drops to near zero in the end-of-shift phase. The pattern becomes even more significant for 7- and

8-hour shifts using half an hour as the time resolution; see Figure 10 in Appendix A. When we further plot

the PPH for each individual physician or for a specific type of shift, we observe a similar pattern. The PPH

for fast-track shifts also shows a similar decreasing pattern, although the rates are higher and the magnitude

1One might conjecture that the variation in total physician PPH is a result of physician idling due to no patient waiting to be seen
during certain time periods. However, our data show that there were always new patients waiting to be seen during the high-load
period (10:00 to 21:00) in the study ED during our study period (January to July 2015).
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of the decrease is lower than for non-fast-track shifts. Similar structures were observed by the emergency

medicine community using data from U.S. hospitals (Joseph et al. 2018, 2020). Hence, we conclude that

this time-varying pattern of physician PPH within a shift is highly robust.

The physician-level PPH determines the service speed of the ED, which has a crucial impact on system-

level performance metrics, such as the average patient waiting time and queue length. To the best of our

knowledge, this time-varying pattern of physician PPH has not been thoroughly investigated in the literature.

Hence, we aim to shed light on its cause and impact. Specifically, we focus on three research questions:

What operational factors cause the time-varying physician PPH? How does time-varying PPH help us

model complex ED operations? More importantly, how can we leverage our findings to support ED decision

making?

Our study makes the following contributions. First, we model a physician’s decision problem within

a finite shift by an optimal control framework. We obtain closed-form expressions for the time-varying

PPH under the optimal policy, which explain the underlying drivers of the exponential decay during the

start-of-shift phase and the sharp drop in the end-of-shift phase. We conclude that time-dependent physician

behavior during a shift is a result of (i) the repetitive nature of emergency service, which leads to physician

multitasking; and (ii) the discrete nature of shift-based scheduling, which induces patient handoff, i.e.,

transfer of patient care from one physician to another. The analytical result allows us to provide a close-form

estimate of physician capacity. It also supports the practice of setting a common cutoff time for signing

up new patients approaching the end of shift. Hence, this study advances our understanding of individual

physicians’ within-shift behavior and therefore contributes to the behavioral queueing literature.

Second, built on the time-varying nature of PPH, i.e., the rate that effectively ends a patient’s waiting in

the waiting room, we model the complex ED system by an 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue, i.e., a multiserver
queue with nonstationary Poisson arrivals and exponential service times with time-varying rates (PPH).

Simulation results show that our model produces time-of-day-dependent performance metrics that closely

match the data from two Canadian EDs. On the other hand, the outputs of the same simulation model that

ignores the time-varying physician service rates (i.e., use a constant rate) deviate from the data significantly.

Hence, our results highlight the importance of explicitly considering time-varying physician service rates in

the modeling of ED operations.

At last, through a case study using data from a Canadian ED, we demonstrate that our model can be

applied to support ED physician staffing. The essence of our 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) model is dimension
reduction through state aggregation. As a result, it allows the transient analysis of system performance

through the uniformization of a continuous-time Markov chain (CTMC) with jumps at discrete time epochs.

We integrate the performance evaluation algorithm with a local search heuristic to improve the current

physician scheduling implemented in our focal hospital.
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The rest of this paper is organized as follows. We discuss the relevant literature in Section 2 and introduce

the study setting in Section 3. We study physicians’ within-shift behavior in Section 4. Our results motivate

a novel queueing model for ED operations in Section 5, and we show how it can support physician staffing

decisions in Section 6. In Section 7, we conclude the paper, discuss the managerial insights, and point to

future research directions. All proofs and additional results are given in the appendices.

2. Literature
Recent years have seen wide applications of operations research/management tools to improve healthcare

access and reduce costs (see Saghafian et al. 2015 and Dai and Tayur 2020 for overviews). Our work aims to

understand ED physicians’ decision making underlying their time-varying productivity and thus is relevant

to studies of healthcare workers’ behavioral issues. Evidence shows that healthcare workers respond to

system crowding by adjusting their behavior and capacity rationing decisions, including service speedup

(KC and Terwiesch 2009, Long and Mathews 2018), patient undercoding (Powell et al. 2012), early patient

discharge (Berry Jaeker and Tucker 2016), and early task initiation (Batt and Terwiesch 2016), among

others. Physicians may also adapt their patient prioritization behavior (Ding et al. 2019, Li et al. 2021) and

admission decisions (Kim et al. 2015, 2020) to the level of system congestion.

Among them, studies that explore various mechanisms to explain physicians’ behavior in picking up new

patients or completing their treatments are particularly relevant to our study. Using a parametric hazard

model, Batt et al. (2019) study the rate of physicians completing patient treatments in EDs and find that the

rate is lowest early in the shift and highest toward the end of shift. Moreover, handed-off patients experience

a slightly higher treatment rate and 72-hour revisit rate than non-handed-off patients. Using a simulation

study, Batt et al. (2019) examine how to reduce handoffs by adjusting shift length and new patient cutoff

rules. Similarly, Chan (2018) find that ED physicians are less likely to accept new patients and tend to speed

up the treatment of existing patients approaching the end of shift. Deo and Jain (2019) examine the change

in system speed using data from an outpatient department, where patient treatments have to be completed

before the end of the service episode (unlike EDs). They find that the service speed of a patient is slower

at the start and progressively increases toward the end of the service episode. The differences between the

aforementioned studies and our work are threefold: First, we focus on the rate of ED physicians picking up

new patients within their shift (i.e., PPH). PPH is the rate that effectively ends a patient’s waiting in the

waiting room. We find that PPH is the highest at the shift start, plateaus in the middle, and drops to its

lowest approaching the end of shift. Our results suggest that both physician multitasking due to the repetitive

nature of emergency care and physicians’ efforts to avoid patient handoffs drive the changes of PPH over

a shift. Second, the analytical results from our study provide a closed-form estimate of physician capacity

and support the practice of setting a common cutoff time for signing up new patients in a shift. Third, we

show that considering the shift-hour-dependent PPH helps build accurate models for ED patient flow and
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models ignoring it generate outputs deviating significantly from data, which further differentiates our study

from the literature. We note that a recent study Niewoehner et al. (2022) find that working with familiar

peers increases ED physicians’ PPH which explains the variation in PPH from an interesting organizational

perspective, and Zaerpour et al. (2021) empirically identify factors correlated with PPH (without explaining

the mechanism), and then leverage this knowledge to assign physicians to predetermined shifts. In contrast,

we use an optimal control framework to investigate the underlying mechanism. We then optimize physician

staffing levels by determining the shift start times to better match capacity with demand. Thus, both studies

are relevant to ours but different in the research methodology and objectives.

Methodology-wise, We use the optimal control framework to capture the trade-off between throughput

and patient handoff to understand individual physicians’ transient behavior during a shift. Hence, works that

use fluid control models to support decision making in healthcare systems (Hu et al. 2020, Chan et al. 2021)

are most relevant to our study. Hu et al. (2020) use an optimal control framework to study decisions on

the allocation of resources for proactive care when considering patient condition deterioration. They obtain

optimal scheduling policies when the system is (i) in a normal state of operation and (ii) under a random

shock. Chan et al. (2021) study the dynamic assignment of nurses in EDs at the beginning of discrete shifts

by a fluid control model. They obtain insights on the structure of “good” policies and use simulation to show

that their heuristics on nurse reassignment can significantly reduce the system cost compared to without

reassignment. Our model explicitly captures the interactions between testing and reassessment during the

treatment of a patient and thus is relevant to studies that model the repetitive services provided to customers

in service systems, e.g., Chan et al. (2014) and Yom-Tov and Mandelbaum (2014).

The insights into physicians’ time-varying PPH obtained from the optimal control frameworkmotivate our

novel𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) model for ED patient flow. Hence, our work is also relevant to the literature on ED
modeling and patient flow management; see, e.g., Saghafian et al. (2012), Dobson et al. (2013), Huang et al.

(2015). The dimension reduction of the complex ED network in our queueing model is via the aggregation

of each physician node, which shares similarity with the 𝒯 approximation in Campello et al. (2016). The

differences between that study and ours are also significant. For example, the patient arrival process is

modeled as a stationary Poisson process in Campello et al. (2016), whereas we consider a nonstationary

Poisson process. We use the time-varying PPH as the service rate of each physician, whereas Campello

et al. (2016) use the throughput rate of a single-server finite-source queue in steady state. Whitt and Zhang

(2017) propose an infinite-server queueing model of the ED with a time-varying arrival process, where the

length of stay is used as the patient service time. Simulation results show the importance of considering the

time-dependent nature of the service time, which aligns with the insight from our study. However, in contrast

to the infinite-server model inWhitt and Zhang (2017), our model explicitly accounts for the time-dependent

physician staffing level in the model, which can support physician scheduling (as shown by the case study in
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Section 6). We mark that our Markov chain formulation of the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) model shares with the
hypercube models in the literature; see, e.g., Larson (1974).

Finally, we note the emergencymedicine community has also observed a time-varying pattern of physician

productivity levels. Joseph et al. (2018) find that estimating physician productivity as a simple average

substantially misestimates physicians’ capacity and suggest that the time-varying pattern should be factored

into physician staffing. Joseph et al. (2020) find that a decrease in PPH does not reflect a decreasing workload.

These studies differ from ours in both the study objectives and framework.

3. ED Operations and Patient Flow
In this section, we describe the patient flow process in the main area of our study ED. The fast-track area, a

separate ED area with dedicated medical teams, is not the focus of this study. Note that our description is

based on EDs in Alberta, Canada, and the operations in EDs of other regions may be different. However, we

believe that the key features (such as patients return for service) are shared with most EDs. A depiction of

the patient flow in the main ED area is provided in Figure 3.

Figure 3 A depiction of the patient flow process in the main area of an emergency department with 𝑘 physicians.

waiting room

triage

patient 
boarding 

admit

discharge

patient
pick 

patient
arrival

patient
departure

testreassess

MD

Physician 1

testreassess

MD

Physician 𝑘

3.1. Patient Flow

Upon arrival, patients are triaged into one of five levels, with a lower level indicating higher urgency. After

triage, patients wait in the waiting room. When a physician becomes available, she will choose a patient

for initial assessment2 based on a given prioritization rule (Ding et al. 2019, Li et al. 2021). After the

initial assessment, some patients may leave the ED, while others may undergo diagnostic tests or medical

procedures. (For simplicity, we hereafter use tests to represent all tasks performed by non-physician staff.)

Those patients will join the queue for testing (see Figure 3) and return to the same physician for reassessment

when the test results are ready. We refer to patients waiting to be seen in the waiting room as new patients

2Note that the mechanisms for routing patients to physicians could be different in other EDs. For example, Campello et al. (2016)
describes an ED where a dispatcher assigns patients to physicians with available caseload after triage, whereas in Song et al. (2015)
patients are routed to physicians by a round-robin policy, independent of physician speed or idle time.
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and those waiting for reassessment as return patients. A patient may return to the same physician for service

several times during his sojourn in the ED. A patient departs the ED if he is discharged; otherwise, the

patient is admitted and becomes a boarding patient, waiting in an ED bed until being transferred into an

inpatient bed.

3.2. Physician Multitasking and Capacity

It is well known that ED physicians are multitasking (KC 2013, Song et al. 2018, Li et al. 2021); i.e., at

any given time, a physician is responsible for the care of multiple patients, some of whom are undergoing

testing in the test queue while others are waiting for reassessment (see Figure 3). The total patients under a

physician’s care at any given time are also referred to as the active patients of this physician (Joseph et al.

2020). See Figure 2 for an illustration of the average number of active patients by shift hour calculated using

our data. Physicians do not need to discharge a patient before they start working on a new patient; however, a

physician generally does not take on more patients than her capacity, i.e., the maximum number of patients

that she can simultaneously care for (Campello et al. 2016). Although it seems unlikely that physicians

keep a fixed number in mind as their capacity, Saghafian et al. (2012) observe from their study ED that an

individual physician’s capacity is generally no more than seven. KC (2013) find that the upper quartile of a

physician’s workload is five in their study hospital.

3.3. Shifts and Patient Care Handoff

Figure 4 The daily physician shifts in our study ED from January to July 2015.

Shift 0:00 1:00 2:00 3:00 4:00 5:00 6:00 7:00 8:00 9:00 10:00 11:00 12:00 13:00 14:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 23:00

S1 1 2 3 4 5 6 7
S2 1 2 3 4 5 6 7
S3 1 2 3 4 5 6 7 8
S4 1 2 3 4 5 6
S5 1 2 3 4 5 6 7 8
S6 Fast-Track Shift 1 2 3 4 5 6 7
S7 1 2 3 4 5 6 7 8
S8 1 2 3 4 5 6 7
S9 1 2 3 4 5 6 7
S10 1 2 3 4 5 6 7 8
S11 Fast-Track Shift 1 2 3 4 5 6 7
S12 7 1 2 3 4 5 6
S13 5 6 7 1 2 3 4
S14 2 3 4 5 6 7 1
S15 1 2 3 4 5 6 7

Note. There are 15 shifts each day, with one 6-hour shift, 10 7-hour shifts (two out of the 10 are fast-track

shifts), and four 8-hour shifts. The numbers in each row represent the shift hour of the corresponding shift.

EDs provide care 24 hours a day; however, no healthcare provider can work around the clock. As a result,

shift-based scheduling is a necessity. Figure 4 shows the daily physician shifts from January to July 2015

in our study ED. During this period, there were 15 shifts (and hence 15 physicians) scheduled in the ED
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each day, two of which were fast-track shifts and the remainder were scheduled for the main area. The shift

lengths in our study ED were 6, 7, or 8 hours. We observe that physicians started their shifts at staggered

times during the day so as to better match physician capacity with time-varying patient demands. Moreover,

the staggered shifts avoided the undesirable situation of too many physicians leaving work at the same time

and thus made the end-of-shift transition easier. We elaborate below.

When approaching the end of shift, a physician needs to transfer the care of unfinished patients to other

physicians on duty. This practice is referred to as patient handoff, which is unsafe and undesirable because

it causes discontinuity of care and creates opportunities for medical errors. Handoff has been linked to up

to 24% of ED malpractice claims (Cheung et al. 2010), longer patient length of stay (Epstein et al. 2010),

and higher 72-hour revisit rate (Batt et al. 2019). A recent study suggests that physicians should “slack

off” approaching the end of their shift, i.e., stop signing up new patients, to avoid handoff and improve ED

efficiency (Chan 2018). This aligns with the practice in the U.S. ED studied by Song et al. (2015), where

new patients will not be assigned to physicians in the last two hours of their shifts. Physicians in another

U.S. ED stated that “they are less likely to pick up new patients in the last hour or so of their shifts” (section

6.2.2 in Batt et al. 2019). Similarly, in our study ED in a Canadian hospital, physicians can choose not to see

new patients in the last hour of their shifts, even they have to stay idle. It should not be interpreted literally

when we say physicians slack off or stay idle. Physicians may perform non-clinical duties such as student

mentoring, administration, among others.

4. Physician Within-Shift Behavior Behind Time-Varying Productivity
In this section, we model the patient treatment process of any individual physician using the optimal control

framework. We obtain closed-form expressions for a physician’s productivity, throughput, and capacity

under the optimal policy, which help explain the time-dependent behavior of physicians. Understanding

individual-level behavior provides fundamental insights into system-level performance, which motivates our

modeling of the complex ED system in Section 5.

Figure 5 A reentrant queue to describe the patient treatment process by a single physician during a shift. MD = medical

doctor.
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4.1. Model Description

We consider a fluid model with returns to describe the patient treatment process by a single physician during

her shift [0,𝑇], where 𝑇 > 0 denotes the shift length. A schematic depiction of the patient flow is shown in

Figure 5. We assume that there are always new patients waiting to be seen in the waiting room. Our data

analysis shows that this assumption holds for most of the time in our study period. The rate of serving new

patients (i.e., initial assessment) is denoted by `
𝑁
> 0. With probability 𝑝, a patient needs to undergo testing

after assessment. Otherwise, the treatment is completed and the patient leaves the ED. We assume that the

test queue has infinitely many servers and the mean testing time is 1/\ > 0. This infinite-server assumption

aligns with Yom-Tov and Mandelbaum (2014) and Campello et al. (2016). When the test results are ready,

the patient returns to the same physician for reassessment. Let `
𝑅
denote the rate at which return patients are

served. After reassessment, the patient may need another test with the same probability 𝑝, independent of

the number of tests that have already been performed for this patient, which implies that the total number of

tests that a patient undergoes upon leaving the ED follows a geometric distribution with success probability

1 − 𝑝. This assumption has been adopted in the literature; see, e.g., Yom-Tov and Mandelbaum (2014),

Campello et al. (2016) and Li et al. (2021). The service and reassessment times, testing times, and return

probability are assumed to be independent of the lengths of the test and reassessment queues. This is in

contrast to Chan et al. (2014) and Ingolfsson et al. (2020) in which state-dependent service times and return

probabilities are considered.

Assume that a unit reward is earned when a patient’s treatment at the ED is completed. At the end of

shift, a physician’s patients whose care is incomplete become handoff patients (see Section 3.3). Note that

handoff could happen before the shift is over in practice (Batt et al. 2019). We assume that handoff does

not happen before 𝑇 to simplify our model and analysis. Let ℎ(𝑥) denote the cost function when there are

𝑥 handoff patients, 𝑥 ≥ 0. The handoff cost represents (i) the adverse patient outcome due to handoff (Batt

et al. 2019), and (ii) the time and effort spent on handoff communication to transfer essential information

from one physician to another. Let 𝐷 (𝑡) and 𝑅(𝑡) denote the number of patients in the test and reassess

queues at time 𝑡, respectively. Then, the handoff cost at the end of a shift is ℎ(𝐷 (𝑇) + 𝑅(𝑇)). Assume that

return patients are prioritized over new patients.3We further assume that physicians do not idle when there

are patients waiting for reassessment, which aligns with the practice in our study ED. However, physicians

can choose not to see new patients, even they have to stay idle. Let 𝛼
𝑁
(𝑡) and 𝛼

𝑅
(𝑡) denote the percentage of

time that the physician spends on processing new and return patients at time 𝑡, respectively. The physician’s

3 In our study ED, when a physician finishes an ongoing task, she logs into the ED information system through a terminal. The
upper half of the screen shows the reassessment requests from her active patients and the lower half shows the new patients waiting
to be seen. The upper half is visible to this physician only, whereas the information on the lower half is available to all physicians. In
general, a physician processes all of the reassessment requests before signing up a new patient so as to limit patients’ length of stay.
Physicians may also follow the shortest processing time rule because reassessment is generally faster than treating a new patient.
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objective is to maximize the total net reward by controlling 𝛼
𝑁
(𝑡) and 𝛼

𝑅
(𝑡), 𝑡 ∈ [0,𝑇]. This problem can

be formulated within the optimal control framework as follows:

max
𝛼
𝑁
(𝑡) ,𝛼

𝑅
(𝑡)

{∫ 𝑇

0
(1− 𝑝)

[
𝛼𝑁 (𝑡)`𝑁 +𝛼𝑅 (𝑡)`𝑅

]
d𝑡 − ℎ(𝐷 (𝑇) + 𝑅(𝑇))

}
(1)

s.t. 𝐷 ′(𝑡) = 𝑝
[
𝛼𝑁 (𝑡)`𝑁 +𝛼𝑅 (𝑡)`𝑅

]
− \𝐷 (𝑡), 𝐷 (𝑡) ≥ 0, 𝐷 (0) = 0,

𝑅′(𝑡) = \𝐷 (𝑡) −𝛼𝑅 (𝑡)`𝑅, 𝑅(𝑡) ≥ 0, 𝑅(0) = 0,

0 ≤ 𝛼𝑁 (𝑡) +𝛼𝑅 (𝑡) ≤ 1, 𝛼𝑅 (𝑡) =min
{
1, \𝐷 (𝑡)/`𝑅

}
, 𝛼𝑁 (𝑡) ≥ 0.

The constraints on 𝐷 ′(𝑡) and 𝑅′(𝑡) respectively describe the dynamics of the test and reassessment queues;
𝛼
𝑁
(𝑡) + 𝛼

𝑅
(𝑡) ≤ 1 implies that the total percentage of time spent on initial assessment and reassessment

should not exceed 100% at any time; 𝛼
𝑅
(𝑡) =min{1, \𝐷 (𝑡)/`

𝑅
} captures that reassessment is prioritized

over initial assessment and that physicians do not idle as long as there are patients waiting for reassessment.

The initial condition 𝐷 (0) = 𝑅(0) = 0 implies that a physician who just began her shift has no patient
undergoing testing or waiting for reassessment. However, as it should be clear in the proof of the optimal

policy (see Appendix B), the initial state conditions do not change the structure of the optimal policy.

4.2. The Optimal Policy

Next, we solve the optimal control problem in (1) by applying Pontryagin’s maximum principle. Theorem 1

provides closed-form expressions for the optimal controls, denoted by 𝛼∗
𝑁
(𝑡) and 𝛼∗

𝑅
(𝑡), respectively.

Theorem 1. Assume that ℎ(·) is an increasing differentiable function. Then, we have the following for

the optimal control problem defined in (1):

(i) 𝑅(𝑡) = 0, \𝐷 (𝑡)/`
𝑅
≤ 1, and 𝛼∗

𝑅
(𝑡) = \𝐷 (𝑡)/`

𝑅
for all 𝑡 ∈ [0,𝑇] .

(ii) The optimal control 𝛼∗
𝑁
(𝑡) is of threshold type. More specifically, there exists an optimal switching

time 𝑡∗ ∈ [0,𝑇] such that 𝛼∗
𝑁
(𝑡) = 1− \𝐷 (𝑡)/`

𝑅
if 𝑡 ∈ [0, 𝑡∗]; 𝛼∗

𝑁
(𝑡) = 0 if 𝑡 ∈ (𝑡∗,𝑇], where

𝑡∗ =min
(
𝑇,max

(
0,𝑇 − ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]

(1− 𝑝)\

))
. (2)

(iii) Furthermore, under the optimal policy, we have

𝐷 (𝑡) =
𝑝`

𝑁

\
(
1− 𝑝 + 𝑝`

𝑁
/`

𝑅

) (
1− 𝑒

−\
(
1−𝑝+𝑝

`
𝑁

`
𝑅

)
𝑡
)
, 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (3)

𝐷 (𝑡) = 𝐷 (𝑡∗)𝑒−(1−𝑝) \ (𝑡−𝑡∗) , 𝑡 ∈ (𝑡∗,𝑇] . (4)

Theorem 1 completely characterizes the optimal policy for Problem (1). Under the optimal policy, there

exists an optimal switching time 𝑡∗ such that (i) when the shift hour is before 𝑡∗, the physician is always busy

serving patients (𝛼∗
𝑅
(𝑡) +𝛼∗

𝑁
(𝑡) = 1), and priority is given to return patients over new patients; (ii) when the

shift hour exceeds 𝑡∗, it is optimal for the physician to stop signing up new patients and focus on serving
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return patients—even if the physician has to stay idle—so as to reduce the number of handoff patients. A

numerical illustration of the optimal policy is shown in Figure 6. While the structure of the optimal policy

is intuitive, the closed-form results provide rich insights into the behavior of individual physicians and the

management of ED operations, as discussed in the rest of this section and the next section.

Figure 6 A numerical illustration of 𝛼∗
𝑁
(𝑡), 𝛼∗

𝑅
(𝑡), 𝐷 (𝑡), TH(𝑡), and PPH(𝑡) under the optimal policy for Problem (1) when

`
𝑁
= 5, `

𝑅
= 6, \ = 0.6, 𝑝 = 0.66, ℎ(𝑥) = 𝑥, and 𝑇 = 7 (i.e., 7-hour shifts). The optimal switching time 𝑡∗ = 5.8.

Hour of shift

4.2.1. Optimal Cutoff Time for Picking Up New Patients. The optimal switching time 𝑡∗ is a function

of the test probability 𝑝, the mean testing time 1/\, and the derivative of the handoff cost function ℎ′(·). In
fact, the proof of Theorem 1 does not require ℎ(·) to be increasing. However, if ℎ′(·) ≤ 0, it is easy to see that
𝑡∗ =𝑇 . In other words, it is optimal to serve new patients at any time in the shift if more handoffs lead to lower

costs, which is trivial but unrealistic and less interesting. Note that when ℎ′(·) is a constant, i.e., the handoff
cost depends linearly on the number of handoff patients, 𝑡∗ does not depend on `

𝑁
and `

𝑅
—measures of

physicians’ speed in treating patients. This insight provides a justification for setting a common switching

time for all physicians—despite being aware of the heterogeneity in physician speeds—when each handoff

patient is perceived to contribute the same cost and the test probability 𝑝 only depends on patient clinical

requirements. The common switching time has been observed in practice; for example, physicians can choose

not to see new patients in the last hour of their shifts in our study ED, and new patients will not be assigned

to physicians in the last two hours of their shifts in the California ED studied by Song et al. (2015).

4.3. Time-Varying PPH, Physician Capacity, and Throughput

Let PPH(𝑡) denote a physician’s productivity rate, i.e., the rate of seeing new patients, and let TH(𝑡) denote
the throughput rate, i.e., the rate at which a patient’s ED treatment is completed, at time 𝑡 in a shift, where



Author: ED Modeling and Staffing with Time-Varying Productivity
Article submitted to Manufacturing & Service Operations Management; manuscript no. (Please, provide the manuscript number!) 13

𝑡 ∈ [0,𝑇]. Then, we have PPH(𝑡) = 𝛼
𝑁
(𝑡)`

𝑁
and TH(𝑡) = (1 − 𝑝) [𝛼

𝑁
(𝑡)`

𝑁
+ 𝛼

𝑅
(𝑡)`

𝑅
], which gives the

following result immediately.

Corollary 1. Under the optimal policy for Problem (1), we have

PPH(𝑡) = `𝑁 −
𝑝`2

𝑁

𝑝`
𝑁
+ (1− 𝑝)`

𝑅

(
1− 𝑒

−\
(
1−𝑝+𝑝

`
𝑁

`
𝑅

)
𝑡
)
, 𝑡 ∈ [0, 𝑡∗], (5)

PPH(𝑡) = 0, 𝑡 ∈ (𝑡∗,𝑇], (6)

TH(𝑡) = (1− 𝑝)`𝑁 +
𝑝(1− 𝑝)`

𝑁
(`

𝑅
− `

𝑁
)

𝑝`
𝑁
+ (1− 𝑝)`

𝑅

(
1− 𝑒

−\
(
1−𝑝+𝑝

`
𝑁

`
𝑅

)
𝑡
)
, 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (7)

TH(𝑡) = (1− 𝑝)\𝐷 (𝑡∗)𝑒−(1−𝑝) \ (𝑡−𝑡∗) , 𝑡 ∈ (𝑡∗,𝑇], (8)

where 𝑡∗ and 𝐷 (𝑡∗) are given in (2) and (3), respectively.

Theorem 1 and Corollary 1 not only prove the structure of the optimal policy, but also provide closed-form

expressions for 𝛼
𝑁
(𝑡), 𝛼

𝑅
(𝑡), 𝐷 (𝑡), PPH(𝑡), and TH(𝑡) under the optimal policy. The analytical results

allow us to obtain several interesting insights into a physician’s within-shift behavior, as elaborated below.

4.3.1. Time-Varying Physician Productivity. The expressions of PPH(𝑡) in (5) and (6) shows that
a physician’s productivity within a shift is time-varying. A numerical illustration of PPH(𝑡) is shown in
Figure 6. The fact that PPH(𝑡) is an exponential function of the shift hour with a negative exponent explains
the exponential decay of a physician’s productivity during the start-of-shift phase observed from data (see

Figure 2). Our model and results suggest that the dramatic reduction in physician productivity is mainly

due to multitasking, i.e., physicians need to spend time processing the reassessment requests from returning

patients and thus have less time to treat new patients. The exponential term in PPH(𝑡) diminishes as 𝑡
increases. Correspondingly, the productivity rate plateaus during the middle-of-shift phase; see Figures 2

and 6. During the end-of-shift phase, PPH(𝑡) drops to zero as a result of the physician’s decision not to sign
up new patients so as to reduce patient handoff. This is also suggested by Chan (2018) and Batt et al. (2019)

and has been shown to be optimal under our model setting. Note that the PPH observed from data in the last

shift hour is small but above 0 (see, e.g., Figure 2), because physicians occasionally sign up new patients in

the last hour of their shifts. Physicians worked overtime in 90% of these shifts; that is, at least one physician

activity after the shift end time was observed in the data.

4.3.2. Physician Capacity. ByTheorem 1 (i), the length of the reassessment queue 𝑅(𝑡) = 0, ∀𝑡 ∈ [0,𝑇].
Hence, 𝐷 (𝑡) becomes the total number of active patients of the physician, i.e., the physician’s workload at
𝑡. This explains the similarity in shape between 𝐷 (𝑡) in Figure 6 and the average number of active patients
during a physician’s shift observed from data in Figure 2. Note that \𝐷 (𝑡)/`

𝑅
≤ 1 implies 𝐷 (𝑡) ≤ `

𝑅
/\,

suggesting that a physician’s maximumworkload, or her service capacity, is themaximum number of patients

that she can take care of simultaneously so that the reassessment requests from her active patients do not take
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up all of her time. From our data, the mean testing time (1/\) is 90.2 minutes and the mean reassessment
time (1/`

𝑅
) is 14.8 minutes,4 which yields `

𝑅
/\ ≈ 6.1. Surprisingly, this estimated physician capacity

matches closely with observations from the data; see Figures 2, 9, and 10. It also aligns with descriptions

in the literature. For example, a physician’s workload is generally no more than 7, as observed by Saghafian

et al. (2012), while the upper quartile of a physician’s workload is 5 in the study hospital of KC (2013). Both

examples suggest that `
𝑅
/\ is a fairly accurate estimate of a physician’s capacity.

4.3.3. Physician Throughput. From the expressions of PPH(𝑡) and TH(𝑡) in Corollary 1 and the
numerical example in Figure 6, we observe that PPH(𝑡) differs significantly from TH(𝑡), especially during
the start-of-shift and end-of-shift phases. During the middle-of-shift phase, both PPH(𝑡) and TH(𝑡) plateau
and converge to a constant when 𝑇 and 𝑡∗ go to infinity. Formally, let PPH∞ ≜ lim𝑡→∞ PPH(𝑡) and TH∞ ≜

lim𝑡→∞ TH(𝑡). Then, we have

PPH∞ =
(1− 𝑝)`

𝑁
`
𝑅

𝑝`
𝑁
+ (1− 𝑝)`

𝑅

=
1

𝜏
𝑁
+ 𝑛

𝑅
𝜏
𝑅

= TH∞, (9)

where 𝜏
𝑖
≜ `−1

𝑖
, 𝑖 ∈ {𝑁, 𝑅}, and 𝑛

𝑅
≜ 𝑝/(1− 𝑝) is the expected number of reassessments, i.e., the mean of

a geometric distribution with success probability 1 − 𝑝. Hence, 𝜏
𝑁
+ 𝑛

𝑅
𝜏
𝑅
is the expected cycle time of a

patient and (9) implies that the productivity and throughput rates of a physician converge to the inverse of the

expected cycle time in steady state. We further notice that when the service rates for new and return patients

are the same, i.e., `
𝑁
= `

𝑅
, then the throughput rate becomes a constant at any time 𝑡 prior to the optimal

switching time 𝑡∗, i.e., TH(𝑡) = (1− 𝑝)`
𝑁
, 𝑡 ∈ [0, 𝑡∗]. However, PPH(𝑡) remains time-dependent. Hence, the

throughput rate may not serve as a substitute for the productivity rate, even though they are similar during

the middle-of-shift phase.

4.4. Connection to State-Dependent Service Times
Our findings suggest that the service rates at which physicians treat new patients decrease with shift

hours, which connects our study to the literature on service speedup or slowdown; see, KC and Terwiesch

(2009), KC (2013), Batt and Terwiesch (2016), Berry Jaeker and Tucker (2016), among others. Interested

readers are referred to Delasay et al. (2019) for a review through unified frameworks. We identify the

phenomenon of physician slowdown in treating new patients during a shift. Our results suggest that physician

multitasking (i.e., treating both new and return patients) and “slacking off” are the main drivers of time-

varying productivity. However, there may be other mechanisms at work. For example, fatigue may reduce a

physician’s speed, resulting in lower values of `
𝑁
and `

𝑅
; greater average familiarity among physicians may

increase the patient pickup rate and multitasking levels (Niewoehner et al. 2022); the queue configuration

and information disclosure at EDs may lead to physician speedup due to increased ownership (Song et al.

4 In our data, the start time of a reassessment is available but not its end time. We use the start time of the next activity of the same
physician to approximate the end time of the reassessment, which may overestimate the reassessment time.
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2015) or social pressure (Song et al. 2018); and physicians may tend to batch admission requests approaching

the end of shift, increasing the number of patients seen in a shift (Feizi et al. 2022). Hence, the patterns

in Figures 2 and 9 may be an aggregation of several lower-level mechanisms. These mechanisms deviate

from the focus of this study and will not be further explored here. However, it would be an interesting

topic to empirically examine those various mechanisms using a single dataset, comparing the directions and

magnitudes of their respective impacts. We leave it for future study. They may also affect the optimal cutoff

time for picking up new patients, i.e., the expression of 𝑡∗ in (2).

5. Model of ED Operations
In this section, we consider the problem of modeling ED operations. A main takeaway from Corollary 1

is that a physician’s productivity rate is time-varying and decreases significantly over the course of a shift.

Furthermore, a descriptive analysis based on our data shows that approximately 48% of new patients were

seen during the start-of-shift phase (2 hours), 49% were seen during the middle-of-shift phase (4 hours

for 7-hour shifts and 5 hours for 8-hour shifts), and only 3% were seen during the end-of-shift phase (the

last hour). Hence, it is important to account for time-varying physician productivity in the modeling of ED

operations.

5.1. A Queueing Model with Time-Varying Service Rates
A distinguishing feature of emergency care is that a patient may return to the same physician multiple times

for service during his sojourn in the ED (see Figure 3). With proper Markovian assumptions, the system

dynamics can be represented by a Markov chain, where the system state is a vector that includes the number

of patients waiting to be seen in the waiting room, and the number of patients going through tests and waiting

for reassessment for each physician. Unfortunately, the state space grows exponentially with the number of

physicians on duty. Even with 4 physicians, the dimension of the state space can easily exceed 35 million

(see more details in Appendix C), which makes the model analysis both theoretically and computationally

challenging. Hence, we seek dimension reduction techniques to simplify the problem. We aim to identify a

model that can balance between details and tractability, model parameters are easy to estimate, and system

performances are able to match with real data.

Motivated by the insights in Section 4, we model the ED operations as an 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue, i.e.,
a time-varying queueing system with heterogeneous servers and shift-hour-dependent service rates, where 𝑡

is the time in hours. The first 𝑀 (𝑡) represents a nonstationary Poisson arrival process with time-dependent
rate {_(𝑡), 𝑡 ≥ 0}, which has been shown to be a reasonable assumption (Kim and Whitt 2014). The number
of servers (physicians) is time-varying, denoted by {𝑠(𝑡), 𝑡 ≥ 0}, where 𝑠(𝑡) is a nonnegative integer. The
𝑀PPH(𝑡) represents exponentially distributed service times with time-varying rates, which can be estimated
by the PPH of each of the 𝑠(𝑡) physicians on duty at 𝑡. Note that the distribution of the service times is not a

standard exponential distribution, and the cumulative distribution function of the service time for a patient
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picked up by physician 𝑛 at time 𝑡 is 𝐹𝑛,𝑡 (𝑥) = 1− 𝑒−
∫ 𝑡+𝑥
𝑡

`𝑠 (𝑛)𝑑𝑠, where `𝑡 (𝑛) is the service rate of physician

𝑛 at 𝑡. We further assume that the arrival rate is periodic with a daily cycle, so is the physician scheduling.

Hence, _(𝑡) = _(𝑡 + 24), 𝑠(𝑡) = 𝑠(𝑡 + 24),∀𝑡 ≥ 0. We chose a daily cycle for ease of presentation. Moreover,

physician shift schedules often repeat on each day during a planning period in practice, which is the case in

our study ED. However, our model can be extended in a straightforward manner to model schedules with

different cyclic patterns, such as weekly cycles.

LetS = {𝑆1, 𝑆2, · · · , 𝑆𝑘} denote the physician shift schedule in an EDwith 𝑘 shifts scheduled to commence

each day, where 𝑆𝑖 represents the 𝑖th shift. Due to shift-based scheduling, the number of physicians on duty

is time-varying (see, e.g., Figure 1). We assume that an exhaustive discipline is applied whenever the number

of physicians decreases, i.e., an outgoing physician will complete the service in progress before leaving

(Ingolfsson et al. 2007). This is consistent with the practice in our study ED.

We assume that patients are served in a first-come-first-served (FCFS) manner, despite being aware that

the patient prioritization process is highly complex and dependent on patients’ triage levels, waiting times,

and even ED resource availability (Ding et al. 2019, Li et al. 2021). However, we expect that the queueing

discipline has a stronger impact on metrics beyond first-moment information, such as the waiting-time-based

service levels (Green et al. 2007, Ingolfsson et al. 2007), but has little impact on the average patient waiting

time or queue length, especially given that the composition of patients at each triage level does not vary

significantly over the course of the day; see Figure 11 in Appendix A.

Finally, there may be more than one physician available to serve an arriving patient. Because physicians

may be in different phases of their shifts and thus have heterogeneous service rates, we need to specify

which physician to serve the patient. We choose to route the patient to the physician with the highest service

rate at the moment, which usually is the physician who most recently started her shift. However, one would

reasonably expect that this assumption does not make much difference compared to routing the patient to

an available physician randomly, because EDs usually are critically loaded in a daily cycle, i.e., the daily

arrivals—excluding patients who left without being seen (LWBS)—are approximately equal to the daily

total physician PPH. As a result, the chance that more than one physician is idling simultaneously is small.

Our simulation results confirm this conjecture.

In the following, we refer to our queueing model as an 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue for simplicity. However,

note that (i) the FCFS service rule when picking up a new patient, (ii) the exhaustive discipline when

physicians become off duty, and (iii) the mechanism of routing a patient to the fastest physician when there

is more than one idle physician, are all parts of the specifications of our queueing model. These assumptions

are taken into consideration in both the simulation model in Section 5.2 and the uniformized version of the

CTMC model described in Section 6.2.
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5.2. Model Accuracy: Validation Using Data from Two EDs

Next, we simulate the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue with parameters estimated using the data from our study
ED (referred to as ED 1) between January and July 2015. We then compare the simulated time-of-day-

dependent average waiting times and queue lengths with the data. To further demonstrate the generality and

robustness of our results, we repeat the study using data from another ED (referred to as ED 2) in Alberta,

Canada during a different study period. We provide the comparison results but not the details of the second

dataset to avoid repetition.

The shift schedule at ED 1 from January to July 2015 is shown in Figure 4, including the start and end

times (and thus the shift length) of each shift. We focus on the 13 shifts in the main ED area. The estimations

of the arrival rates and the PPH for each shift are based on hourly resolution. The simulation model is built

using SimPy 4.0.5 The inter-arrival times of the nonstationary Poisson process are generated by the thinning

algorithm. In the simulation, a physician immediately starts to serve patients at the shift start time. The

service times are exponentially distributed with rates given by the PPH of the corresponding shift hour. An

exhaustive discipline is applied at the shift end time. We focus on waiting room dynamics and choose three

time-of-day-dependent performance metrics: (i) the average waiting time of patients who arrived in the same

hour of day; (ii) the time-averaged number of patients in the waiting room (referred to as time-averaged

queue length); and (iii) the average number of patients in the waiting room observed at the end of each hour

(referred to as snapshot queue length).

We ran the simulation for 5 replications, each with 500 weeks, and we identify the first 200 weeks as the

warm-up period. The results of comparing the simulated performance measures with the data are shown in

Figure 7. We observe that the average waiting times from the simulation nicely match those from the data

from both Canadian EDs—both in terms of the patterns and the magnitudes. An accurate evaluation of the

average waiting time is essential for physician staffing planning, because it directly measures the timeliness

of emergency care and is an important performance indicator in the Canadian Triage and Acuity Scale

protocol—the triage algorithm in our study ED. The time-averaged and snapshot queue lengths also match

the data reasonably well for both EDs; see the plots in the second and third rows of Figure 7. Furthermore,

the aggregated average waiting time of all patients from ED 1 (ED 2) is 106.4 (109.5) minutes, whereas the

simulated counterpart is 108.3 (110.9) minutes, which further shows the accuracy of our model.

5.3. Constant Service Rates

Most previous works on ED modeling and physician staffing explicitly or inexplicitly assume a single-stage

physician service with a constant service rate (see, e.g., Ingolfsson et al. 2002, Savage et al. 2015, Wang

et al. 2022). To examine whether this assumption is appropriate, we re-ran the simulation model with the

same parameter setting, except that the physician service rate is a constant, calculated using the total number

5 SimPy is a process-based discrete-event simulation framework based on Python. See https://simpy.readthedocs.io/.

https://simpy.readthedocs.io/
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Figure 7 The average waiting time, time-averaged queue length, and snapshot queue length from simulation with PPH

(red line with circles), simulation with constant service rates (gray line with squares), and data (blue dashed

line with triangles) by time of day. The plots on the left use data from our primary study hospital (ED 1), and

those on the right use data from another Canadian hospital (ED 2).
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of new patients seen divided by the total shift hours. Hence, the service rate of all physicians on duty at

any time is determined by the staffing level alone. The simulated average waiting times and queue lengths

under constant service rates deviate significantly from the data; see Figure 7 (the gray line with squares).

Interestingly, the variation in the simulated average waiting times between different hours of day is smaller

than in the data. In other words, the simulated average waiting time curve under constant service rates is

smoother. A plausible explanation is that the current physician shift schedules in both EDs were carefully
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designed to match the staffing level with patient demand under the assumption of constant service rates,

so that the waiting times do not vary significantly over the course of the day. However, the outcome is less

than satisfactory, potentially due to that the time-varying physician service rates were not considered by the

scheduler.

To summarize, our results show that individual physicians’ behavior is crucial to the modeling of system

behavior. In particular, it is important to account for the shift-hour-dependent service rate (i.e., PPH) when

modeling ED operations. Ignoring it is likely to fail to accurately capture the dynamics of patient flow.

Our insight from Section 4.3.3 implies that the throughput rate from a physician node cannot serve as a

substitute for PPH, which differentiates our model from the 𝒯 approximation in Campello et al. (2016)

that uses the throughput rate of a single-server finite-source queue in steady state as the service rate of a

physician node. Furthermore, theℬ approximation in Campello et al. (2016) may be not applicable to our

setting because the caseload of a physician who is just starting her shift can be quite different from that

of a physician approaching the end of a shift, whereas theℬ approximation requires that the difference in

caseload between physicians is at most 1. Both approximations work well in Campello et al. (2016), possibly

because the case-manager setting is different from ours in terms of the arrival and patient-to-physician

assignment processes; for more details, see Section 2.

Finally, we comment on the parameter estimation of the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) model. In principle, one
simply needs to count the number of arrivals per hour (we use triage time as the arrival time) and the number

of initial assessments done during each hour of a shift by the physician assigned to this shift, i.e., the PPH.

However, one needs to be careful when dealing with real data. For example, our data cleaning identified

issues including physician shift switching, system downtime due to maintenance, and physician no-shows,

all of which create noise in the estimation. In addition, 1.65% of patients cannot be matched with a particular

shift in the data from ED 2. As a result, the total daily PPH is, on average, slightly lower than the total daily

arrivals. Hence, we proportionally adjust the arrival rates downward by multiplying by 98.35%.

6. Application to ED Physician Staffing
Physician staffing is a key decision affecting ED resource planning. In this section, we demonstrate that our

model also enables numerical performance evaluation of the ED due to the reduced system dimensionality.

The evaluation algorithm serves as a subroutine for optimizing physician staffing in our case study.

6.1. Improving Physician Staffing: A Case Study
In our study hospital, a scheduler first determines the start and end times of each shift every six months

(more or less); then, physicians are allocated to each shift following required scheduling rules. Figure 4

shows the 15 physician shifts from January to July 2015 in our study ED. Among these, S6 and S11 are

fast-track shifts, and all others are dedicated to serving patients in the main area. Next, we use the shift

schedule in the main ED area (referred to as the baseline schedule hereafter) to demonstrate how our model
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can help improve physician staffing decisions. Specifically, we evaluate the effectiveness of optimizing the

shift start times to reduce the average ED waiting time.

We adjust the start times of the 13 shifts to better match ED capacity with patient demand. The shift lengths

remain the same as in Figure 4. The assignment of physicians to shifts is a second-stage problem, which

is not the focus of this study. Hence, we assume that the assignment is the same as in the data. Interested

readers are referred to Brunner and Edenharter (2011) and Zaerpour et al. (2021) for the physician-to-shift

assignment problem. In theory, the start time of each shift can be any time during the day. However, for

practical relevance, we assume that physician shifts can only start at one of the 24 hours {0,1, · · · ,23}.
Note that the adjustments in shift start times also affect the corresponding physicians’ work schedule, which

may violate certain scheduling rules and make the physician-to-shift assignment infeasible. Hence, we add

constraints so that the baseline schedule will not be changed dramatically. In particular, we consider three

scenarios and solve the corresponding staffing optimization problem under each scenario.

Scenario 1: The physician shifts must satisfy the following constraints: (i) the two night shifts, S14 and
S15, remain unchanged because night shifts often complicate physician-shift assignment; (ii) the start times

of the other 11 shifts can be adjusted to be earlier or later than the baseline schedule by at most two hours;

(iii) the start times of the other 11 shifts cannot be later than 20:00 or earlier than 6:00; (iv) there must be at

least two physicians on duty at any time of day.

Scenario 2: The same as in Scenario 1, except that constraint (iv) is relaxed; more specifically, we require
the staffing level to be at least one physician on duty at any time of day.

Scenario 3: The same as in Scenario 2, except that we relax constraints (i) and (ii) so that all 13 shifts

can be adjusted to be at most three hours earlier (or later) than the start times in the baseline schedule.

Our objective is to minimize the average ED waiting time under each scenario, because reducing waiting

times achieves better health outcomes for patients (Guttmann et al. 2011) and cost reduction for hospitals

(Woodworth and Holmes 2020). One may apply simulation optimization techniques to solve the staffing

problem as there is no closed-form expression for the objective function. Indeed, we have shown that our novel

simulationmodel can accurately capture EDwaiting times. However, our attempts revealed that a commercial

solver takes days to solve the optimization due to the large solution space. Hence, we propose a method

that combines a local search algorithm (i.e., tabu search, see Liu and Xie 2021) with the uniformization

method (discussed below) for the evaluation of each candidate schedule. Numerical experiments show that

our method takes less than two hours for each scenario.

6.2. Performance Evaluation Through Uniformization

The operating regime of our study ED alternates between over-staffing and under-staffing over the course of

a day under the current staffing plan, where over-staffing means that the hourly arrival rate exceeds the total

physician PPH (e.g., 11:00–15:00 in Figure 1) and under-staffing refers to otherwise (e.g., midnight to 4:00
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in Figure 1), which renders performance evaluation algorithms that depend on stationary approximations

impracticable. In this section, we model the 𝑀 (𝑡)/𝑀PPH(𝑡)/𝑠(𝑡) queue by a CTMC with state jumps at
discrete time epochs and apply the uniformization method (which is also referred to as randomization in the

literature) for the performance evaluation. The uniformization method achieves similar accuracy as solving

the Kolmogorov forward equations directly using the Runge Kutta method while it only takes half the

computational time, as demonstrated by Ingolfsson et al. (2007) in the setting of 𝑀 (𝑡)/𝑀/𝑠(𝑡) queues.
We consider a daily cycle and divide the 24 hours into periods of length 𝑙, where (( 𝑗 − 1)𝑙, 𝑗 𝑙] represents

the 𝑗 th period, 𝑗 = 1, · · · ,24/𝑙. For staffing purpose, 𝑙 is often chosen to be one hour or half an hour. We
assume that the staffing level changes only at the end of each period. Let S 𝑗 be the set of shifts that are

ongoing during the entire period 𝑗 , 𝑠 𝑗 be the cardinality of S 𝑗 , and ` 𝑗 (𝑢) be the service rate in period 𝑗 of

shift 𝑢 ∈ S 𝑗 . We estimate ` 𝑗 (𝑢) by the PPH in the corresponding shift hour of shift 𝑢. We further consider
piece-wise constant arrival rate and let _ 𝑗 denote the arrival rate of period 𝑗 . The stochastic process in period

𝑗 is the same as an 𝑀/𝑀/𝑠 𝑗 queue with heterogeneous servers except that at the end of period 𝑗 , ongoing

shifts may end and new shifts may begin, causing instantaneous transitions of system states.

Next, we model the dynamics in the 𝑗 th period by a time-homogeneous CTMC. Assume that the system

has been running for a sufficiently long period of time such that the probability distribution of system

states at any time of day is identical for every day. Let 𝑡 be the time of day and (𝑥(𝑡),y(𝑡)) be the system
state at 𝑡, where 𝑥(𝑡) is the number of patients waiting to be seen, and y(𝑡) is a 𝑠 𝑗-dimensional vector
whose 𝑖th element 𝑦𝑖 (𝑡) represents the status of the physician working on the 𝑖th shift in S 𝑗 . Specifically,

𝑦𝑖 (𝑡) equals 0 if the physician is idling and 1 otherwise. Assume there is no unforced idling, then we have
𝑥(𝑡) (𝑠 𝑗 −

∑𝑠 𝑗

𝑖=1 𝑦𝑖 (𝑡)) = 0 for all 𝑡. Hence, the dimension of the state space is significantly reduced. Consider
an ED with 4 physicians on duty and assume that the number of patients waiting to be seen is capped at 300.

Then, the dimension of the state space is 301 + 24 = 317, whereas that of the model that considers patient
returns explicitly exceeds 35 million, as we discussed at the beginning of Section 5.

We apply the uniformization method to the 𝑀/𝑀/𝑠 𝑗 queue with the uniformization constant Λ 𝑗 ≜

_ 𝑗 +
∑

𝑢∈S 𝑗 ` 𝑗 (𝑢). Let π(𝑡) be the vector that represents the probability distribution of system states at 𝑡.
Then, for any pair of 𝑡1, 𝑡2 such that ( 𝑗 − 1)𝑙 < 𝑡1 < 𝑡2 < 𝑗𝑙, we have

π(𝑡2) =
∞∑︁
𝑛=0

𝑝 𝑗 (𝑛)π(𝑡1)𝑃𝑛
1 𝑗 , (10)

where 𝑝 𝑗 (𝑛) is the Poisson probability mass function with mean (𝑡2 − 𝑡1)Λ 𝑗 and 𝑃1 𝑗 is the transition

probability matrix of the uniformized system. When 𝑡 = 𝑗 𝑙, an instantaneous state jump will occur when

there are shifts scheduled to begin or end at 𝑡. Assume that the instantaneous state transitions are governed

by 𝑃2 𝑗 , then π(𝑡) =π(𝑡−)𝑃2 𝑗 , where 𝑡− represents the time epoch just before 𝑡. Note that 𝑃2 𝑗 is an identity
matrix if no shift begins or ends at 𝑡.We can calculate π(𝑡) for any 𝑡 with proper truncation of the state space
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and the sum of the infinite series in (10). Note that efficient computations of (10) involve the transformation

of 𝑃1 𝑗 into a diagonalized form or Jordan canonical form to avoid direct calculation of the 𝑛th power of

𝑃1 𝑗 (Lawler 2006). With the availability of π(𝑡), we can compute the long-run average ED waiting time.
The waiting time calculation and the specifications of 𝑃1 𝑗 and 𝑃2 𝑗 are standard but tedious; thus, they are

deferred to Appendix D.

6.3. Shift Extension

Our simulation model can also be used to performwhat-if analysis. Consider a situation in which the hospital

has extra budget and decides to extend the 6-hour shift in our data by one hour, i.e., convert shift S4 to a

7-hour shift by delaying the shift end time to 17:00. The ED manager might be interested in evaluating the

impact of one additional physician hour on the average ED waiting time. This question can be addressed by

our simulation model, but one challenge is how to decide the PPH rate for the added shift hour. Based on

our partition of shifts into three phases, the added hour extends the middle-of-shift phase. Our insight from

Section 4.3 states that the PPH rate converges to a constant during the middle-of-shift phase. Hence, we use

the average of the fourth and fifth hour PPH as an estimation of the PPH rate for the added hour.

6.4. Results and Discussion

After solving the optimization problems, we evaluate the average patient waiting time with and without shift

extension under the baseline shift schedule and the optimized schedules for the three scenarios by simulation.

Hence, a total of eight shift schedules are evaluated. (We use simulation instead of uniformization so that

we can construct confidence intervals. Moreover, the simulated waiting times fit the data better than that of

uniformization.) We run the simulation for 500 replications. For each replication, we simulate the system for

500 weeks and identify the first 200 weeks as the warm-up period; thus they are removed from the output.

We use the remaining 300 weeks to compute the average patient waiting time for each of the 500 replications.

Figure 8 Box plots and 95% confidence intervals for the simulated average patient waiting time based on 500 replications.
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Table 1 The start times of the optimized physician shift schedules under scenarios 1–3. The last two columns show the

average patient waiting time (in minutes), the absolute reduction, and the percentage reduction of the optimized

schedules over the baseline schedule with and without shift extension, respectively.

Shift Start Times Waiting Time (mins)
S1 S2 S3 S4 S5 S7 S8 S9 S10 S12 S13 S14 S15 Average Reduction (%)

Without shift extension
Baseline (from data) 6 7 8 10 10 12 14 16 16 18 20 23 0 106.7 N/A
Scenario 1 6 7 10 9 11 14 12 16 15 20 18 23 0 101.4 5.3 (5.0%)
Scenario 2 6 9 8 11 10 12 14 16 16 18 20 23 0 101.0 5.7 (5.3%)
Scenario 3 8 10 6 12 9 11 15 17 14 18 20 1 22 99.4 7.3 (6.8%)

With shift extension
Baseline+E † 6 7 8 10 10 12 14 16 16 18 20 23 0 97.4 9.3 (8.7%)
Scenario 1+E † 6 7 10 9 11 14 12 16 15 20 18 23 0 93.2 13.5 (12.7%)
Scenario 2+E † 6 9 8 11 10 12 14 16 16 18 20 23 0 93.7 13.0 (12.1%)
Scenario 3+E † 8 10 6 12 9 11 15 17 14 18 20 1 22 92.3 14.4 (13.5%)

Note. The shift start times that are different from the baseline schedule are highlighted and marked in bold.
† “+E” indicates that the 6-hour shift is extended by one hour for the optimized shift in the corresponding scenario.

The results are shown in Table 1 and Figure 8. We first observe that by adjusting the shift start times, we

can achieve a better match between patient demand and ED capacity. As a result, the average patient waiting

time can be reduced by 5.0% to 6.8% compared to the baseline schedule, which is equivalent to 13.8 to

19.0 hours of waiting for all patients in the ED per day. (The calculation is based on an average of 156.4

patients arriving daily to the main ED area.) Figure 8 shows that the reductions over the baseline schedule

are statistically significant at the 5% level.

Among the three scenarios without shift extension, the schedule from Scenario 2 is particularly interesting,

as it achieves a 5.3% reduction in the average waiting time by simply deferring the start times of shifts S2

and S4 by 2 hours and 1 hour, respectively, compared with the baseline schedule. A closer look at the total

physician PPH by the time of day before and after the changes finds that the adjustments cause the total

physician PPH to lag behind the arrival rate function instead of matching it closely. This finding aligns with

the observations in Green and Kolesar (1997) and Yom-Tov and Mandelbaum (2014). We further observe

that extending the 6-hour shift by one hour in the baseline schedule and the schedules from scenarios 1–3

can reduce the average waiting time by up to 13.5%, equivalent to 37.5 hours for all patients in the ED per

day.

Next, we discuss the practical value of our results.Woodworth and Holmes (2020) find that EDs could save

the total healthcare cost approximately 2% to 4% from reducing each patient’s waiting time by 10 minutes.

Based on public data from a government website,6 the average cost per ED visit in Alberta, Canada was

CA$449.2 in 2015–2016. Table 1 shows that adding one hour to the 6-hour shift in the baseline schedule can

reduce the average waiting time by 9.3 minutes (from 106.7 to 97.4 minutes). With 57,086 visits to the main

6Accessed via the Interactive Health Data Application at www.ahw.gov.ab.ca/IHDA_Retrieval/ on November 3, 2021.

www.ahw.gov.ab.ca/IHDA_Retrieval/
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ED area per year (156.4 visits/day multiplied by 365 days), this reduction in waiting time generates annual

cost savings for our study hospital from CA$476,960 to CA$953,920. In contrast, the average hourly rate for

emergency physicians in Canada is CA$126 in 2021,7 which means that the annual cost for adding one shift

hour per day is CA$45,990. Hence, shift extension is beneficial to the hospital. A similar calculation finds that

using the adjusted schedule in scenario 2 over the baseline schedule saves CA$292,330 to CA$584,661 per

year. This is achieved by simply deferring the start times of two shifts without adding additional resources.

One can calculate the cost savings for other schedules in Table 1 in a similar fashion. Note that these are only

rough estimates, as the study by Woodworth and Holmes (2020) is based on a U.S. hospital; moreover, the

distribution of the waiting time reductions among different triage levels is unclear in our results, which may

affect the calculation. However, we believe that these numbers can still provide insights into the benefits of

shift extensions and shift adjustments.

7. Conclusions and Future Research
Motivated by an intriguing observation of a time-varying pattern in physician productivity, we use an optimal

control framework to study the decision making of ED physicians within their shifts. We find that the shift-

hour-dependent structure is due to the transient behavior of individual physicians during their finite-length

shifts in a non-terminating service system—a healthcare system that operates 24 hours per day and 7 days

per week. The behavior at the individual physician level has a significant impact on the operational metrics at

the ED level. Using data from a Canadian hospital, we demonstrate how to leverage time-varying physician

productivity for ED modeling and staffing.

7.1. Managerial Insights
Our study provides several useful insights. First, our findings suggest that time-varying is intrinsic to a

physician’s productivity, mainly driven by the physician’s efforts to maximize throughput by multitasking

and minimize patient handoff by strategic idling. Our data analysis finds that nearly half of all new patients

were seen in the first two hours of a shift. Therefore, it is crucial to consider shift-hour-dependent service

rates in ED modeling and staffing. Using a constant rate—a common practice in the healthcare operations

literature—does not capture ED dynamics accurately and can lead to a discrepancy between the expected

and actual performances of any staffing plan. Second, our results suggest that the optimal switching time for

a physician to stop signing up new patients in a shift does not depend on physician speed in processing new

and return patients, which supports the practice of setting a common switching time for all physicians. Third,

this study advances our understanding of physician service capacity, which has drawn increasing attention

from the operations management community (Saghafian et al. 2012, KC 2013, Campello et al. 2016, Li

et al. 2021). We provide a fairly accurate estimate of a physician’s capacity. Lastly, our proposed staffing

algorithm, which accounts for the time-varying demand of physician productivity, is practically useful for

ED managers who aim to improve physician staffing planning.

7 Information obtained from https://ca.talent.com/salary?job=emergency+physician; accessed on November 3, 2021.

https://ca.talent.com/salary?job=emergency+physician
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7.2. Relevance to Non-Healthcare Settings

Shift changes and task handoffs are unavoidable in any non-terminating system where human workers are

involved, such as nuclear reprocessing and oil-refining plants (Lardner 1996), aviation maintenance facilities

(Parke and Kanki 2008), and auditing firms (The Audit Commission 2012). Worker multitasking is also

common in today’s workplace, as multiple tasks compete for the same worker’s attention. Compared with

idly waiting on a pending task, it may be better to switch to processing another task, which may increase

worker utilization and productivity (Ophir et al. 2009, KC 2013). Hence, the trade-off between productivity

and handoff may also exist in other settings, which relates our findings to the management of non-healthcare

systems. Our results suggest that understanding the behavior of individual workers during a shift is crucial

for predicting system-level performance, which is key to workforce management. We also mark that the

dimension reduction technique in our study can be applied to the modeling of case-manager type systems,

such as online chat systems in contact centers (Tezcan and Zhang 2014) and case management in social

work (Campello et al. 2016).

7.3. Future Research

There are a number of opportunities for future research. First, it would be of interest to extend our proposed

queueing model to account for patient LWBS behavior. LWBS is an important aspect of ED operations and

depends on the patient’s waiting time and the order in which patients are seen (Batt and Terwiesch 2015).

Second, our queueing model and the corresponding simulation model focus on the waiting room dynamics

and did not consider the subsequent treatment and disposition process in detail such as patient boarding. It

would be interesting to integrate our model with the simulation model in Shi et al. (2015), which focuses on

the interface between ED and inpatient units, to capture the complete patient journey through the healthcare

system. Third, our model is validated using data from two large urban hospitals in Canada. It is important

to evaluate the accuracy of our model using data from hospitals of different sizes and in other regions. It

is also interesting to empirically test our findings in Theorem 1. Finally, Green et al. (2007) point out that

the true nature of ED service times remains unclear because physician multitasking, i.e., serving multiple

patients at a time, causes disruptions to the service provided to a given patient. Moreover, the estimation of

service times from observational data is challenging because the end times for physician activities are usually

not recorded (Duan et al. 2020). Our findings suggest that the aggregated service rates (i.e., PPH)—which

usually can be easily counted from data—are perhaps adequate for ED modeling and staffing. It would be

valuable to investigate when using the aggregated service rates is sufficient and when it is not.
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Appendices
Appendix A. Further results from descriptive data analysis

Figure 9 The average new patients seen per hour (PPH) for 8-hour shifts in the main ED area with time resolution of 1

hour. The extra point on the curve for active patients outside the shift duration is due to physician overtime for

one hour.
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Figure 10 The average new patients seen per hour (PPH) for 7- and 8-hour shifts with a time resolution of 30 minutes.

The extra point for active patients outside the shift duration is due to physician overtime for one hour.
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Appendix B. Proofs for Theorem 1 and Corollary 1
Proof of Theorem 1. We first show that 𝑅(𝑡) = 0, ∀𝑡 ∈ [0,𝑇] . For any 𝑡 such that \𝐷 (𝑡)/`

𝑅
< 1, we have

𝛼
𝑅
(𝑡) = \𝐷 (𝑡)/`

𝑅
and hence 𝑅′(𝑡) = 0. When \𝐷 (𝑡)/`

𝑅
= 1, we have 𝛼

𝑅
(𝑡) = 1 and 𝛼

𝑁
(𝑡) = 0, which

yields 𝐷 ′(𝑡) = 𝑝`
𝑅
− \𝐷 (𝑡) = −(1− 𝑝)`

𝑅
< 0. Because 𝐷 (0) = 0, we conclude that \𝐷 (𝑡)/`

𝑅
≤ 1, 𝛼

𝑅
(𝑡) =
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Figure 11 The percentage of patients from each triage level in the main ED area by the time of day.
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\𝐷 (𝑡)/`
𝑅
, and 𝑅′(𝑡) = 0, ∀𝑡 ≤ 𝑇. Combining with 𝑅(0) = 0, we conclude that 𝑅(𝑡) = 0, ∀𝑡 ≤ 𝑇. This

completes the proof for Theorem 1 (i).

Furthermore, whenever𝐷 (𝑡) = 0, we have𝐷 ′(𝑡) = 𝑝𝛼
𝑁
(𝑡)`

𝑁
≥ 0. Combiningwith𝐷 (0) = 0, we conclude

that the pure-state constraint 𝐷 (𝑡) ≥ 0, ∀𝑡 ∈ [0,𝑇] holds naturally, which simplifies Problem (1) into the
following:

max
𝛼
𝑁
(𝑡)

{∫ 𝑇

0
(1− 𝑝) [𝛼𝑁 (𝑡)`𝑁 + \𝐷 (𝑡)] d𝑡 − ℎ(𝐷 (𝑇))

}
(11)

s.t. 𝐷 ′(𝑡) = 𝑝𝛼𝑁 (𝑡)`𝑁 − (1− 𝑝)\𝐷 (𝑡), 𝐷 (0) = 0, 0 ≤ 𝛼𝑁 (𝑡) ≤ 1− \𝐷 (𝑡)/`𝑅 .

Next, we apply Pontryagin’s maximum principle to Problem (11). Denote the co-state variable of 𝐷 (𝑡) by
_
𝐷
(𝑡). The Hamiltonian is

𝐻 (𝐷,𝛼𝑁 , _𝐷 (𝑡), 𝑡) = (1− 𝑝) [𝛼𝑁 (𝑡)`𝑁 + \𝐷 (𝑡)] +_𝐷 (𝑡)
[
𝑝`𝑁𝛼𝑁 (𝑡) − (1− 𝑝)\𝐷 (𝑡)

]
= (1− 𝑝)\ (1−_𝐷 (𝑡))𝐷 (𝑡) + `𝑁

(
𝑝_𝐷 (𝑡) + 1− 𝑝

)
𝛼𝑁 (𝑡). (12)

Note that the Hamiltonian (12) is linear in 𝛼
𝑁
(𝑡). The Pontryagin’s maximum principle requires the

Hamiltonian to be maximized for all 𝑡 ∈ [0,𝑇] . Hence, the optimal policy to Problem (11) is bang-bang, i.e.,
𝛼∗
𝑁
(𝑡) is equal to either 0 or 1− \𝐷 (𝑡)/`

𝑅
. Due to the existence of the mixed inequality constraint, we need

to define a Lagrangian by appending the Hamiltonian with the mixed constraints (see Chapter 3 in Sethi

2019). Let `
𝐿
and `

𝑈
be the Lagrange multipliers for the lower and upper constraints on the control 𝛼

𝑁
(𝑡),

respectively. The Lagrangian is

𝐿 (𝐷,𝛼𝑁 , _𝐷 (𝑡), `𝐿 , `𝑈 , 𝑡) = 𝐻 (𝐷,𝛼𝑁 , _𝐷 (𝑡), 𝑡) + `𝐿𝛼𝑁 (𝑡) + `𝑈
[
1− \𝐷 (𝑡)/`𝑅 −𝛼𝑁 (𝑡)

]
=

[
(1− 𝑝)\ (1−_𝐷 (𝑡)) − \`𝑈/`𝑅

]
𝐷 (𝑡) +

[
`𝑁

(
𝑝_𝐷 (𝑡) + 1− 𝑝

)
+ `𝐿 − `𝑈

]
𝛼𝑁 (𝑡) + `𝑈 . (13)

The optimal policy to Problem (11) needs to satisfy the conditions below byPontryagin’smaximumprinciple:
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(i) Maximum Conditions:

𝛼𝑁 (𝑡) = 0⇔ 𝑝_𝐷 (𝑡) + 1− 𝑝 < 0, 𝛼𝑁 (𝑡) = 1− \𝐷 (𝑡)/`𝑅 ⇔ 𝑝_𝐷 (𝑡) + 1− 𝑝 > 0.

(ii) First-Order Conditions: `
𝑁

(
𝑝_

𝐷
(𝑡) + 1− 𝑝

)
+ `

𝐿
− `

𝑈
= 0.

(iii) Complementary Slackness: `
𝐿
𝛼
𝑁
(𝑡) = `

𝑈

[
1− \𝐷 (𝑡)/`

𝑅
−𝛼

𝑁
(𝑡)

]
= 0, `

𝐿
≥ 0, `

𝑈
≥ 0.

(iv) Adjoint Conditions: _
′
𝐷
(𝑡) = \`

𝑈
/`

𝑅
− (1− 𝑝)\ (1−_

𝐷
(𝑡)), _

𝐷
(𝑇) = −ℎ′(𝐷 (𝑇)).

Because Problem (11) does not contain pure-state constraints, the co-state variable _
𝐷
(𝑡) is continuous

in 𝑡 under optimality. Consider any time 𝑡, where 1 − \𝐷 (𝑡)/`
𝑅
> 0 and 𝛼

𝑁
(𝑡) = 0, such that 𝛼

𝑁
(𝑡) <

1− \𝐷 (𝑡)/`
𝑅
. Because of the complementary slackness, `

𝑈
= 0. The adjoint equation for _

𝐷
(𝑡) becomes

_
′
𝐷 (𝑡) = (1− 𝑝)\_𝐷 (𝑡) − (1− 𝑝)\ ⇒ _𝐷 (𝑡) =𝐶𝑒 (1−𝑝) \𝑡 + 1, (14)

where 𝐶 is a constant. We argue that 𝐶 < 0; otherwise, _
𝐷
(𝑡) ≥ 1, and hence 𝛼

𝑁
(𝑡) = 1 − \𝐷 (𝑡)/`

𝑅
as a

result of 𝑝_
𝐷
+1− 𝑝 > 0,which contradicts with 𝛼

𝑁
(𝑡) = 0.Hence, _′

𝐷
(𝑡) = (1− 𝑝)\𝐶𝑒 (1−𝑝) \𝑡 < 0whenever

𝛼
𝑁
(𝑡) = 0. This implies that once 𝛼

𝑁
(𝑡) = 0, then 𝑝_

𝐷
(𝑡) + 1 − 𝑝 < 0 and thus 𝛼

𝑁
(𝑡) = 0, ∀𝑡 ∈ [𝑡,𝑇] . In

other words, once it is optimal for the physician to choose idling at 𝑡, i.e., 𝛼
𝑁
(𝑡) = 0, then it is optimal to

stay idle during the remaining time of her shift.

Solving (14) together with the boundary condition in the adjoint conditions yields

_𝐷 (𝑡) = 1− [1+ ℎ′(𝐷 (𝑇))] 𝑒 (1−𝑝) \ (𝑡−𝑇) , 𝑡 ∈ [0,𝑇] . (15)

Let 𝑡∗ denote the optimal threshold under the optimal control policy. The maximum conditions imply that

𝑝_
𝐷
(𝑡∗) + 1− 𝑝 = 0. Solving this equation yields

𝑡∗ =𝑇 − ln[𝑝(1+ ℎ′(𝐷 (𝑇)))]
(1− 𝑝)\ . (16)

Since the right-hand side of (16) is not necessarily between 0 and 𝑇 , we let 𝑡∗ = 0 if the right-hand side of

(16) is less than 0, and let 𝑡∗ =𝑇 if the right-hand side of (16) is greater than 𝑇. This completes the proof for

Theorem 1 (ii).

Assume that the physician starts idling at 𝑡∗ ∈ [0,𝑇] . Then, 𝛼
𝑁
(𝑡) = 1 − \𝐷 (𝑡)/`

𝑅
when 𝑡 ∈ [0, 𝑡∗] and

𝛼
𝑁
(𝑡) = 0 when 𝑡 ∈ (𝑡∗,𝑇]. The system dynamics can be described as follows:

d𝐷 (𝑡)
d𝑡

= 𝑝

(
`𝑁 −

`
𝑁

`
𝑅

\𝐷 (𝑡)
)
− (1− 𝑝)\𝐷 (𝑡), 𝐷 (0) = 0, 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (17)

d𝐷 (𝑡)
d𝑡

= −(1− 𝑝)\𝐷 (𝑡), 𝑡 ∈ (𝑡∗,𝑇] . (18)

Solving the ordinary differential equations in (17) and (18) yields:

𝐷 (𝑡) =
𝑝`

𝑁

\
(
1− 𝑝 + 𝑝`

𝑁
/`

𝑅

) (
1− 𝑒

−\
(
1−𝑝+𝑝

`
𝑁

`
𝑅

)
𝑡
)
, 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑 (19)
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𝐷 (𝑡) = 𝐷 (𝑡∗)𝑒−(1−𝑝) \ (𝑡−𝑡∗) , 𝑡 ∈ (𝑡∗,𝑇], (20)

which completes the proof for Theorem 1 (iii). □

Proof of Corollary 1. Because PPH(𝑡) = 𝛼
𝑁
(𝑡)`

𝑁
, we get

PPH(𝑡) = `𝑁 −
𝑝`2

𝑁

𝑝`
𝑁
+ (1− 𝑝)`

𝑅

(
1− 𝑒−\ (1−𝑝+𝑝`𝑁

/`
𝑅)𝑡

)
, ∀𝑡 ∈ [0, 𝑡∗] .

It is obvious that PPH(𝑡) = 0, ∀𝑡 ∈ (𝑡∗,𝑇] . Similarly, since TH(𝑡) = (1− 𝑝) [𝛼
𝑁
(𝑡)`

𝑁
+ \𝐷 (𝑡)], we get

TH(𝑡) = (1− 𝑝)`𝑁 +
𝑝(1− 𝑝)`

𝑁
(`

𝑅
− `

𝑁
)

𝑝`
𝑁
+ (1− 𝑝)`

𝑅

(
1− 𝑒

−\
(
1−𝑝+𝑝

`
𝑁

`
𝑅

)
𝑡
)
, 𝑡 ∈ [0, 𝑡∗], 𝑎𝑛𝑑

TH(𝑡) = (1− 𝑝)\𝐷 (𝑡∗)𝑒−(1−𝑝) \ (𝑡−𝑡∗) , 𝑡 ∈ (𝑡∗,𝑇],

where 𝑡∗ and 𝐷 (𝑡) are given in (16) and (19), respectively, which completes the proof. □

Appendix C. Computation of the Dimensionality for a Markovian ED Model
In this section, we use a CTMC to model the system dynamics of ED patient flow, and the system state

is represented by a vector (𝑥𝑤 , 𝑥 (1)𝑇
, 𝑥

(1)
𝑅

, 𝑥
(2)
𝑇

, 𝑥
(2)
𝑅

, . . . , 𝑥
(𝑘)
𝑇

, 𝑥
(𝑘)
𝑅

), where 𝑘 is the number of physicians on
duty, 𝑥𝑤 is the number of patients waiting to be seen in the waiting room, 𝑥 (𝑖)𝑇

is the number of patients

going through tests, and 𝑥 (𝑖)
𝑅
is the number of patients waiting for reassessment for Physician 𝑖, 𝑖 = 1, · · · , 𝑘 .

Assume that there are at most 𝑁𝑤 patients in the waiting room, and at most 𝑀 (𝑖) patients in the test and

reassess queues of Physician 𝑖. Hence, the state space is{
(𝑥𝑤 , 𝑥 (1)𝑇

, 𝑥
(1)
𝑅

, 𝑥
(2)
𝑇

, 𝑥
(2)
𝑅

, . . . , 𝑥
(𝑘)
𝑇

, 𝑥
(𝑘)
𝑅

) : 0 ≤ 𝑥𝑤 ≤ 𝑁𝑤 , 𝑥
(𝑖)
𝑇

≥ 0, 𝑥 (𝑖)
𝑅

≥ 0, 𝑥 (𝑖)
𝑇

+ 𝑥 (𝑖)
𝑅

≤ 𝑀 (𝑖) , 𝑖 = 1, · · · , 𝑘
}
.

Hence, the state space has a dimension (𝑁𝑤 + 1)Π𝑘
𝑖=1 [(𝑀

(𝑖) + 1) (𝑀 (𝑖) + 2)/2]. Assuming 𝑘 = 4, 𝑁𝑤 = 20,

and 𝑀 (𝑖) = 7 for all 𝑖, then the dimension of the state space is 21× [(7 + 1) (7 + 2)/2]4 = 35,271,936. The
modeling and computation are similar to that of model 𝒮 in Campello et al. (2016) despite the differences

in the patient pick up mechanism.

Appendix D. Specifications of 𝑃1 𝑗 , 𝑃2 𝑗 , and the average ED waiting time
We first specify the transition probability matrix 𝑃1 𝑗 . The transition probability of 𝑃1 𝑗 from (𝑥1,y1) to
(𝑥2,y2), denoted by 𝑝 (𝑥1,y1) (𝑥2,y2) , is defined as follows:

𝑝 (𝑥1,y1) (𝑥2,y2) =



_ 𝑗

Λ 𝑗
if 𝑥1 ≥ 0, 𝑥2 = 𝑥1 + 1,y1 = y2 = 1𝑠 𝑗 ; or 𝑥1 = 𝑥2 = 0,y1 ≠ 1𝑠 𝑗 ,

y2 = y1 + e𝑖 , where 𝑖 = argmax1≤𝑚≤𝑠 𝑗 {` 𝑗 (𝑆𝑚) (1− y(𝑚)
1 )},∑𝑠 𝑗

𝑚=1 ` 𝑗 (𝑆𝑚)
Λ 𝑗

if 𝑥1 ≥ 1, 𝑥2 = 𝑥1 − 1,y1 = y2 = 1𝑠 𝑗 ,
` 𝑗 (𝑆𝑚)

Λ 𝑗
if 𝑥1 = 𝑥2 = 0,y(𝑚)

1 = 1,y2 = y1 − e𝑚,1 ≤ 𝑚 ≤ 𝑠 𝑗 ,

1− _ 𝑗+
∑𝑠 𝑗

𝑚=1 y(𝑚)
1 ` 𝑗 (𝑆𝑚)

Λ 𝑗
if 𝑥1 = 𝑥2 = 0,y1 = y2 ≠ 1𝑠 𝑗 ,

0 otherwise,
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where e𝑖 is the 𝑖th row of 𝑠 𝑗-dimensional identity matrix, 1𝑠 𝑗 is a 𝑠 𝑗-dimensional vector with all elements

equal to 1, y(𝑚)
1 is the 𝑚th element of y1, and 𝑆𝑚 is the 𝑚th shift in S 𝑗 .

Next, we specify 𝑃2 𝑗 to describe the instantaneous transition of system states at the end of the 𝑗 th period

due to that physicians may go off-duty or begin new shifts. Let b 𝑗 and [ 𝑗 be the numbers of physicians who

go off-duty and begin new shifts at the end of period 𝑗 , respectively. Note that b 𝑗 and [ 𝑗 are known for any

given schedule. If b 𝑗 = [ 𝑗 = 0, then 𝑃2 𝑗 is an identity matrix of the same dimension as π𝑇π; otherwise, let

𝑝 (𝑥1,y1) (𝑥2,y2) denote the transition probability from (𝑥1,y1) to (𝑥2,y2) of 𝑃2 𝑗 , and let𝑄 be an 𝑠 𝑗 × (𝑠 𝑗 − b 𝑗)
matrix whose column corresponds to one of the (𝑠 𝑗 − b 𝑗) physicians who continue working in period 𝑗 + 1.
Each column of𝑄 is a 𝑠 𝑗-dimensional vector whose elements are all 0 except that the 𝑔th element is 1 where

𝑔 is the index of the corresponding physician in y1. Then, when [ 𝑗 ≥ 1,

𝑝 (𝑥1,y1) (𝑥2,y2) =


1, if 𝑥1 ≥ [ 𝑗 , 𝑥2 = 𝑥1 − [ 𝑗 ,y1 = 1𝑠 𝑗 ,y2 = (y1𝑄,1[ 𝑗

); or 𝑥1 ≤ [ 𝑗 − 1, 𝑥2 = 0,
y2 = (y1𝑄,1𝑥1 ,0[ 𝑗−𝑥1); or 𝑥1 = 𝑥2 = 0,y2 = (y1𝑄,0[ 𝑗

),
0, otherwise,

where 1𝑔 and 0𝑔 are 𝑔-dimensional vectors with all elements equal to 1 and 0, respectively. Note that when

𝑥1 < [ 𝑗 , i.e., the number of waiting patients is less than the number of physicians who begin their shifts,

we assign the patients in waiting to newly-arrived physicians with the highest service rates, following the

same rule described in Section 5.1. This is achieved by ranking the newly-arrived physicians by their current

service rates. Specifically, in y2 = (y1𝑄,1𝑥1 ,0[ 𝑗−𝑥1), 1𝑥1 represents the 𝑥1 physicians with the highest service

rates among the [ 𝑗 newly-arrived physicians and 0[ 𝑗−𝑥1 represents the remaining [ 𝑗 − 𝑥1 slower physicians.

When [ 𝑗 = 0, then

𝑝 (𝑥1,y1) (𝑥2,y2) =

{
1, if 𝑥1 = 𝑥2,y2 = y1𝑄,

0, otherwise,

Finally, we follow Liu and Xie (2021) to compute the average patient waiting time. The total expected

patient waiting time in the 𝑗 th period (( 𝑗 − 1)𝑙, 𝑗 𝑙], denoted by𝑊 𝑗 , can be expressed as

𝑊 𝑗 =

∞∑︁
𝑛=0

(
(Λ 𝑗 𝑙)𝑛

𝑛!
𝑒−Λ 𝑗 𝑙

𝑛∑︁
𝑚=0

∞∑︁
𝑖=1

π𝑖 (( 𝑗 − 1)𝑙 +𝑚𝑙/(𝑛 + 1)) 𝑖𝑙

𝑛 + 1

)
,

where π𝑖 (( 𝑗 − 1)𝑙 +𝑚𝑙/(𝑛 + 1)) is the probability at state (𝑖,1𝑠 𝑗 ) at 𝑡 = ( 𝑗 − 1)𝑙 +𝑚𝑙/(𝑛 + 1). Hence, the
average ED waiting time is

∑24/𝑙
𝑗=1 𝑊 𝑗/

∑24/𝑙
𝑗=1 _ 𝑗 . Interested readers are referred to the appendix of Liu and Xie

(2021) for detailed derivation and explanation.
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